The Betrayal of Constant Power X Time:
Finding the Missing Joules of
Transiently-Powered Computers

Saad Ahmed
LUMS, Pakistan
16030047 @lums.edu.pk

Muhammad Hamad Alizai
LUMS, Pakistan
hamad.alizai@lums.edu.pk

Abstract

Transiently-powered computers (TPCs) lay the basis for a
battery-less Internet of Things, using energy harvesting and
small capacitors to power their operation. This power supply
is characterized by extreme variations in supply voltage, as
capacitors charge when harvesting energy and discharge
when computing. We experimentally find that these vari-
ations cause marked fluctuations in clock speed and power
consumption, which determine energy efficiency. We demon-
strate that it is possible to accurately model and concretely
capitalize on these fluctuations. We derive an energy model
as a function of supply voltage and develop EPIC, a compile-
time energy analysis tool. We use EPIC to substitute for the
constant power assumption in existing analysis techniques,
giving programmers accurate information on worst-case
energy consumption of programs. When using EPIC with ex-
isting TPC system support, run-time energy efficiency dras-
tically improves, eventually leading up to a 350% speedup
in the time to complete a fixed workload. Further, when us-
ing EPIC with existing debugging tools, programmers avoid
unnecessary program changes that hurt energy efficiency.

CCS Concepts + Computer systems organization —
Embedded and cyber-physical systems.

Keywords transiently powered computers, intermittent
computing, energy modelling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6724-0/19/06...$15.00
https://doi.org/10.1145/3316482.3326348

Abu Bakar
LUMS, Pakistan
abubakar@lums.edu.pk

Junaid Haroon Siddiqui
LUMS, Pakistan
junaid.siddiqui@lums.edu.pk

Naveed Anwar Bhatti
RI.SE SICS Sweden
naveed.bhatti@ri.se

Luca Mottola
Politecnico di Milano, Italy and
RI.SE SICS Sweden
luca.mottola@polimi.it

ACM Reference Format:

Saad Ahmed, Abu Bakar, Naveed Anwar Bhatti, Muhammad Hamad
Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2019. The Be-
trayal of Constant Power X Time: Finding the Missing Joules of
Transiently-Powered Computers. In Proceedings of the 20th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES ’19), June 23, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3316482.
3326348

1 Introduction

Transiently-powered computers (TPCs) rely on a great vari-
ety of energy harvesting mechanisms, often characterized by
strikingly different performance and unpredictable dynam-
ics across space and time [11]. As much as using solar cells
may yield up to 240mW, but only with certain environmental
conditions [21], harvesting energy from RF transmissions
solely produces up to 1uW [3].

TPC hardware and software must be dimensioned and
parameterized according to these dynamics. Capacitors are
used as ephemeral energy buffers. Smaller capacitors yield
smaller device footprints and quicker recharge times, at the
cost of smaller overall energy storage. The microcontroller
units (MCUs) also feature numerous configuration param-
eters. For example, lower clock frequencies allow one to
exploit larger operating ranges in supply voltage, but slow
down execution. The popular MSP430-series MCUs run with
supply voltages as low as 1.8V at 1 MHz, but are unable to
run any lower than 2.9V at 16 MHz.

Because of the unpredictable dynamics of energy supplies,
executions become intermittent [41], as they consist of inter-
vals of active computation interleaved by periods of recharg-
ing capacitors and no computation. Accurate energy forecast
information aids the efficient placement of systems calls that
checkpoint the MCU state on non-volatile memory to cross
periods of energy unavailability [5, 9, 41]. Programmers may
alternatively rely on task-based programming abstractions
that offer transactional semantics [16, 34, 36]. Thus, they

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

[ZZ] Clock Speed
Wz Power Consumption 64.35% [

o i

4 3.6v-29v)

8 MHz 3.42%

1(3.6v-22v)

1 MHz
4 3.6V -1.8V) :J 141%

-400 -300 -200 -100 1 2 3 4

-363.36% [/

Percentage change in single power cycle (%)

Figure 1. Impact of supply voltage variations on
MSP430G2553 clock speed and power consumption
in a single power cycle. Existing tools typically ignore these
phenomena when modeling the energy consumption of TPC.

need to know the worst-case energy costs of given task con-
figurations to ensure completion within a single capacitor
charge, or forward progress may be compromised.
Observation. Modeling energy consumption of TPCs is an
open challenge [17, 24, 33]. Existing tools are mainly devel-
oped for battery-powered embedded devices, which typi-
cally enjoy consistent energy supplies for relatively long
periods. In contrast, capacitors on TPCs may discharge and
recharge several times during a single application run. A
single iteration of a CRC code may require up to 17 charges
and consequent discharges when harvesting energy from
RF transmissions [41]. Single executions of even straight-
forward algorithms thus correspond to a multitude of rapid
sweeps of an MCU’s operating voltage range [9, 41].

We experimentally observe that such a peculiar comput-
ing pattern causes severe fluctuations in an MCU’s energy
consumption. Fig. 1 shows example fluctuations we measure
on an MSP430G2553 MCU running at 1 MHz in a single
power cycle, that is, as it goes from the upper to the lower
extreme of the operating voltage range. Power consumption
reduces by a factor of up to 363.36%. Clock speed increases
by a factor of up to 3.42%. This means the same instruction
takes different times depending on the supply voltage at
the time it is executed. MSP430-class MCUs are arguably
de-facto standard on energy harvesting batteryless platform
for both academic [23, 42] and commercial ones such as [6],
they represent the target platform for many existing TPC
system support [16, 34, 36, 41], and currently are the only
commercially-available MCUs with non-volatile main mem-
ory.

The combined fluctuations of power and clock in Fig. 1
cause the energy cost of each MCU cycle to drop by up to 5%
in a power cycle. Fig. 2 shows this behavior as a function of
supply voltage, again in a single power cycle. As mentioned
earlier, the system may require thousands of power cycles
even for a single application iteration; the net effect thus
accumulates in the long run.

Unlike dynamic frequency or voltage scaling [39, 40] in
mainstream computing, these dynamics happen regardless
of the system load and the software has no control on them.

S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

1.023 7 . e Power Consumption 16
§ 1.021 \“\\ ——— Clock Speed F14 ~
S 1019 | 2 20,3
2101971 g 2 ['2E
> 1.017 - el o 1 ~
10154 |52 sell 5
S o] |5 $%|fos 2
10134 &5 =Ny [¢)

1 Q| -

f1011 |23 L EE|[o

100994 T T o4

1007171 T 71 1 1 1 1 T 71 02

36 34 32 3 28 26 24 22 2 1.8
Capacitor Voltage (V)

Figure 2. Impact of supply voltage variations on
MSP430G2553 power consumption and clock speed.
Energy being a product of power (red dotted line) and
execution time, which is a function of clock speed (black solid
line), the energy cost of a single MCU cycle varies by up
to ~5% depending on the instantaneous supply voltage.

Fluctuations in power consumption are exclusively due to
the dynamics in supply voltage and clock speed. In turn,
the latter are due to the design of the digitally-controlled
oscillators (DCOs) that equip TPCs such as the MSP430-based
ones. TI designers confirm that many of their MSP430-class
MCUs employ DCOs that cause the clock speed to increase
as the supply voltage approaches the lower extreme [29].
This yields better energy efficiency at these regimes, at the
cost of varying execution times.

