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Abstract—Fault diagnosis plays a major role in railway con-
dition monitoring, as early diagnosis of the emerging faults
can save valuable time, reduce maintenance costs and, most
significantly, help save people’s lives. However, the conventional
data-driven methods used to diagnose track faults, especially in
under-developed countries, use push-trolley/train based Track
Recording Vehicles (TRV) which rely heavily on manual ex-
traction of track data. It is a very demanding process and
significantly affects the final results due to its reliance on
human judgment in assessing track conditions and its sub-
optimal performance. In contrast, with the advent of IoT based
smart Inertial Measurement Units (IMUs), the data-driven fault
diagnosis became a core component in the smart industrial
automation safety system. We proposed, Muhafiz, a prototype
which is an automated and portable TRV with a novel design
based on Axle Based Acceleration (ABA) methodology for rail
track fault diagnosis. Our contribution concluded, based on site-
specific experimentation, that Muhafiz is 87% more efficient than
the traditional push-trolley based TRV mechanism.

Index Terms—Fault diagnosis, Condition monitoring, IoT
based Smart Inertial Measurement Units, Track Recording
Vehicle, Wavelet transform, Axle Based Acceleration.

I. INTRODUCTION

RAIL transport is the most efficient, cost-effective and
convenient means of transport. It has lower fuel costs, is

capable of transporting large loads, environmentally friendly
and, most importantly, is also very reliable, as it is not hindered
by weather in the same way as road and air transport do.
Rail transport has therefore become the backbone of every
emerging economy. However, effective management of the
rail infrastructure is very essential for continuous and smooth
operation of rail transport. A key part of the management is
railway condition monitoring, which detects the deterioration
and deformation of rail tracks, due to various factors including
the load of rail vehicle on rail tracks, terrain where rail track
is deployed, materials used in rail track construction and
environmental conditions. The purpose of railway condition
monitoring is to detect the track deterioration before it causes
any failure or prevents rail operations.

Rail tracks, the most important rail transport infrastructure,
have a direct impact on passenger safety and comfort. The
deterioration and degradation of the rail track will have an
impact on the health of the track resulting in a track irregularity
which will be detrimental to the safety of the rail riders [1]
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[2] as there is a direct relationship between the rail track and
rail vehicle [3]. Late in the degradation stage, maintenance
becomes expensive and time consuming, as the rail tracks usu-
ally have to be replaced. Rail condition monitoring is therefore
required to be carried out on in-service rail lines several times
a month by the railway management. For this purpose, track
inspection vehicles (or track recording vehicle (TRV)) are used
to measure several track diagnostic parameters. Among them,
vibration and acceleration are considered to be the two most
important parameters. Variations in vibration and acceleration
are caused by the contact forces of the rail wheel and rail
track. Amplitude variations of vibrations and accelerations
may vary mainly due to surface rails, imperfections such as rail
roughness, corrugation or defects on a rolling contact surface
of the rail track. These variations in vibration and acceleration
reveal a great deal of information about the deterioration of
the rail tracks.
Our Work. In this paper, we developed Muhafiz*, a low-cost,
low-power, wireless, and real-time IoT based sensing system
along with a customized TRV replacing the manual production
of features with an automated process for rail condition
monitoring and damage diagnosis. Our novelty stems from the
unique design of the TRV, as compared to traditional trolley-
based TRV, to detect minor fluctuations in vibrations which
plays a key role in the early detection of track damage. The
TRV is designed with the goal to make it portable and easy to
operate. The IoT based sensing system on TRV uses the Axle-
Based Acceleration (ABA) technique and is equipped with an
inertial measurement unit (IMU) for the precise extraction of
instantaneous irregular amplitudes of the acceleration signals
in all three axes, to identifies the faults of the track and
determines its severity. The accelerometer data of the track
dynamics are measured and transmitted using NodeMCU [4]
to an online cloud network service “Thingspeak” [5] in real-
time through which the irregularity of the track is detected.
Our results have shown that the proposed novel design of the
TRV can determine the damage to the track(s) with remarkable
measurement accuracy.

