Data Structures and Object Oriented Programming

Lecture 20

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io



Copy Constructor & Assignment Operator




Copy Constructor

* Compiler generates copy constructor for base
and derived classes, if needed

* Derived class Copy constructor is invoked
which in turn calls the Copy constructor of the
base class

* The base part is copied first and then the
derived part



Example

class child: public parent {
int* num2;
public:

class parent{
int* numl;

blic: . . .
- ;;}ent(int 2=0) child(int a=@, int b=@):parent(a)
) {
{ numl = new int; hum2 = new int;
J
}
} : :
' void print() {
t
%n get_nun() cout << get num() << endl;
return *numl: cout << *num2 << endl;
) ’ )
}; ¥
J
int main()

child obj1(1, 2);
child obj2 = obji;
objl.print();
obj2.print()




Shallow Copy

obj1 1 obj2
num-1 num1
num2 numz2




Example

class parent{

int* numl;

public:

s

parent(int 2=0)

{

numl = new int;

*numl = a;

}

int get _num() {
return *numl;

}

parent(const parent& a)

{

numl = new int;
*numl = *a.numl;

// deepcopy

class child: public parent {
int* num2;

public:
child(int 2=0, int b=0):parent(a)
{
num2 = new int;
*num2 = b;
}
void print() {
cout << get num() << endl;
cout << *num2 << endl;

}
}s
int main()
{

child obji1(1, 2);
child obj2 = objl;
objl.print();
obj2.print()



Deep and Shallow Copy

obj1 1]j1 obj2
num-1 num1
num2 numz2




Copy Constructor

* Compiler generates copy constructor for derived class

e Calls the copy constructor of the base class (deep
copy)

* Then performs the shallow copy of the derived class’s
data members



Example

class parent{

int* numl;

public:

s

parent(int 2=0)
{
numl = new int;
*numl = a;
}
parent(const parent& a)
{
numl = new int;
*numl = *a.numl;
}
int get _num() {
return *numl;

}

// deepcopy

class child: public parent {
int* num2;
public:
child(int 2=0, int b=0):parent(a){
num2 = new int;
*num2 = b; }
void print() {
cout << get num() << endl;
cout << *num2 << endl;
}
child(const child& a){
num2 = new int;
*num2 = *a.num2;}

// deepcopy

}s5

int main()

{
child obji1(1, 2);
child obj2 = objl;
objl.print();
obj2.print()



Deep Copy

obj1

nu

1

obj2

nu

2

num-

num?2




Copy Constructor

* Programmer must explicitly call the base class copy constructor from
the copy constructor of derived class



Example

class parent{

int* numl;

public:

s

parent(int 2=0)
{
numl = new int;
*numl = a;
}
parent(const parent& a)
{
numl = new int;
*numl = *a.numl;
}
int get _num() {
return *numl;

}

// deepcopy

class child: public parent {
int* num2;
public:
child(int a=0, int b=0@):parent(a){
hum2 = new int;
*num2 = b; }
void print() {
cout << get num() << endl;
cout << *num2 << endl;

}

child(const child& a):parent(a) // deepcopy

num2 = new int;
*num2 = *a.num2;}
}s
int main()
{
child objil(1, 2);
child obj2 = obji;
objl.print();
obj2.print()



Deep Copy

obj1

nu

1

obj2

nu

2

num-

num?2




Assignment Operator

* Compiler generates copy assignment operator for
base and derived classes, if needed

* Derived class copy assignment operator is invoked
which in turn calls the assignment operator of the
base class

* The base part is assigned first and then the derived
part



Assignment Operator

* Programmer has to call operator of base class, if he is writing
assignment operator of derived class



Example

[ -
class child: public parent {

int* num2;
public:
child(int a=0, int b=0@):parent(a){

class parent{
int* numl;

public: .
parent(int a=0) num2 = new 1int;
{ *num2 = b;}

numl = new int; child& operator = (const child& a){
*numl = a; num2 = new int;

} *num2 = *a.num2;

parent& operator = (const parent& a) return *this;}

{ void print() {

cout << get num() << endl;

numl = new int;
cout << *num2 << endl;

*numl = *a.numl;

return *this; }; J int main()
J

) {

child obji1(1, 2);
child obj2;

obj2 = objl;
objl.print();
obj2.print()

int get num() {
return *numl;

}
}s




Deep Copy

obj1

nu

1

obj2

nu

2

num-

num?2




Example

D I EEEEEEEEE———————————
class child: public parent {
class parent{ int* num2;
int* numl; public:
public: child(int a=@, int b=@):parent(a){
parent(int 2=0) num2 = new int;
{ *num2 = b;}

numl = new int; child& operator = (const child& a){
*numl = a; parent::operator = (a);

} num2 = new int;

parent& operator = (const parent& a) *num2 = *a:numZ;

{ return *this;}
numl = new int; void print() {
*numl = *a.numl; cout << get_num() << endl;
return *this; cout << *num2 << endl;

} }
¥ int main()
int get _num() { { «child obj1(1, 2);
return *numl; child obj2;
} child obj2 = obji;
}s objl.print();

obj2.print() }



Deep Copy

obj1

nu

1

obj2

nu

2

num-

num?2




Thanks a lot

Lecture Over




	Slide 1
	Slide 2
	Slide 3: Copy Constructor
	Slide 4: Example
	Slide 5: Shallow Copy
	Slide 6: Example
	Slide 7: Deep and Shallow Copy
	Slide 8: Copy Constructor
	Slide 9: Example
	Slide 10: Deep Copy
	Slide 11: Copy Constructor
	Slide 12: Example
	Slide 13: Deep Copy
	Slide 14: Assignment Operator
	Slide 15: Assignment Operator
	Slide 16: Example
	Slide 17: Deep Copy
	Slide 18: Example
	Slide 19: Deep Copy
	Slide 20: Thanks a lot