Reasoning on such dynamic behavior is not trivial. For
simplicity, a vast fraction of existing literature overlooks
these phenomena. Many systems are designed and parame-
terized in overly-conservative ways, by considering a con-
stant power consumption no matter the supply voltage, and
fixed clock speeds [9, 17, 20, 41]. We argue, however, that con-
sidering these dynamics is crucial, as their impact magnifies
for TPCs with rapid and recurring power cycles.
Contribution. We demonstrate that it is practically possi-
ble to accurately model and concretely capitalize on these
dynamics. Following background material in Sec. 2, our con-
tribution is two-pronged:

1. We present in Sec. 3 a methodology to empirically derive
an accurate energy model by measuring the impact of
varying voltage supplies on clock speed and power con-
sumption for all possible clock configurations. Analytically
modeling these dynamics is difficult. For example, power
consumption varies according to a nonlinear current draw
by the MCU, caused by inductive and capacitative reac-
tance of the clock module that uses internal resistors to
control the clock speed.

2. The energy model enables the design and implemen-
tation of EPIC!, an automated tool that provides accu-
rate compile-time energy information, described in Sec. 4.

Energy Prediction for Intermittent Computing

The Betrayal of Constant Power X Time

Energy = Power x Time

Voltage Current ~ Clock

Capacitor

Figure 3. Dependencies among quantities determining en-
ergy consumption. The direction of the arrows depict the direc-
tion of dependency. Power consumption depends upon the input
voltage and the current draw. The execution time depends on
clock speed. As the supply voltage rapidly varies, additional
dependencies are created, shown by black arrows, that perturb
an otherwise constant behavior.

EPIC first augments the source code with energy informa-
tion at basic-block granularity. It then allows developers
to tag a piece of code to determine best- and worst- case
energy consumption. We use it to substitute for the con-
stant power assumption in existing analysis techniques.

To provide evidence of the benefits one can reap by under-
standing, modeling, and capitalizing on these dynamics, we
report in Sec. 5 on the use of EPIC in two scenarios. First, we
use EPIC with HarvOS [9], a tool to instrument arbitrary code
with calls that possibly trigger checkpoints. The accurate
energy estimates of EPIC improve HarvOS’ efficiency due to
more accurate placement of checkpoint triggers, leading up
to a 350% speedup in workload completion times. Next, we
plug EPIC within CleanCut [17], a tool supporting task-based
programming [17, 36]. CleanCut returns warnings whenever
it identifies tasks that might accidentally exceed the maxi-
mum available energy, impeding forward progress. Using
EPIC with CleanCut allows us to ascertain that these warn-
ings may be, in fact, bogus. Programmers may thus avoid
unnecessary program changes that hurt performance.

We end the paper by discussing the scope of our efforts in
Sec. 6 and concluding remarks in Sec. 7.

2 Background and Related Work

We describe the factors that determine the energy consump-
tion of TPCs at a fundamental level, to investigate the de-
pendencies affected by the dynamics of supply voltage. Next,
we discuss how these factors are currently accounted for.

Energy estimation. Fig. 3 graphically depicts the depen-
dencies among the relevant quantities. Predicting energy
consumption relies on precise values of power consumption
and execution time. In embedded MCUs, energy consump-
tion is typically estimated by deriving the execution time
from the number of clock cycles taken, while power con-
sumption is calculated by multiplying the voltage supply
with the current draw for a given MCU resistance. Supply
voltage depends on the charge of the energy storage facil-
ity, which is most often a capacitor in TPCs. Due to their

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

extensive usage in electronics, accurate capacitor models
exist for (dis)charging behavior and voltage drop between
the plates [25].

The current drawn by the MCU depends on both the sup-
ply voltage and the clock speed. While the former depen-
dency is natural (V=IR), the latter stems from internal resis-
tance typically controlled through a clock-control register.
Sec. 3 further discusses this aspect for MSP430-class MCUs,
which we focus on for the reasons above.

The time factor used to calculate the energy consumption
depends, in turn, on the actual clock speed. Embedded MCUs
offer specific parameters to configure the clock speed. For ex-
ample, MSP430-series MCUs provide three such parameters,
called RSELx, DCOx, and MODx, as explained in Sec. 3.

Existing literature. Existing energy estimation tools [20,
44] model the dependencies shown by grey arrows in Fig. 3.
For simplicity, however, they tend to overlook the depen-
dencies indicated by black arrows and assume constant val-
ues for these factors. These tools are often used as input to
other systems [9, 41] or to guide the programming activ-
ities [16, 34, 36]. The influence of inaccurate models thus
percolates up to the run-time performance.

Popular network simulators, such as ns3 and OMNeT++,
may employ various energy harvesting models [1, 7, 43, 47].
They are, however, unable to capture the node behavior in a
cycle-accurate manner and rather rely on simple approxima-
tions, such as coarse-grain estimations of a node’s duty cycle,
to enable analysis of energy consumption. These approxima-
tions do adopt the assumption of static power supply.

SensEH [18] extends the COOJA/MSPsim framework with
models of photovoltaic harvester. The authors explicitly
mention the use of static power supply and clock speed
models. There exist numerous similar efforts for emulat-
ing the behavior of energy harvesting in different environ-
ments [13, 19, 37, 38]. Allen et al. [2] compare many of these
with each other, and discuss their limitations with regard to
the representation of energy harvesting dynamics and power
consumption modeling. They emphasize the need for more
accurate modeling, simulation, and emulation techniques for
TPCs, which we provide here.

To improve pre-deployment analysis, existing works ex-
plore the use of direct hardware emulation for TPCs. For
example, Ekho [22] is a hardware emulator capable of record-
ing energy harvesting traces in the form of current-voltage
surfaces and accurately recreating those conditions in the
lab. Custom hardware debuggers [15] for TPCs also exist.
Such tools offer the highest accuracy due to their direct in-
stallation on the target hardware, but lack the convenience
and automation desired at the early stages of development.
Ideally, accurate compile-time analysis tools such as EPIC
should complement in-field debugging.

No constant power and clock. As discussed in Sec. 3, we
experimentally observe that the assumption of static supply

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

voltage is actually not verified in TPCs. As the supply volt-
age may potentially traverse the whole operational range
multiple times during a single application run, the impact of
this unverified assumption is potentially significant. As the
supply voltage varies wildly, a ripple effect is created that
spreads the variability, over time, to clock speed and, in turn,
to current draw. This essentially means that the phenom-
ena traverse the dependencies in Fig. 3 backward, eventually
impacting both power consumption and execution time. As
a result, these figures are no longer constant, but their val-
ues change as frequently as the supply voltage. Both figures
ultimately concur to determine energy consumption.

In the next section, we describe the empirical derivation
of an energy model that accounts for these phenomena.

3 Energy Modelling Methodology

We describe the methodology to derive models accounting
for the dependencies shown by black arrows in Fig. 3. First,
we discuss modeling the dependency between supply voltage
and clock speed. Next, we describe the case of clock speed
and current, which ultimately impact power consumption.

To make the discussion concrete, we target MSP430-class
MCUs as arguably representative of TPC platforms, although
our methodology applies more generally and has a founda-
tional nature. Once an energy model is derived for other
MCUs, the design of EPIC remains the same. The quantita-
tive discussion that follows refer to the energy model we
obtain for MSP430G2553 MCU; we find our conclusions to be
equally valid for MSP430G2xxx MCUs, based on repeating
the same modeling procedures.

3.1 Modeling Clock Drift

As shown in Fig. 4(a), MSP430 MCUs employ a digitally con-
trolled oscillator (DCO) that can be configured to deliver
clock frequencies from only a few KHz up to 16 MHz.