The rest of the paper is structured as follows. Section II
gives the overview of the state-of-the-art for railway condition
monitoring while defining basic terminology and challenges
faced by them. Section III and IV explains the overall design
and working of the Muhafiz. In section V, we describe our
acceleration fault detection system . Section VI discusses the
results before we end the paper with brief concluding remarks
in Section VII.

*Muhafiz is an Urdu word, meaning ”preserver”
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TABLE I: Main track parameters for monitoring purposes

Monitoring
Purpose Example Literature

Track Profile Stiffness and Elevation Profile [1], [11]–[14]

Track
Component Joints, crossings, frogs and squats [15]–[18]

Others
Irregularities in the rail surface,

track replacement, welding,
tamping and rail bump

[19]–[21]

II. RELATED WORKS

To date, various types of sensors have been employed to
serve the purpose of TRV based railway condition moni-
toring such as, Laser Displacement Sensors (LDS), Infrared
Thermography (IRT) cameras and Inertial Measurement Unit
(IMU) [6]–[9]. These technologies can be merged together
or play a pivotal role even as a stand-alone technology.
There are, however, certain drawbacks associated with the
first two technologies, such as: laser displacement sensors are
expensive and their maintenance is also costly; IRT camera-
based techniques are cheaper in contrast to laser displacement
sensors but require expensive image processing devices to
overlap irregular delays, while IMUs like accelerometer and
gyroscope are cheaper in comparison with laser displacement
sensors and IRT cameras [10] [11]. They are widely used
in literature due to their low price, simplicity and efficiency.
These IMUs can be easily installed in the rail vehicle’s carriage
or axle box, and their response can also be easily measured.
The main track parameters for TRV-based rail monitoring
using IMUs are summarized in the table I.

TABLE II: ABA Methodologies

Researcher(s) Work Literature

Wei et al. Identification of the railway crossing
degradation. [22]

Oregui et al. Rail joint monitoring (e.g., bolt tightness) [16]

Salvador et
al.

For determining faults in turnout frogs,
welded joints and squats [11]

Whereas, for the analysis of track damage using ABA
methodology, the most commonly used IMU component is
accelerometer, among other components such as gyroscope
and magnetometer. Several researchers, as shown in table III,
have proposed a track condition monitoring using accelerom-
eter mounted on TRV. A rich body of literature also exists on
deploying IoT based systems, covering various applications of
rail transport (not necessarily rail monitoring), mentioned in
table IV.

In table V, various research works are mentioned regarding
condition monitoring of the railway track using Inertial Mea-
surement Units (IMUs). Amongst them, Paixao et al. [30] has
used the built-in accelerometer of the smartphone as a sensing
device for analyzing the track-related damages. Smartphone as

TABLE III: Acceleration Based Studies

Researcher(s) Work Literature

Le Pen et
al.

Identification of the track stiffness using
TRV. [14]

Real et al. Measurement of the rail profile by vertical
acceleration using TRV. [12]

OBrien et
al.

Measurement of the longitudinal track
profile. [11]

Tsunashima
et al.

Development of the portable track health
monitoring system. [23]

Paixao et al. Analysis of the geometrical structural
degradation. [23]

TABLE IV: IoT Based Railway Track Monitoring

Researcher(s) Work Literature

C. Chel-
laswamy et

al.

Remote IoT based measurement of track
parameters using Particle Swarm

Optimization Algorithm
[24]

O. Jo et al. Optimizing the smart railway applications
by the variation of IoT architecture. [25]

M. Saki et
al.

Enhancing Access Points efficiency using
train-to-wayside (T2W) communications

along a rail network
[26]

I. Rajkumar
et al., B.

Mishra et al.
Using IoT for Train Collision Avoidance. [27]

[28]

B.S.
Chowdhry

et al.
Real time railway structure monitoring. [29]

TABLE V: Studies on inertial measurement units

Researcher(s) Work Literature

Andre
Paixao et al.

