
Data Structures and Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 20

Dr. Naveed Anwar Bhatti

Copy Constructor & Assignment Operator
Inheritance

Copy Constructor

• Compiler generates copy constructor for base
and derived classes, if needed

• Derived class Copy constructor is invoked
which in turn calls the Copy constructor of the
base class

• The base part is copied first and then the
derived part

Example

class parent{
int* num1;

public:
parent(int a=0)
{

num1 = new int;
*num1 = a;

}
int get_num()
{

return *num1;
}

};

class child: public parent {
int* num2;

public:
child(int a=0, int b=0):parent(a)
{
num2 = new int;
*num2 = b;
}
void print() {
cout << get_num() << endl;
cout << *num2 << endl;
}

};

int main()
{

child obj1(1, 2);
child obj2 = obj1;
obj1.print();
obj2.print()

}

Shallow Copy

...
num2
num1
obj21

...
num2
num1
obj1

2

Example

class child: public parent {
int* num2;

public:
child(int a=0, int b=0):parent(a)
{
num2 = new int;
*num2 = b;
}
void print() {
cout << get_num() << endl;
cout << *num2 << endl;
}

};

class parent{
int* num1;

public:
parent(int a=0)
{
num1 = new int;
*num1 = a;
}
int get_num() {

return *num1;
}
parent(const parent& a) // deepcopy
{

num1 = new int;
*num1 = *a.num1;

}

};

int main()
{

child obj1(1, 2);
child obj2 = obj1;
obj1.print();
obj2.print()

}

Deep and Shallow Copy

...
num2
num1
obj21

...
num2
num1
obj1

2

1

Copy Constructor

• Compiler generates copy constructor for derived class

• Calls the copy constructor of the base class (deep
copy)

• Then performs the shallow copy of the derived class’s
data members

Example

int main()
{

child obj1(1, 2);
child obj2 = obj1;
obj1.print();
obj2.print()

}

class parent{
int* num1;

public:
parent(int a=0)
{
num1 = new int;
*num1 = a;
}
parent(const parent& a) // deepcopy
{

num1 = new int;
*num1 = *a.num1;

}
int get_num() {
return *num1;
}

};

class child: public parent {
int* num2;

public:
child(int a=0, int b=0):parent(a){

num2 = new int;
*num2 = b; }

void print() {
cout << get_num() << endl;
cout << *num2 << endl;

}
child(const child& a){ // deepcopy

num2 = new int;
*num2 = *a.num2;}

};

Deep Copy

...
num2
num1
obj21

...
num2
num1
obj1

2

0

2

Copy Constructor

• Programmer must explicitly call the base class copy constructor from
the copy constructor of derived class

Example

int main()
{

child obj1(1, 2);
child obj2 = obj1;
obj1.print();
obj2.print()

}

class parent{
int* num1;

public:
parent(int a=0)
{
num1 = new int;
*num1 = a;
}
parent(const parent& a) // deepcopy
{

num1 = new int;
*num1 = *a.num1;

}
int get_num() {
return *num1;
}

};

class child: public parent {
int* num2;

public:
child(int a=0, int b=0):parent(a){

num2 = new int;
*num2 = b; }

void print() {
cout << get_num() << endl;
cout << *num2 << endl;

}
child(const child& a):parent(a) // deepcopy

num2 = new int;
*num2 = *a.num2;}

};

Deep Copy

...
num2
num1
obj21

...
num2
num1
obj1

2

1

2

Assignment Operator

• Compiler generates copy assignment operator for
base and derived classes, if needed

• Derived class copy assignment operator is invoked
which in turn calls the assignment operator of the
base class

• The base part is assigned first and then the derived
part

Assignment Operator

• Programmer has to call operator of base class, if he is writing
assignment operator of derived class

Example

int main()
{

child obj1(1, 2);
child obj2;
obj2 = obj1;
obj1.print();
obj2.print()

}

class parent{
int* num1;

public:
parent(int a=0)
{

num1 = new int;
*num1 = a;

}
parent& operator = (const parent& a)
{

num1 = new int;
*num1 = *a.num1;
return *this;

}

int get_num() {
return *num1;

}
};

class child: public parent {
int* num2;

public:
child(int a=0, int b=0):parent(a){

num2 = new int;
*num2 = b;}

child& operator = (const child& a){
num2 = new int;
*num2 = *a.num2;
return *this;}

void print() {
cout << get_num() << endl;
cout << *num2 << endl;

}
};

Deep Copy

...
num2
num1
obj21

...
num2
num1
obj1

2

0

2

Example

int main()
{ child obj1(1, 2);

child obj2;
child obj2 = obj1;
obj1.print();
obj2.print() }

class parent{
int* num1;

public:
parent(int a=0)
{

num1 = new int;
*num1 = a;

}
parent& operator = (const parent& a)
{

num1 = new int;
*num1 = *a.num1;
return *this;

}

int get_num() {
return *num1;

}
};

class child: public parent {
int* num2;

public:
child(int a=0, int b=0):parent(a){

num2 = new int;
*num2 = b;}

child& operator = (const child& a){
parent::operator = (a);
num2 = new int;
*num2 = *a.num2;
return *this;}

void print() {
cout << get_num() << endl;
cout << *num2 << endl;

}
};

Deep Copy

...
num2
num1
obj21

...
num2
num1
obj1

2

1

2

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Copy Constructor
	Slide 4: Example
	Slide 5: Shallow Copy
	Slide 6: Example
	Slide 7: Deep and Shallow Copy
	Slide 8: Copy Constructor
	Slide 9: Example
	Slide 10: Deep Copy
	Slide 11: Copy Constructor
	Slide 12: Example
	Slide 13: Deep Copy
	Slide 14: Assignment Operator
	Slide 15: Assignment Operator
	Slide 16: Example
	Slide 17: Deep Copy
	Slide 18: Example
	Slide 19: Deep Copy
	Slide 20: Thanks a lot