DCOs on MSP430 MCUs may be configured using three
parameters: RSELx, MODx, and DCOx. RSELx stands for
resistor-select and is used to configure the DCO for one of
the sixteen nominal frequencies in the range 0.06 MHz to
16 MHz. DCOx uses three bits to further subdivide the range
selected by RSELx into eight uniform frequency steps as
shown in Fig. 4(b). Finally, MODx stands for DCO modula-
tor and enables the DCO to switch between the configured
DCOx and the next higher frequency DCOx+1. The five
bits of MODx define 32 different switching-frequencies, as
depicted in Fig. 4(c), to achieve fine-grained clock control.
Measurement procedure. Measuring clock speeds with an
oscilloscope is challenging as its probes, when hooked to
the clock pin, perturb the DCO impedance. This results in
fluctuating measurements.

We thus employ a verified software-based measurement
approach used by Texas Instruments for DCO calibra-
tion [27]. It consists in counting the number of MCU ticks

S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

RSELX=15
317 Lower DCO | Upper DCO
Tap Frequency Tap Frequency

RSELx=7 x foo 1 fogon
Sal/m oA
834

) mn_ri

=
Y
'

RSELx=0

DCO Frequency (MHz)
-
Y

) Sy
01t
o
bCOx MODx 12345678
DCOx
(a) MSP430’s DCO (b) RSELx steps and (c) Modulator pattern.
module. DCOx range.

Figure 4. Impact of DCO parameters on clock.

B
fext & I g

Figure 5. Clock frequency measurements. The number of
clock cycles (fpco) are counted between A and B, namely,
two consecutive low to high transitions of the external crystal
oscillator fox;.

within one clock cycle of an external crystal oscillator, as
shown in Fig. 5. In MSP430 MCUs, the external crystal os-
cillator is a very stable clock source offering a frequency of
32.768 KHz. Since the time period of this oscillator is neces-
sarily greater than the time period of MCU ticks, we use it
to count the number of MCU ticks during its single period.

We initialize the Capture/Compare register of Timer_A to
Capture mode. The output of DCO is wired to this register
and captures Timer_A when a low-to-high transition occurs
on the reference signal, that is, the external oscillator. The
captured value is the number of clock cycles between two
consecutive low-to-high transitions of the reference signal.
Empirical model. To model the clock behavior, we sweep
the parameter space and empirically record the range of
frequencies generated by different DCO configurations.

Altogether, 4096 discrete DCO frequencies can be gener-
ated using all possible combinations of RSELx, DCOx, and
MODx. As observed in Fig. 2, however, the supply voltage
impacts the actual clock speed given a certain clock config-
uration. For each of these 4096 configurations, we evaluate
this impact for the entire operational range of the MCU at
0.001V intervals, and record over 69,888 unique frequencies.
These fine-grained measurements allow us to analyze the
sensitivity of the clock to supply voltage, and ultimately
derive an accurate model.
Analysis. We ask two key questions: i) is the sensitivity of
changes in clock speed to variations in supply voltage consistent
across all frequencies? and ii) how essential is it to model the
clock behavior or, can it be assumed constant?

To answer the first question, in Fig. 6(a) we plot the cumu-
lative distribution of the percentage difference in clock speed

The Betrayal of Constant Power X Time

1 1 1

0.8 0.8 0.8
w 0.6 w 0.6 u 0.6
a o) a
Qo4 Oo4 Qo4
0.2 0.2 0.2
0+ 04 0
0 2 4 0 50 100 150 1x 2x 3x 4x
Difference (%) Difference (%) Difference (%)
(a) Frequency. (b) Current. (c) Power.

Figure 6. Impact of voltage supply variations on clock, cur-
rent, and power for all DCO configurations. The x-axis shows
the difference in the corresponding factor when the voltage
drops from one extreme of the MCU’s operational voltage range
to the other.

when the voltage drops from one extreme of the MCU’s oper-
ational voltage range to the other, across all possible DCO set-
tings that determine MCU frequency. The arc-shaped curve
in Fig. 6(a) implies that the sensitivity of changes in clock
speed is not consistent across all frequencies.

We note, however, that this apparent inconsistency is not
the outcome of a random clock behavior, but a predictable
DCO artifact that is observable in most MSP430 MCUs de-
signed for low-power operation. As shown in Fig. 7(a), the
clock speed changes for a given RSELx when DCOx increases,
as well as across increasing RSELx values, for the two ex-
tremes of the operational voltage range. TI designers confirm
this DCO drift pattern, which is conceded for power conser-
vation and is specified as DCO tolerance. The exact circuit
design causing this is protected by intellectual property [30].

To answer the second question, we quantify the number of
clock cycles that a constant clock model, that is, one that does
not incorporate the changes in clock speed as the voltage
drops, would not account for. Fig. 7(b) shows that this figure
increases linearly with every power cycle; more than 10K
clock cycles would be unrepresented in only ten power cycles.
This could be extremely critical for correctly designing and
dimensioning systems that may undergo countless power
cycles throughout their lifetime.

3.2 Modeling Dynamic Power Consumption

Changes in supply voltage and clock speed also impact cur-
rent draw. A precise current model is thus crucial to deter-
mine accurate power consumption. While the current drawn
by the MCU naturally decreases with voltage and can be cal-
culated using Ohm’s law, measuring the impact of a changes
in clock speed on current draw is not immediate.

In MSP430 MCUs, the clock speed is mainly controlled
by the DCO impedance, which in turn is controlled using
the parameters described earlier. This results in varying
amounts of current drawn at different frequencies. How-
ever, the impedance of the DCO, which can be modeled as an
RLC circuit, cannot be derived theoretically since the values
of ohmic resistance and reactance are unknown.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

321 12000

2.957 10000 7

2.7 4

MHz)

8000

(
N
N
o

6000

INd
N

4000

Frequency
ps
&

3
Unrepresented Clock Cycles

2000

»
a

0123456701234567 0 5 10
DCOx # of Power Cycles

(a) Sensitivity of clock to voltage (b) Unrepresented clock cycles @ 8 MHz

Figure 7. Clock behavior. (a) The sensitivity of clock to volt-
age increases for a given RSELx when the value of DCOx is
increased, as well as across increasing RSELx values. The per-
centage values represent the difference in frequency between
the two extremes of the operational voltage range; (b) The
cup-shaped segments, with each cup corresponding to a single
power cycle, show that the number of unrepresented cycle in-
creases with the decreasing voltage of the capacitor. Charging
times are omitted for brevity.

Measurement procedure. Similar to the clock model, we
therefore employ an empirical approach to model the cumu-
lative impact of changes in supply voltage and clock speed
on current consumption. Our measurement setup includes a
0.1pA resolution multimeter, which measures and automati-
cally logs the current drawn by the MCU.

Since the correctness of measurements is critical to derive

an accurate model, our approach also caters for the burden
voltage—the voltage drop across the measuring instrument—
by adding the burden voltage V}, to the supply V. However,
this leads to the current measurements of the MCU at a
higher voltage Vj,+V;, whereas we need the current draw
precisely at V. As we know the values of V}, and the current
draw I,,, we calculate the resistance R; of the measuring
instrument. We then simply calculate the current draw of
the MCU using Imeu = Im — 2.
Empirical model. Unlike the sensitivity of clock to varia-
tions in supply voltage in Fig. 6(a), the current’s sensitivity
to variations in clock speed and supply voltage is quite con-
sistent and above 100% for a large fraction of frequencies, as
shown in Fig. 6(b).