Used smartphone sensing capabilities for
analyzing the track degradation and

performance by mentioning that track
data can be sent wirelessly (WiFi) for

further analysis.

[30]

David Milne
et al.

Used a merge of geophone and
accelerometer by installing them on the
railway track. And it was noted that the
geophone had less variation and standard
deviation in analyzing the track health.

[31]

Weston et
al.

Smart IMU can be used for analyzing the
track faults by assigning them with a

fixed threshold
[32]

Ackroyd et
al.

The train ride quality is monitored by
installing inertial sensor of Acela train set. [33]

King et al.
Simulation softwares like Delta Rail are

used for analyzing the track health
condition, remotely.

[34]
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TABLE VI: Comparison of Muhafiz with state-of-the-art techniques for detecting rail track faults.

Faults
Squat Turn Out Frogs Dip Angles Drainage Broken Rail Corrugation

Image Processing 3 3 3 3
Laser Displacement Sensor 3 3 3
Inertial Measurement Unit (IMU) 3 3 3 3
Infrared Thermography (IRT) 3
Microphone 3 3
Fiber Bragg Grating 3 3 3Te

ch
ni

qu
es

MUHAFIZ 3 3 3 3 3 3

a sensor has various sensitivity related issues. Therefore, there
are high chances of dubious readings. In another study, David
Milne et al. [31] performed the track analysis by mounting
accelerometer ADXL335 and ADXL326 on the track itself.
As a result of this, the system developed by David Milne
cannot identify track surface-related defects such as squats and
turn out frogs. Whereas, Weston et al. [32] conducted a survey
based on the techniques that are implemented on the traditional
service vehicles like Track Recording Couches. Similar to
David Milne, King et al. [34] discussed the Trackline system
that is mounted on the UK’s railway network for observing
the UK’s fastest track. The Trackline system analyzes various
track parameters and is fixed on the railway track for observing
the track’s dynamic properties. Both these systems developed
by Weston et al. and King et al. are either installed on
the tracks or uses train for the identification of the track
damage. Likewise to the study conducted by Paixao, Ackroyd
et al. [33] has applied vibration detection system on the train
instead of a smartphone, that uses three accelerometers for the
determination of the train’s ride comfort of the train.

The table VI summarizes the existing techniques and the
rail faults which can be detected using those techniques. Tech-
niques such as image processing, laser displacement sensing
and ultrasonic testing are mostly one-dimensional and fail to
identify three-dimensional track defects such as the dip angle
[35]. In order to make them work in three dimensions, it is rec-
ommended that more such sensors be used which increase the
processing power making the whole system less cost-effective.
One the other hand, the IMU technique is a cost-effective
alternative for the determination of various track faults but
with the exception of squats and turn out frogs. It fails to
detect these two track faults since the mass/weight of the rail
track and the instrumented train act as a vibration damper that
suppresses its non-linear frequency response making it hard
for the IMU sensor to identify the negligible variation in the
frequency response of these sensors.

In this paper, we introduce Muhafiz and its novel design of
the TRV make IMU’s resourceful enough to identify all the
track surface faults including squats, frogs, and dip angles.

III. DESIGN OF MUHAFIZ

We split the Muhafizinto two high level modules, TRV
Controller and Diagnosis modules as shown in Figure 1. Both
these modules were powered by rechargable battery pack.

A. TRV Controller module

The purpose of the TRV Controller module is to control
the movement of the TRV on rail tracks. It consists of three

components: 1© Bluetooth module, 2© Arduino, and 3©
Motor Driver. Both the Bluetooth module and motor driver
interfaced with Arduino. The Bluetooth module connects the
TRV Controller with the user laptop to give commands to Ar-
duino. Arduino, after receiving commands, drives the motors
through the motor driver.

The initial prototype of the TRV operated only on the
NodeMCU for both, diagnosis and controlling of the DC
motors, via WiFi connectivity but it caused delays in the
transmission of the sensory data to the cloud platform. We
believe it is because of the NodeMCU performing multiple
tasks like controlling the DC motor, location tracking and
accelerometer data transmission at the same time. To avoid
lag in the track damage detection, which can lead to false and
faulty readings, we resort to separate Arduino UNO module.
Furthermore, when motors of the TRV were initially controlled

Fig. 1: High level architecture of Muhafiz.

using internet connectivity it caused a visible delay in the
operation of the DC motors. For example, when the user
gave a command for turning the TRV at the rail junction, the
TRV due to delay in the transmission performed the task at
approximately 37 secs later.

B. Diagnosis module

On the other hand, the main responsibility of the Diagnosis
module is to collect accelerometer readings and upload them
to ThingSpeak for further analysis. The Diagnosis module
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consists of two components: 1© NodeMCU and 2© Ac-
celerometer. The IMU-based accelerometers are interfaced
with NodeMCU which is connected with the internet through
portable 4G equipped WiFi device. These inertial sensors are
installed on the basis of Axle Based Acceleration (ABA)
technique and are as close as possible to the center of mass
of the portable TRV.

C. Track Recording Vehicle (TRV)

Most of the existing TRVs are trains with some instrumenta-
tion [1], [12], [14]. The problems with these implementations
of TRV is their cost, maintenance, and portability. Due to the
size of these TRVs, the maintenance of their rail tracks can
not be scheduled in a timely manner and is not accessible to
engineers for the analysis of the problems associated with the
damage to the rail tracks faced by the maintenance department
on a daily basis.

We designed our TRV while keeping portability in our
minds. It has two front wheels of less than half the diameter
of the rear two wheels as shown in Figure 2. Since the two
sets of wheels are not of the same size, the lateral motion due
to track damage will be higher than if we have the wheels sets
having the same size. The large wheels acts as driving wheel
and connected with motors. The accelerometers are interfaced
on the axle of the smaller wheels to detect minor fluctuation in
vibrations. This plays a key role in the early damage diagnosis
of minor squats and frogs (track damage caused by sudden
braking or dips). These minor squats and frogs can not be
determined if accelerometers are installed on the existing train-
based TRV. The main highlight of our TRV is its size, which
makes it possible to port anywhere quickly and easily. The
entire structure of the TRV is constructed using a 1,85 m
long aluminum beam as shown in Figure 3. The wheels are
separated by a length of 1,676 m (i.e. the actual width of the
rail broad gauge) and are positioned at the extreme ends of
the aluminum beam. Whereas, the accelerometer sensors are
installed in the middle and two ends of the TRV.

Fig. 2: TRV front and back wheels comparison.

D. Mathematical Modeling of TRV

Considering the fact that propulsive force Fp (t) and accel-
eration of the instrumented TRV tends move in the forward
direction while the disturbance force or frictional force Fd (t)
tends to resist the movement of the vehicle. Consider all these
parameters, the mathematical model of the instrumented Track
Recording Vehicle is:

m
dv

dt
+Bv = Fp(t) + Fd(t) (1)

m
dv

dt
+Bv = Ke(t) + Fd(t) (2)

Where, Ke(t) is the controller that drives the instrumented
TRV into the forward direction.

IV. WORKING OF MUHAFIZ

The fully instrumented TRV is shown in Figure 3 with all
the components interfaced together. The motors we used for
drive TRV operates at a voltage range between 6V-12V and
has an rpm of 180. The total number of motors used are two
and they are mounted behind the driving wheels as shown in
Figure 2. As the output pins of Arduino are not capable of
supplying enough current to motors we interface them with
L298n motor driver. A rechargeable power bank of 18 Watt
output is used for supplying the power to the Arduino and
motor driver. Digital output pins of the Arduino from D6 to
D12 were connected to the L298n motor driver. Whereas, the
D0 and D1 transmission pins of the Arduino were connected
with the Bluetooth module HC-05 to control the locomotion
of TRV wirelessly.