The inconsistent behavior for less than 20% observations
is mainly due to DCO’s unstable behaviors for very low
frequency configurations (below 1 MHz), which are typically
neither calibrated nor used with MSP430 MCUs [26]. Fig. 6(c)
highlights the multiplicative impact of changes in supply
voltage and current on an MCU’s power consumption. Power
consumption may vary by as much as 3.5x within a single
power cycle. This demonstrates that existing tools, as they
fail to model such behaviors, tend to provide inaccurate
inputs to the design and dimensioning of TPCs.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

8.5
8.4

----------- Small Lookup Table (step=0.1V)
7.7 - - — -Large Lookup Table (step= 0.001 V)
- Measured
7.6 ——— Polynomial Model
S e o S B . B
3.6 34 3.2 3 2.8 2.6 2.4 2.2

Capacitor Voltage (V)

Figure 8. Model representations and their behavior com-
pared to empirical measurements @ 8 MHz. Higher precision
lookup tables follow closely the actual measurements. The poly-
nomial model rests within a 2% error bound.

3.3 Model Representation

We consider two options to represent the results of our mea-
surements. Either we use a lookup table or train a model
with RSELx, DCOx, MODx and supply voltage (V) as inputs.

A lookup table is of course, exhaustive, but unlikely to
fit on an embedded MCU with tens of KB of main memory,
for example, to be used at run-time to implement energy-
adaptive behaviors [12, 14]. A large lookup table with a pre-
cision of three decimal places and a small lookup table with
a precision of one decimal place would consume 28 MB and
288 KB in main memory, respectively.

We thus also explore the derivation of a compact model
based on linear regression able to fit within a limited memory
budget. We ultimately observe that a degree-7 polynomial is
sufficient to fit a model with error bound to +6%. This can
be reduced to +1% with a degree-3 polynomial for common
DCO frequencies such as 1 MHz, 8 MHz, and 16 MHz.

Figure 8 highlights the behavior of these different repre-
sentations of the clock model during a single power cycle. A
large lookup table with 0.001V precision accurately follows
the measurements, whereas a small look up table with 0.1V
precision predictably mimics a step function. The polynomial
model, in this particular setting, achieves an error below 2%.

What model representation to employ is, therefore, to be
decided depending on desired accuracy and intended use.
Compile-time or off-line analysis may use the lookup table
representation, which faithfully describes our measurements.
Whenever the models are to be deployed on an embedded
MCU with little memory, the polynomial model is easier on
memory consumption.

S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

1. get_sign:
2 void get_sign(){ SUBW

#4,R1
i3 intk=100; MOVW #100, 2(R1)
4 intx=1; MOV.W #1, @R1
5 if (k=100 && x < 2){ Energy CMPW #100, 2(R1)

6 k=k-5; INE 13
7 k=k*2; Model MOVB #1,R12
8

k=k+3;
9 }

10}

11 void main(}{
12 get_sign();

13

CMPW @R1,R12
JL 3

ADDW #:5, 2(R1)
MOVW 2(R1), R12
ADDW R12,R12

Source Code f——p Mapper

| !

Control Flow Voltage trace Energy
Graph / Capacitor Profile
,,,,, Model "block_id" : “B1",

J\[\/\r\ A "starting_li
. o g

Assembly

36":[216,28.0]
|

{

"block_id" : "B2",
"starting_line" : 6,
"ending_line" : 8,

 Voltage
A81au3 e

Energy
Consumption
(best/worst case)

(ru) uondwnsuos |

Figure 9. EPIC code instrumentation process. The mapper
maps the assembly instructions to the corresponding basic
blocks in the source code and outputs a CFG and energy profile
based on the models of Sec. 3. The analyzer traverses the CFG
to compute best- and worst-case estimates for a given fragment
of code and capacitor size.

4 EPIC

Based on the methodology of Sec.3, we develop EPIC: a
compile-time analysis tool that accurately predicts energy
consumption of arbitrary code segments. Existing solutions
employ time-consuming laboratory techniques [9], and yet
they overlook the impact of variations in supply voltage.
EPIC provides this information in an automated fashion and
by explicitly accounting for such dynamics.

4.1 Workflow

EPIC is implemented in two separate Java modules, the map-
per and the analyzer, as shown in Fig. 9.
Mapper. Inputs for the mapper module are the empirical
energy model, a portion of the source code marked by the
developer for analysis, and the corresponding assembly code
generated for a specific platform. Instructing the compiler to
include debugging symbols in the assembly allows the map-
per to establish a correspondence between each assembly
instruction and the corresponding source code line [32, 44]
The mapper analyzes the assembly code to find the ba-
sic blocks at the level of source code that corresponds to a
given set of assembly instructions. Using this mapping and
information on the number of MCU cycles for each assembly
instructions, EPIC computes the total number of MCU cycles
per basic block at the level of source code. This process is
non-trivial, as we discuss in Sec. 4.2.

The Betrayal of Constant Power X Time

Next, the mapper relies on the empirical energy model
to predict the energy consumption of each basic block. The
output of this step is a separate file, called energy profile,
which contains the energy consumption of each basic block
at arbitrary supply voltages within the operational range of
the target MCU. We store this information in JSON format to
facilitate parsing by compile-time tools relying on the output
of EPIC. Finally, the mapper also generates the control-flow-
graph (CFG) of the code using ANTLR.

Analyzer. The goal of the analyzer is to determine best-
and worst-case estimates of energy consumption for each
node in the CFG. To that end, the analyzer takes as input the
energy profile output by the mapper and a trace of supply
voltage values used to determine which value to choose from
the energy profile for a particular basic block. Two choices
are available for this: either using a capacitor model that
simulates the underlying physics and specific (dis)charging
behaviors, or relying on a user-provided energy trace that
indicates the state of capacitor’s charge over time.

Similar to other compile-time tools, best- and worst-case
estimates are the best output EPIC can provide. There are
cases where these estimates depend on run-time informa-
tion; for example, in the presence of loops whose number of
iterations is not known at compile time. If a user-specified
piece of code also includes any of these constructs, EPIC
prompts the user for providing an estimate of the missing
information to be considered in a given analysis.

4.2 Finding MCU Cycles per Basic Block

Established techniques exist to map basic blocks at the level
of source code to assembly instructions, for example, as in
PowerTOSSIM [44] and TimeTOSSIM [32]. These techniques,
however, do not accurately handle cases where a basic block
of source code may correspond to the execution of a vari-
able number of instructions in assembly; therefore, a single
node in the CFG is translated into multiple basic blocks at
the assembly level. Short-circuit evaluation, for loops, and
compiler-inserted libraries are examples where issues mani-
fest that may cause a loss of accuracy in energy estimates.

To handle these cases, EPIC further dissects the mapping
process to extract additional information useful to reason on
the energy consumption of a given basic block.
Short-circuit evaluations. These include concatenations
of logical operators, such as “&&” or “||”, where the truth
value of a pre-fix determines the truth value of the whole
expression. The assembly code generated by the compiler
skips the evaluation of the post-fix part of the expression as
soon as the pre-fix determines the whole expression.

To handle these cases, the mapper reports the energy con-
sumption of all possible evaluations of the statement in-
volving these operators. This is shown in the energy profile
of Fig. 9 for the 1f statement at line 5. Two separate values

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

are reported for its basic block (B1): one for only the pre-fix
and one for the complete evaluation of the expression.

This information is then useful for the analyzer module,

which may choose the appropriate value depending upon
the type of analysis required. For example, when considering
the best-case energy consumption, the analyzer considers
the energy consumption for executing the minimal pre-fix
that determines the truth value. Differently, the analyzer
accounts for the energy consumption of executing every
sub-expression when computing the worst case.
Loops using for. Execution of for loops may cost a dif-
ferent number of cycles at the first or at intermediate itera-
tion(s). This is because the initialization of the loop variable
is only performed at the first iteration, whereas all other iter-
ations incur the same number of MCU cycles as they always
perform the same operations; for example, incrementing a
counter and checking its value against a threshold.