The built prototype is proposed to replace a push-trolley
based TRV, shown in Figure 4. As compared to push-
trolley, our portable system works mostly in autonomous mode
with more precision and reliability. The developed system
is a cost-effective alternative to push trolleys. The portable
instrumented TRV included three tri-axial accelerometers
(ADXL345) mounted near the axle of the vehicle, connected
by hardwiring to NodeMCU which transmitted data to a cloud
service (Thingspeak) for the further data analysis purpose. The
efficacy of the use of accelerometers for damage diagnosis
of in-service railway tracks is mentioned in earlier studies.
[11] [12] [14] [36] [23]. The ADXL345 is 3mm x 5mm x
1mm in dimension and has a high resolution of (4mg/LSB)
that enables the sensor to detect variation in the inclination as
low as 1 degree. The accuracy and measurement precision
of the ADXL345 were validated on the actual in-service
rail track and it was highly responsive on the squats and
turnout frogs, when installed on the designed instrumented
TRV. Malekjafarian et al. [1] in his study also validated
the application of the accelerometer for analyzing the track
damage from the data acquitted by a similar sensor.

In order to diagnose damage to the track, the TRV is moved
across the track at a constant speed of 3.2 km/h (measured
from laser tachometer). The amplitude of the acceleration
varies at multiple peaks with the locomotion of the TRV. The
amplitude variation of the acceleration reveals very minute de-
tails of the track structural behavior. To improve the accuracy
of the data, an additional accelerometer is placed at the middle
of the TRV, while the other two are near the wheels of the
TRV. This approach is known as the Axle Based Acceleration
methodology. Different research work [11] [12] [14] [36] [23]
had validated ABA by acquiring the data for calculating and
measuring parameters like, track stiffness, vertical acceleration
of the track, rail profile and various track irregularity param-
eters that are vastly used in the track condition monitoring.
To visualize and process the accelerometer readings, they are
transmitted wirelessly using Node MCU to Thingspeak.
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Fig. 3: Instrumented TRV.

Fig. 4: Working of the Push trolley

In addition, the location of the instrumented TRV is also
transmitted by using Google Map Developer API as shown in
Figure 5, where the place of the track can be traced using
Google Maps. For this, we used IP-based location instead
of interfacing GPS module which will further consumes the
battery power. The location will be triggered and send to
Google Map Developer API only when the damage will be
determined based on accelerometer value.

V. ACCELERATION BASED DETECTION ALGORITHM

The technique applied by Lederman et al. [21] uses data
acquired from the Y-axis of the accelerometer which contains
valuable information regarding the structural condition of the
railway track, by passing the track recording vehicle on it.
Such that, if the data acquired from the accelerometer has
non-linear transient values then that region of the track is said
to be defected. These transient values denote the frequency of
the acceleration signal present at that particular defected region
of the track. Thus, the Lederman et al [21] technique further
proposes the use of those average amplitude of the acceleration
signals that are acquitted from a moving window alongside
the track itself. This technique is complicated as it requires
summing of the amplitudes (dB) of the Y-axis obtained from
the accelerometer which represents the signal intensity. There-
fore, the data acquired from the proposed instrumented TRV
is initially tested through Hilbert’s transform and then Peak
Based Decomposition. On the basis of these algorithms, a new

Fig. 5: The 2 km long track near Hyderabad. Blue pins show
the locations where only Muhafizidentified faulty rail. Green
pins show the locations where both Muhafiz and Train-based
TRV detected the faults

threshold normalized oriented algorithm is developed for fast
real time processing of the track damage.

A. Hilbert Transform

Hilbert transform is applied for the extraction of the accel-
eration amplitude and frequency. As the frequency (Hz) of the
acceleration is denoted by the Y-axis data of accelerometer
that determines the track faults. The mathematical form of the
Hilbert transform [37] is mentioned as below:

α(t) =
1

π
p

∫
az(τ)

(t− τ)
dτ (3)

In the above mentioned equation 3, the p is representation
of the Cauchy principle value which is obtained from the
single integral function. Where analytic signal of the y-axis

Authorized licensed use limited to: Air University. Downloaded on March 10,2021 at 08:29:22 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3057835, IEEE Internet of
Things Journal

IEEE JOURNAL OF INTERNET OF THINGS 6

(a) Hilbert Transformation (b) Peak Based Decomposition (c) Developed Threshold Algorithm

Fig. 6: Comparison of Hilbert Transformation, Peak Based Decomposition and our developed threshold algorithm

acceleration amplitude is defined in the mentioned below
equation 4:

β(t) = az(t) + jα(t) (4)

The j represents the iota which has value of
√
−1. Thus,

the β(t) that expresses the polar form is mentioned as below:

β(t) = ampinst(t)e
(in(t)) (5)

While the transient amplitude of the non-linear acceleration
is computed using the following equation:

ampinst(t) =
√
a2z(t) + α2(t) (6)

The Hilbert amplitude of the Y-axis acceleration is mea-
sured over the 200m of various junctions of Pakistan using
accelerometer (ADXL345) as shown in the mentioned below
Figure 6a. The Figure 6a represents the extraction of the
transient response of the non-linear acceleration signal due
to the presence of the track surface fault.

B. Peak Based Decomposition (PBD)

To get the precise and accurate measured readings, it is
recommended to sample the instantaneous transient amplitude
of the acceleration with the same sample rate as that of
the original. However, during the processing of the signal
the size of the entire track length amplitude single is too
large and it requires compression in order to avoid time
consuming computations and memory related issues. Whereas,
the signal intensity must be retained at the same frequency.
For representing the signal intensity in a much compressed
form, a technique known as Peak Based Decomposition (PBD)
is employed. PBD approach in this research works as high
band pass filter. It considers the maxima values of the Hilbert
transform, while eradicating the smaller peaks of the original
signal. As the maximum peak values represents the track
faults so by using PBD the size of the entire signal is
reduced, making the computation process simpler and less
time consuming. The output of the first step signal after PBD
is called as Peak function 1, the second peak signal is known
as Peak Function 2 and so on.

Above mentioned Figure 6b represents PBD of the acquired
Acceleration from the accelerometer. It is clearly evident that
the PBD considers the peak values of the signal amplitude
values of the acceleration while removing the smaller peaks

when comparing it with Figure 6a. Finding the maximum
peak values of the acceleration amplitude is the main objective
in this research because through this the track fault and the
severity of the faults can be known using the developed
instrumented TRV.

C. Detection Algorithm using Axle Based Acceleration

After the data is processed through Peak Based Decompo-
sition, the data is being compressed and any uneven noises
are eradicated from it. As these uneven noises could have
put confusion in selection of specific threshold amplitude. The
detection steps implemented are stated as follow:
Step 1: Identification of the uneven track surface fault by
examining the highest frequency peaks of the acceleration
data, when the Track Recording Vehicle is moving at a speed
of 5km/h.

• The highest peaks that is 1, triggers the latitude and
longitude of the track location by using Google Map
Developer API. In this way, the damaged tracks are been
marked on the Google Maps.

• If the frequency amplitude exceeds 3 dB then it is most
likely that the track is damaged.

• In graphical form, a unit graph is computed based on
PBD graph. It rises to 1 when the frequency threshold
exceeds 3 dB whereas, 0 indicates no track surface
damage detected as shown in the Figure 6c.

Step 2: The location traced along with peak amplitude (after
being marked on the track) using Google Map Developer API
are then revisited using another handheld Track Recording
Vehicle for validation of the damage and determining the
severity of the track damage using Wavelet transformation.

VI. RESULTS

In order to validate the damage to the track, another
specially designed handheld Track Recording Vehicle is used
manually to determine the severity of the damage using the
image processing technique. The image processing technique
used to identify track damage is 2D Discrete Wavelet Trans-
formation by OpenCV API.

The image processing technique that is mentioned while
comparing it with the recorded results is Wavelet transfor-
mation. The wavelet transformation requires high processing
speed therefore it is hard to process in real-time on an
embedded platform. Moreover, while attaching the camera
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with the track recording vehicle produces noise and most of
the captured rail images due to that are blurred and unclear.