The mapper accurately identifies the set of instructions
needed for these two different types of execution of the
for (; ;) statements, and reports them in the energy profile
as two separate entries for the corresponding basic block. The
analyzer then utilizes this information to accurately calculate
the energy consumption of different loop iterations.
Compiler-inserted functions. For programming con-
structs that are not supported natively in hardware, compil-
ers insert their own library functions to emulate the func-
tionality in software. For example, if an MCU has no floating
point support, the compiler automatically replaces the corre-
sponding statements with its own assembly code. Since there
are only a handful of such library functions typically, we
profiling these with arbitrary inputs as function arguments
and record their best- and worst-case energy consumption.

5 Evaluation

We start by evaluating the accuracy of energy profile infor-
mation returned by EPIC across four benchmark applications,
before employing the entire EPIC workflow for compile-time
analysis in two concrete cases.

5.1 Microbenchmarks

Measuring the accuracy of EPIC output is a stepping stone to
investigate the use of EPIC in a concrete case study. The accu-
racy of energy profile information returned by EPIC depends
on i) the accuracy of the empirical energy model described
in Sec. 3, and ii) the effectiveness of the mapping techniques
between source code and assembly code of Sec. 4.2.

Our benchmarks include open-source implementations of
Bubblesort, CRC, FFT, and AES, which are often employed
for benchmarking system support for TPCs [5, 31, 41]. We
run each application on real hardware at different supply
voltages and record a per-basic-block trace of execution time
and current draw to compute the energy consumption.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Table 1. EPIC accuracy.

TR Voltage | Measured Energy | Predicted Energy | Error
V) (171)) () (%)
2.3 0.9016 0.9014 -0.03
2.5 1.0332 1.0354 0.21
Bubble Sort 3.0 1.5538 15556 0.12
3.5 2.1960 2.1956 -0.02
23 0.3709 0.3697 -0.31
2.5 0.4267 0.4248 -0.45
CRC 3.0 0.6389 0.6382 -0.12
35 0.9027 0.9007 -0.22
2.3 12.9904 13.0194 0.22
FFT 2.5 14.9520 14.9554 0.02
3.0 22.4640 22.4695 0.02
3.5 31.5952 31.7129 0.37
2.3 37.3888 37.5609 0.46
AES 2.5 42.9240 43.1463 0.52
3.0 64.3968 64.8247 0.66
3.5 90.9664 91.4920 0.58

Table 1 compares the results returned by EPIC at differ-
ent supply voltages with the measures on an MSP430G2553
running at 8 MHz. The error is generally well below 1%. The
results demonstrate that the information input to the ana-
lyzer module is accurate, as a result of the accuracy of the
empirical model and the specific mapping between source
code and assembly we adopt.

5.2 EPIC with HarvOS

We integrate EPIC with HarvOS [9], an existing system sup-
port for TPCs. HarvOS relies on compile-time energy es-
timates to insert checkpoint triggers that possibly take a
checkpoint whenever a device is about to exhaust the energy.
The triggers include code to query the current state of the
energy buffer for deciding whether or not to checkpoint.
Checkpoints are costly in energy and additional execution
time. Regardless of whether a checkpoint takes place, these
calls represent an overhead anyways, as merely querying
the energy buffer does consume energy [41].

In HarvOS [9], the placement of trigger calls is based on

an efficient strategy that requires a worst-case estimate of
the energy consumption of each node in the CFG. Similar to
existing literature, HarvOS normally employs a manual in-
strumentation process based on a static energy consumption
model, namely, overlooking the dynamic behavior of power
consumption and clock speeds. We use EPIC to substitute
for such manual instrumentation process.
Setup. We use two applications: i) an Activity Recognition
(AR) application that recognizes human activity based on
sensor values, often utilized for evaluating TPC solutions [16,
34], and ii) an implementation of the Advanced Encryption
Standard (AES), which is one of the benchmarks used in
HarvOS [9]. We execute EPIC by relying on two different
types of voltage traces as an input to the analyzer module.

First, we use a fundamental voltage trace often found in
existing literature [8, 31, 41, 49]. The device boots with the
capacitor fully charged, and computes until the capacitor is

S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

Time (ms) x10

(a) HW setup. (b) Excerpt of the indoor light voltage trace.

Figure 10. Voltage trace from indoor light using a mono-
crystalline solar panel.

empty again. In the meantime, the environment provides no
additional energy. Once the capacitor is empty, the environ-
ment provides new energy until the capacitor is full again
and computation resumes. This specific energy provisioning
pattern generates executions that are highly intermittent,
namely, executions that most paradigmatically differentiate
TPCs from other platforms. This profile is also representative
of TPC applications based on wireless energy transfer [10].
With this technology, devices are quickly charged with a
burst of wirelessly-transmitted energy until they boot. Next,
the application runs until the capacitor is empty again. The
device rests dormant until another burst of wireless energy
comes in. We call this trace the decay trace.

Second, we use a voltage trace collected using a mono-

crystalline high-efficiency solar panel [46], placed on a desk
and harvesting energy from light in an indoor lab environ-
ment, as shown in Fig. 10. We use an Arduino Nano [4] to
log the voltage output across the load, equivalent to the re-
sistance of an MSP430G2553 in active mode, attached to the
solar panel. We call this trace the light trace.
Results. We compare features and performance of HarvOS-
instrumented code using manual energy profiling as in the
original HarvOS, against using HarvOS with the energy esti-
mates of EPIC as input, based on an MSP430G2553 running
at 8MHz. We note that:

1. Using EPIC, the number of trigger calls inserted by
HarvOS in the original code reduces;

2. A more accurate code instrumentation due to EPIC
leads to fewer checkpointing interruptions at run-time.

The first two columns in Table 2 show the results of the
instrumentation process when using the smallest capacitor
size needed to complete the given workloads. We consider
this as TPCs typically prefer smaller capacitors as energy
buffer, because they reach the operating voltage more quickly
and yield smaller device footprints. However, if the capacitor

The Betrayal of Constant Power X Time

Table 2. Features and performance of HarvOS-instrumented
code with and without EPIC.

of trigger calls | # of checkpoints | Speedup in

App | Manual [EPIC | Manual [EPIC time (%)
Decay Trace

AR 2 1 85 42 51.66

AES 3 0 2 0 354.97
Light Trace

AR 2 1 64 32 49.35

AES 3 0 1 0 203.31

is too small, a system may be unable to complete checkpoints,
impeding any progress.

For the AR application, EPIC’s accurate energy estimates
halve the number of trigger calls that HarvOS places in the
code. This reduction occurs due to EPIC’s ability to accu-
rately model the varying number of clock cycles at differ-
ent voltages that a static model would not consider. As the
voltage of the capacitor decreases, the speed of the clock in-
creases. This results in more clock cycles becoming available
per unit of time at lower supply voltages. Not accounting
for such dynamic behavior significantly underestimates the
number of clock cycles available within a single time unit in
conditions of low supply voltages.

The results for AES instrumentation are revealing: based
on the energy estimates provided by EPIC, HarvOS decides
to place no trigger calls. EPIC thus indicates that the energy
provided by the capacitor is sufficient for the AES imple-
mentation to complete in a single power cycle, and thus no
checkpoints are ever necessary. This contrasts the outcome
of the HarvOS compile-time analysis based on the assump-
tion of constant power consumption and clock speed. In that
case, HarvOS would still place three trigger calls within the
code, uselessly incurring the corresponding overhead. This
shows how not accounting for the dynamic behaviors we
study here profoundly misguides compile-time analysis.