If we compare other low processing computer vision al-
gorithms like morphological operation then the possibility of
acquiring faulty data increases as those techniques are less
reliable than wavelet transformation. Moreover, to quantify
those morphological images into 2D graphs, certain processing
power is used.

Fig. 7: Handheld Track Recording Vehicle with camera mech-
anism

A. Wavelet Transformation

The severity of the track surface damage as determined by
ABA methodology is processed with two dimensional discrete
wavelet transformation, which splits the track image into two
sub bands namely: low frequency sub band and high frequency
sub band. The edges containing the damage to the track are
classified in a high-frequency sub-band. Whereas, noise and
other unnecessary details are classified in a low-frequency sub-
band. The wavelet expansion is mathematically represented as

Fig. 8: Validation of the fault detection algorithm using
Wavelet transformation

shown in the following equation:

f(t) =
∑
k

c(j,k)φ(j,k)(t) +
∑
j

∑
k

d(j,k)φ(j,k)(t) (7)

f(t) is basically the standardized image that will be pro-
cessed using Wavelet transformation and the decomposition
of the image into two frequency sub bands is represented in
the equations as stated below:

c(j,k) == (f(x), φ(j,k)(x)) =

∫
f(x)φ(j,k)(x)dx (8)

d(j,k) == (f(x), ϕ(j,k)(x)) =

∫
f(x)ϕ(j,k)(x)dx (9)

Where, c(j,k) is the constant approximation and d(j,k) is the
detail co-efficient

B. Handheld Track Recording Vehicle

The handheld TRV is used to validate the damages that have
been identified by iur detection algorithm and the locations
of those damages have been stored by the instrumented TRV
using the Google Map Developer API. Handheld TRV is
specially designed to analyze the severity of the damage to the
track using image processing. The Logitech 5MP web camera
module was mounted on the handheld TRV wheel as shown in
the Figure. 7.The handheld TRV has the same mathematical
modeling as prescribed in equation 8.

C. Validation of detection algorithm by using Wavelet trans-
formation

To validate the damages recognized by the developed thresh-
old algorithm, the 2D discrete Wavelet transformation is used.
By validation, we mean to check whether any dubious reading
is formed by the algorithm. The readings were logged when
the threshold of the acceleration amplitude reached 1 dB in the
amplitude graph as shown in the Figure 6c. The measurements
were taken at the rail junction on a 2 km long operational
track near Hyderabad city. These damages acquired from the
readings were tested using wavelet transformation.

Track defects analyzed by the developed algorithm are clas-
sified as mild, moderate, and damaged after manual inspection.
The images were captured manually after the damage was
recognized by the automated TRV and were validated with
the Wavelet transformation as shown in Figure 8. The results
of the damage analysis were found in agreement with the
damage identification. A total of 11 moderate faults and 1 mild
fault were identified using this algorithm within 2 km of track
surveillance. However, mild fault do not impose any immediate
danger to the track and can be ignored. The Wavelet transfor-
mation evidently proves efficiency of the developed threshold
algorithm for damage recognition using the automated TRV.
The difference of the healthy track from rest of the faulty
tracks is clearly visible as shown in Figure 8.
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Fig. 9: Comparing results of Train-based TRV (using trolley) and Muhafiz. Train-based TRV failed to detect any of the faults
on track. In contrast, Muhafiz detected all the faults correctly.

Fig. 10: Paper author sitting on four wheel trolley with
accelerometers installed on it to replicate train-based TRV