The impact of the trigger call placement with or without
EPIC has marked consequences when running the instru-
mented applications. The third and fourth columns in Table 2
show the corresponding results for either voltage trace. The
AR application instrumented by HarvOS based on the energy
estimates of EPIC completes the execution with nearly 50%
fewer checkpoints. Similarly, the successful completion of
the AES implementation without a single checkpoint con-
firms the validity of the energy estimates of EPIC, which
prompts HarvOS not to place any trigger call.

Checkpoint operations are extremely energy consuming,
as they incur operations on non-volatile memory. Fewer
checkpoints allow the system to spend the corresponding
energy budget in thousands of useful computation cycles,
which are otherwise wasted due to inaccurate insertion of
trigger calls in the original HarvOS. Thus, the system pro-
gresses faster towards the completion of the workload. The

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

2 ®
o o
mZ
T o
o2

D
2 ®
o o
R
m<
el
o2

=X

S
L

n
o
L

of checkpoints
of checkpoints

N

3
|
¥

*

0

o

15 2‘0 2‘5 36 3‘5 46 4‘5 5‘0 10 2‘0 3‘0 4‘0 50
Capacitor (uF) Capacitor (uF)

(a) AR with decay trace. (b) AR with light trace.

51 5
n —o—Manual [} —o—Manual
4+ =
C 4% e EPIC < 44 it EPIC
g g
23’ 31
(&) (&)
(] (]
£ 2 2
[&] (&]
— u—
O 1 O 14
+H +*

0 e » x 0 B 2 -

5 10 15 20 25 30 35 5 10 15 20 25 30 35

Capacitor (uF) Capacitor (uF)

(c) AES with decay trace. (d) AES with light trace.

Figure 11. HarvOS results. The benefits of using EPIC within
HarvOS apply across different capacitor sizes.

right most column in Table 2 quantifies the benefits in terms
of speedup of completion time for the given workload.

Fig. 11 further investigates the execution of either applica-
tion at increasing capacitor sizes. These results affirm that
the benefits of using EPIC within HarvOS are not just limited
to the smallest capacitor that ensures completion. The appar-
ent outlier at 40uF in Fig. 11(b) is due to a specific behavior
of HarvOS whenever larger capacitors simultaneously yield
a change in the placement of trigger calls and in their over-
all number [9]. For the AR application, the corresponding
speedup in completion time range from 14% at 35uF with
the decay trace, to 159% at 40uF using the light trace. For the
AES implementation, Table 2 already shows the performance
range, as no checkpoints are needed.

Finally, Fig. 11 also shows that in a number of situations,
the compile-time instrumentation generated by HarvOS
when using the energy estimates of EPIC yields an oper-
ational system at much smaller capacitor sizes, as com-
pared with the original HarvOS. The cost for the overly-
conservative estimations in the latter, based on static power
consumption and clock speeds, materialize in the inability
to complete when using small capacitors. In contrast, EPIC
captures the dynamic behavior of these figures and offers ac-
curate estimations to HarvOS; this results in more informed
decisions on trigger call placement and smarter decisions on
whether to checkpoint when executing a trigger call.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

5.3 EPIC with CleanCut

An alternative to using automated placement of trigger calls
is to employ task-based programming abstractions offering
transactional semantics [16, 34, 36]. Programmers are to
manually define tasks that are guaranteed to either complete
by committing their output to non-volatile memory, or to
have no effect on program state.

CleanCut [17] is a compile-time tool that helps program-
mers using these abstractions identify non-termination bugs.
These bugs exist whenever a task definition includes execu-
tion paths whose energy cost exceeds the maximum available
energy, based on capacitor size. If no new energy is harvested
while executing, a task may never complete and thus the
program ends up in a livelock situation, always resuming
from the beginning of the last successfully executed task.

CleanCut relies on an energy model obtained through
hardware-assisted profiling. The model estimates the energy
consumption of each basic block at near maximum voltage
supply, to avoid underestimations. The estimates are then
convoluted across the possible execution paths in a task
to find energy distributions for individual tasks. Based on
this, CleanCut returns warnings whenever it suspects a non-
termination bug. Programmers must then defend against
these; for example, by refactoring the code to define shorter
tasks. This is not just laborious, but also detrimental to per-
formance, as every task boundary incurs significant energy
overhead due to committing results on non-volatile memory.

Colin et al. [17] argue that an accurate model may pro-
vide more genuine warnings, but was out of scope. Using
EPIC with CleanCut, we prove this argument. For long exe-
cution paths in a task that use the capacitor to near depletion,
the difference between the actual used energy—accurately
modeled by EPIC—and CleanCut’s estimations obtained as
described above, can be significant. This results in false posi-
tives, that is, non-termination bugs are suspected for paths
that may safely complete with the given energy budget.
Setup. We use the same applications as in CleanCut [17]: i)
an Activity Recognition (AR) application similar to Sec. 5.2,
ii) a Cuckoo Filter (CF) that efficiently tests set membership,
iii) a Coldchain Equipment Monitor (CEM) application, and
iv) an implementation of the RSA algorithm.

The placement of task boundaries in all applications is the
one of CleanCut [17]. We then estimate the energy consump-
tion of every possible execution path in a task using CleanCut
with EPIC, compared with CleanCut using a synthetic model
that safely approximates that of CleanCut, whose hardware
and source code are not available. This model follows the
recommendation that the energy consumption of each ba-
sic block should be estimated near the maximum voltage to
avoid underestimations [17].

We use a 10uF capacitor as found on Intel WISP 4.1 devices,
and consider an MSP430G2553 running at 8 MHz.

S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

Table 3. CleanCut non-termination bug warnings with and
without EPIC.

... Task CleanCut EPIC
Application . Paths . .
boundaries warnings | warnings
AR 4 147 8 0
RSA 4 8 3 0
CF 11 25 0 0
CEM 11 20 0 0
60 < —
= ®] IECleanCut >
50 : 9 50 -g\eancé« +EPIC| , ©
= = —— Device Capacit r [
3 40 S 340+ s 8
> r25 S ; 25 o
0730“-Cleancut > Zao >
o |[EEcleancut + EPIC] 5 © 5
20— Device Capacity L3 = C 207 L3 =
i S w 5 o
10- 4 10- | | g
5 10 15 20 1 2 3 4 5 6 7 8
Path Path
(a) Activity Recognition (AR). (b) RSA.
0] M CieanCut S ®] W CieanCut S
50 -[EEEI CleanCut + EPIC| , © 50 -{[EECleanCut + EPIC , @
—— Device Capacit F2 © = |——Device Capaci 2 o
=N evice Capacity g 340 evice Capacity 8
330) 25 2
2 204 b, 2 Seod t, 2
i o w o
10 g 10- s
(ST SN A ——— PRI RSN 135 3
0 5 10 15 20 25 5 10 15 20
Path Path

(c) Cuckoo Filter (CF). (d) CEM.

Figure 12. CleanCut results. Using EPIC with CleanCut, false
positives are avoided when looking for non-termination bugs.

Results. Table 3 summarizes our results, which are further
detailed in Fig. 12. By comparing how the two solutions build
up the energy estimates for a task, we note that the two
start identical, but as paths become longer and nears the
capacitor’s limit, CleanCut starts to overestimate. This is
because it uses the same energy model for every basic block,
regardless of where it appears on the path.

The results for the AR application, shown in Fig. 12(a),
indicate that CleanCut returns eight false positives, in that it
estimates the energy consumption of those paths to exceed
the available capacitor energy. Developers would then need
to break those tasks in smaller units, investing additional
effort and causing increased overhead at run-time due to
more frequent commits to non-volatile memory at the end
of shorter tasks. This is not the case with CleanCut using
EPIC, which verifies that the same execution paths may
complete successfully. Task definitions thus include no non-
termination bugs; therefore, developers need not to spend
any additional effort and the system runs with better energy
efficiency. Similar considerations apply to RSA algorithm,
wherein the original design of CleanCut returns three false
positives, as shown in Fig. 12(b).

The Betrayal of Constant Power X Time

In the case of CF, processing is generally lighter com-
pared to AR and RSA. Further, the existing task definition
includes very short tasks already. As a result, the estimates of
CleanCut and CleanCut using EPIC are close to each other, as
shown in Fig. 12(c) No warnings for possible non-termination
bugs are returned. Similar considerations apply also to the
CEM application, whose results are shown in Fig. 12(d).

CleanCut also provides a task boundary placer that auto-
matically breaks long tasks. We cannot evaluate the impact
of EPIC there, since the implementation is not available, but
we argue that the benefits would be even higher. In fact,
CleanCut’s placer is actively trying to bring task definitions
to their optimal energy point, that is, closer to the capacitor
limit. This is precisely where the difference in estimates be-
tween the CleanCut and CleanCut with EPIC is maximum.
Thus, the probability of paths landing in the region where
the original design of CleanCut declares a task to be too long,
but CleanCut using EPIC says the opposite, is likely higher
compared to checking a manual placement.

6 Discussion

We provide next due considerations on how our work is cast
in the larger TPC domain.

MCUs and peripherals. We focus on the MCU as it co-
ordinates the functioning of the entire system when using
the emerging federated energy architectures [23]. For the
MCU, accurately forecasting the energy cost of a certain frag-
ment of code is key to dimensioning capacitors and setting
its running frequency. Peripheral operation may be post-
poned when the energy is insufficient or the system may
impose atomic executions on peripheral operations [16, 36].
Dedicated works exist that ensures the correct intermittent
operation of peripherals [35, 45, 50].

We also model the active mode of the MCU as this is the
only mode where the MCU executes the code [48]. TPCs pri-
marily use this mode to maximize throughput during power
cycles that may be as short as a few ms. Other low-power
modes are typically used in battery-powered platforms for
conserving energy when idle.

Voltage regulation. Voltage regulators are commonly
found in computer power supplies to stabilize the supply
voltage. Despite the availability of efficient voltage regulators
with minimal dropout [28], they are typically not employed
in TPCs [23] because step-up regulators reduce the power
cycle duration and step-down regulators can critically fail
some on-chip components. When deploying Mementos [41]
on the voltage-regulated WISP platform, the authors report
a one-half reduction in the duration of power cycles when
using a 2.8V step-up regulator, and checkpointing failures
with a 1.8V step-down regulator due to failing to meet the
voltage requirements of flash memory. An open research
question is what are the conditions, for example, in terms of

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

energy provisioning patterns, where the trade-off exposed
by dynamic regulation of voltage play favorably.

7 Conclusion

We demonstrated that it is practically possible to capital-
ize on the dynamic energy consumption patterns of TPCs.
We presented a methodology to experimentally build an ac-
curate energy model, accounting for variations in power
consumption and clock speed. We use EPIC, a compile-time
tool, as an instrument to quantify the impact of these models.
When integrated with HarvOS, EPIC enables 350% speedup
in workload completion times, and similarly avoids unneces-
sary program changes that ultimately hurt energy efficiency
when used with CleanCut. Based on the evidence we col-
lect with EPIC, we conclude that it is possible to account
for the dynamic behaviors of energy consumption without
sacrificing simplicity of analysis.

References

[1] Muhammad Hamad Alizai, Qasim Raza, Yasra Chandio, Affan A. Syed,
and Tariq M. Jadoon. 2016. Simulating Intermittently Powered Em-
bedded Networks. In Proceedings of the 2016 International Conference
on Embedded Wireless Systems and Networks (EWSN ’16). Junction
Publishing, USA, 35-40.

[2] James Allen, Matthew Forshaw, and Nigel Thomas. 2017. Towards an

Extensible and Scalable Energy Harvesting Wireless Sensor Network

Simulation Framework. In Proceedings of the 8th ACM/SPEC on Inter-

national Conference on Performance Engineering Companion (ICPE '17

Companion). ACM, New York, NY, USA, 39-42.

Patricia Anacleto, PM Mendes, E Gultepe, and DH Gracias. 2012. 3D

small antenna for energy harvesting applications on implantable micro-

devices. In Antennas and Propagation Conference (LAPC). IEEE, 1-4.

[4] ARDUINO. 2018. NANO. https://store.arduino.cc/usa/arduino-nano
((accessed 2018-10-28)).

[5] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-

Hashimi, Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining

Computation During Intermittent Supply for Energy-Harvesting Sys-

tems. Embedded Systems Letters 7, 1 (2015).

Medusa-M2233 UHF RFID battery-free device. [n. d.]. Farsens. http:

//www.farsens.com/en/products/medusa-m2233/ ((accessed 2019-03-

04)).

David Benedetti, Chiara Petrioli, and Dora Spenza. 2013. GreenCastalia:

An Energy-harvesting-enabled Framework for the Castalia Simulator.

In Proceedings of the 1st International Workshop on Energy Neutral

Sensing Systems (ENSSys ’13). ACM, New York, NY, USA, Article 7,

6 pages.

Naveed Bhatti and Luca Mottola. 2016. Efficient state retention for

transiently-powered embedded sensing. In International Conference on

Embedded Wireless Systems and Networks. 137-148.

Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient

code instrumentation for transiently-powered embedded sensing. In
Information Processing in Sensor Networks (IPSN), 2017 16th ACM/IEEE
International Conference on. IEEE, 209-220.
[10] Naveed Anwar Bhatti, Affan Ahmed Syed, and Muhammad Hamad
Alizai. 2014. Sensors with Lasers: Building a WSN Power Grid. In Proc.
13t" Int. Symp. Information Processing in Sensor Networks (IPSN ’14).
261-272.

[11] Naveed Anwar Bhatti, Affan Ahmed Syed, Muhammad Hamad Alizai,
and Luca Mottola. 2016. Energy Harvesting and Wireless Transfer
in Sensor Network Applications: Concepts and Experiences. ACM

3

—_

(6

—

[7

—

8

—

[9

—

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

[12]

(13]

(14]

(15]

(16]

(17]

[18

[t

(19]

[20]

[21]

Transactions on Sensor Networks (TOSN) (2016).

Michael Buettner, Benjamin Greenstein, and David Wetherall. 2011.
Dewdrop: An Energy-Aware Runtime for Computational RFID. In
Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2011, Boston, MA, USA, March 30 - April 1,
2011.

Andrea Castagnetti, Alain Pegatoquet, Cécile Belleudy, and Michel
Auguin. 2012. A framework for modeling and simulating energy
harvesting WSN nodes with efficient power management policies.
EURASIP §. Emb. Sys. 2012 (2012), 8.

Geoffrey Werner Challen, Jason Waterman, and Matt Welsh. 2010.
IDEA: Integrated Distributed Energy Awareness for Wireless Sensor
Networks. In Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services (MobiSys ’10). ACM, New York, NY,
USA, 35-48.

Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample.
2016. An Energy-interference-free Hardware-Software Debugger for
Intermittent Energy-harvesting Systems. SIGOPS Oper. Syst. Rev. 50, 2
(March 2016), 577-589.

Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels
for Reliable Intermittent Programs. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2016). ACM, New York,
NY, USA, 514-530. https://doi.org/10.1145/2983990.2983995

Alexei Colin and Brandon Lucia. 2018. Termination checking and task
decomposition for task-based intermittent programs. In Proceedings
of the 27th International Conference on Compiler Construction. ACM,
116-127.