D. Comparison with Train-based TRV’s using IMU and Vision
based algorithms

(i) Comparison with the Push trolley:
Most of the existing TRVs are either push-trolley based
or in some cases trains with some instrumentation [1],
[12], [14]. To replicate the train-based TRV, we used
a four-wheel trolley with accelerometers installed on it
as shown in Figure 10. Figure 9 shows the results of
both trolley-based TRV and Muhafiz. In total, we have
detected 11 faults on the stretch of 2 km track but due
to limited space, we are showing results of only the
first 4 faults. The first column of Figure 9 shows the
picture of the fault on the track. The second column
shows the raw accelerometer value at that fault in the
frequency domain using the trolley. The third column
shows the raw accelerometer value at that fault in the
frequency domain using Muhafiz. In the fourth column,

we apply our detection algorithm on accelerometer values
measured by trolley. In the last column, we apply our
detection algorithm on accelerometer values measured by
Muhafiz. By comparing the second and third column we
can clearly see that trolley-based TRV failed to generate
any vibrations on all four faults. Due to this the detection
algorithm also failed to detect faults in column four. In
contrast, Muhafiz correctly detects all four faults because
of its novel TRV design. In total, out-of 11 faults on 2
km track, trolley-based TRV managed to detect only two
faults, as shown in Figure 5, which makes Muhafiz87%
efficient than trolley-based TRV.

(ii) Comparison with the Morphological Image Processing
Techniques (Dip Angle):
Morphological operations are efficient in processing the
data in real-time but they have limited fault detection
capability, as mentioned earlier in section II. To validate
the superiority of the Muhafiz, it was compared with
the data processed in the Morphological operation. In
morphological operations, the gradient filter had optimal
results in processing the data. In morphological operation,
the Canny Edge detector was implemented. To process
the image faster, 3D (Red, Green and Blue) image is
transformed into 2D (grayscale) image by applying equa-
tion 10.

Gray = 0.299(R) + 0.587(G) + 0.114(B) (10)

For the noise cancellation, a 2D Gaussian filter is
implemented that transforms each pixel of the image into
normal distribution using equation 11.

h(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (11)
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Fig. 11: Canny edge detector response on dip angles

Where the h represents the standard deviation of the
image which is used in the calculation of the normal
distribution. Sobel filter masks (X and Y) are applied
to each of the pixels of the processed image using the
following equations 12 & 13:

hx =
−1 −2 −1
0 0 0
1 2 1

(12)

hy =
−1 0 1
−2 0 0
−1 0 1

(13)

The processed image is mentioned in Figure 11. Dip
angles appear on the railway track when the track en-
counters excessive loading condition that cause the track
to bend. The dip angle also may occur due to a lack
of ballast material. This result in the track to ultimately
break due to exceeding plastic limits. The figure men-
tioned in Figure 12a is of the dip angle. The topmost
view of the track is similar to the healthy track as shown
in the Figure 12.The major drawback of using image
processing is that it is not able to analyze the dip angle,
efficiently. Because in some scenarios there is no surface
mount damage found in those tracks which are having
joint angles. By applying the image processing techniques
like Canny Edge detector, there are no traces of the dip
angle found in the processed image and is just like that
of the healthy track as illustrated in the Figure 11.
In addition, deep-learning image processing algorithms
found in studies [35], [38], [39] similar to gradient filters
use camera(s) at the top view of the track that can monitor
only surface-based track defects such as squats and frogs
but cannot detect 3d-based faults such as a dipped angle
on the rail surface. To mitigate this issue, two to four
cameras can be used to detect the dipped angle [40]
in all three dimensions of the track. This dramatically
increases the overall processing of the algorithm, making
the product more expensive.

VII. CONCLUSION

In this paper, we propose an IoT based portable TRV design
which can track critical faults such as squats, turn out frogs

(a) Dip angle (b) W/o dip angle (c) With dip angle

Fig. 12: Track with and without dip angle

using our novel mechanism based on (ABA) approach.The
distinctive aspect of the developed IoT based instrumented
TRV is its wheel design and contributes in the portability
of the entire device. The wheels of this TRV were designed
in such a way that the minimal marginal railway faults that
can result in the train derailment could be analyzed. Muhafiz
was tested over the range of 2 km near Hyderabad city on an
operational rail track where 11 squats were diagnosed where as
typical trolley based TRV mechanism identified only 2 squats
on the same track. Therefore, the results proved that Muhafiz is
87% more efficient than traditional approaches adopted by the
railway authorities. For the future work, we believe that testing
on different tracks over longer routes will help in making our
proposed mechanism more generalized.
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