Riccardo Dall’Ora, Usman Raza, Davide Brunelli, and Gian Pietro Picco.
2014. SensEH: From simulation to deployment of energy harvesting
wireless sensor networks. In IEEE 39th Conference on Local Computer
Networks, Edmonton, AB, Canada, 8-11 September, 2014 - Workshop
Proceedings. 566-573.

Amine Didioui, Carolynn Bernier, Dominique Morche, and Olivier
Sentieys. 2013. HarvWSNet: A co-simulation framework for energy
harvesting wireless sensor networks. In International Conference on
Computing, Networking and Communications, ICNC 2013, San Diego,
CA, USA, January 28-31, 2013. 808-812.

Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, and
Thiemo Voigt. 2007. Mspsim-an extensible simulator for msp430-
equipped sensor boards. In Proceedings of the European Conference on
Wireless Sensor Networks (EWSN), Poster/Demo session, Vol. 118.
Joaquin Gutiérrez, Juan Francisco Villa-Medina, Alejandra Nieto-
Garibay, and Miguel Angel Porta-Gandara. 2014. Automated irrigation
system using a wireless sensor network and GPRS module. IEEE trans-
actions on instrumentation and measurement 63, 1 (2014), 166—176.

[22] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic

and Repeatable Experimentation for Tiny Energy-harvesting Sensors.
In Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems (SenSys ’14). ACM, New York, NY, USA, 1-15.

[23] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for

the Batteryless Internet-of-Things. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems (SenSys). ACM, 19.

[24] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Bat-

[25]
[26]
(27]

(28]

teryless, Intermittent, and Awesome. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems (SenSys '17). ACM,
New York, NY, USA, Article 21, 6 pages.

Paul Horowitz and Winfield Hill. 1989. The art of electronics. Cambridge
Univ. Press.

Texas Instruments. 2018. Getting Started with the MSP430 LaunchPad.
https://goo.gl/6ueTEC ((accessed 2018-10-28)).

Texas Instruments. 2018. Manual. http://www.ti.com/lit/an/slaa336a/

slaa336a.pdf (accessed 2018-03-08).
Texas Instruments. 2018. Power-management integrated chip (PMIC).

https://goo.gl/45psWK ((accessed 2018-10-28)).

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, and L. Mottola

Texas Instruments. 2018. TI E2E Coummunity. https://goo.gl/XxrhN3
((accessed 2018-10-28)).

Texas Instruments. 2018. TI E2E Coummunity. https://goo.gl/dPbNk]J
((accessed 2018-10-28)).

Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghu-
nathan. 2015. QuickRecall: A HW/SW Approach for Computing Across
Power Cycles in Transiently Powered Computers. J. Emerg. Technol.
Comput. Syst. 12, 1 (2015).

Olaf Landsiedel, Muhammad Hamad Alizai, and Klaus Wehrle. 2008.
When Timing Matters: Enabling Time Accurate and Scalable Simu-
lation of Sensor Network Applications. In Proceedings of the 7th In-
ternational Conference on Information Processing in Sensor Networks,
IPSN 2008, St. Louis, Missouri, USA, April 22-24, 2008. 344-355. https:
//doi.org/10.1109/IPSN.2008.31

Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. 2017. Intermittent Computing: Challenges and Opportuni-
ties. In 2nd Summit on Advances in Programming Languages (SNAPL
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 8:1-8:14.

Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Program-
ming and Execution Model for Intermittent Systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI) (PLDI ’15). ACM, New York, NY, USA,
575-585. https://doi.org/10.1145/2737924.2737978

Giedrius Lukosevicius, Alberto Rodriguez Arreola, and Alex S Wed-
dell. 2017. Using sleep states to maximize the active time of transient
computing systems. In Proceedings of the Fifth ACM International Work-
shop on Energy Harvesting and Energy-Neutral Sensing Systems (EnSys).
ACM, 31-36.

Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Inter-
mittent Execution Without Checkpoints. Proc. ACM Program. Lang. 1,
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), Article 96 (Oct. 2017), 30 pages.

Geoff V. Merrett, Neil M. White, Nick R. Harris, and Bashir M. Al-
Hashimi. 2009. Energy-Aware Simulation for Wireless Sensor Net-
works. In Proceedings of the Sixth Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
SECON 2009, June 22-26, 2009, Rome, Italy. 1-8.

Pieter De Mil, Bart Jooris, Lieven Tytgat, Ruben Catteeuw, Ingrid
Moerman, Piet Demeester, and Ad Kamerman. 2010. Design and
Implementation of a Generic Energy-Harvesting Framework Applied
to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless
Sensor Network. EURASIP J. Wireless Comm. and Networking 2010
(2010).

Kevin J Nowka, Gary D Carpenter, Eric W MacDonald, Hung C Ngo,
Bishop C Brock, Koji I Ishii, Tuyet Y Nguyen, and Jeffrey L Burns. 2002.
A 32-bit PowerPC system-on-a-chip with support for dynamic voltage
scaling and dynamic frequency scaling. IEEE Journal of Solid-State
Circuits 37, 11 (2002), 1441-1447.

Padmanabhan Pillai and Kang G Shin. 2001. Real-time dynamic voltage
scaling for low-power embedded operating systems. In ACM SIGOPS
Operating Systems Review, Vol. 35. ACM, 89-102.

Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: Sys-
tem Support for Long-running Computation on RFID-scale Devices. In
Proc. 16'" Int. Conf. Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVI). 159-170.

Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V
Mamishev, Joshua R Smith, et al. 2008. Design of an RFID-Based
Battery-Free Programmable Sensing Platform. IEEE Transactions on
Instrumentation and Measurement 57, 11 (2008).

Antonio Sanchez, Salvador Climent, Sara Blanc, Juan Vicente Capella,
and Ignacio Piqueras. 2011. WSN with Energy-harvesting: Modeling
and Simulation Based on a Practical Architecture Using Real Radiation

— =

The Betrayal of Constant Power X Time

Levels. In Proceedings of the 6th ACM Workshop on Performance Moni-
toring and Measurement of Heterogeneous Wireless and Wired Networks
(PM2HW2N ’11). ACM, New York, NY, USA, 17-24.

Victor Shnayder, Mark Hempstead, Bor-Rong Chen, and Matt Welsh.
2004. PowerTOSSIM: Efficient Power Simulation for TinyOS Appli-
cations. In Proceedings of the ACM Conference on Embedded Network
Sensor Systems (SenSys).

Rebecca Smith and Scott Rixner. 2015. Surviving Peripheral Failures in
Embedded Systems.. In USENIX Annual Technical Conference. 125-137.

IXYS SolarMD. 2018. SLMD481HO8L. http://ixapps.ixys.com/ ((accessed
2018-10-28)).

Cristiano Tapparello, Hoda Ayatollahi, and Wendi Heinzelman. 2014.
Energy Harvesting Framework for Network Simulator 3 (Ns-3). In Pro-
ceedings of the 2Nd International Workshop on Energy Neutral Sensing

LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Systems (ENSsys '14). ACM, New York, NY, USA, 37-42.
TI. 2018. Data Sheet. http://www.ti.com/lit/ds/symlink/msp430g2353.
pdf (accessed 2018-02-18).

[49] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Compu-

tation Without Hardware Support or Programmer Intervention. In
Proceedings of the 12th USENILX Conference on Operating Systems De-
sign and Implementation (OSDI’16). USENIX Association, Berkeley, CA,
USA, 17-32. http://dl.acm.org/citation.cfm?id=3026877.3026880
Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. 2018. InK: Reac-
tive Kernel for Tiny Batteryless Sensors. In Proceedings of the ACM
Conference on Embedded Network Sensor Systems (SenSys).

