
Data Structures and Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 19

Dr. Naveed Anwar Bhatti

Overriding vs. Overloading

Overriding

• Derived class can override (modify) the
member functions of its base class

• To override a function the derived class
simply provides a function with the same
signature as that of its base class

Parent
...

Func1

Child
...

Func1

Overriding (example)

#include <iostream>
using namespace std;

class Parent{
public:

void myFunction()
{

cout << “Parent class“ << endl;
}

};

class Child : public Parent {

public:
void myFunction()
{

cout << “Child class“ << endl;
}

};

int main()
{

Child myObj;
myObj.myFunction();
return 0;

}

Overloading vs. Overriding

• Overloading is done within the scope of one class

• Overriding is done in scope of parent and child

• Overriding within the scope of single class is error due to duplicate
declaration

• Example class Parent{
public:

void myFunction()
{

cout << “Hello 1“ << endl;
}
void myFunction()
{

cout << “Hello 2“ << endl;
}

};

Error

Overriding Member Functions of Base Class

• Derive class can override member function of base
class such that the working of function is totally
changed

• Derive class can override member function of base
class such that the working of function is based on
former implementation

Overriding Example (example)

#include <iostream>
using namespace std;

class Parent{
public:

void myFunction()
{

cout << “Parent class“ << endl;
}

};

class Child : public Parent {

public:
void myFunction()
{

myFunction();
cout << “Child class“ << endl;

}

};

int main()
{

Child myObj;
myObj.myFunction();
return 0;

}

Code will stuck
in recursive call

We use scope operator

#include <iostream>
using namespace std;

class Parent{
public:

void myFunction()
{

cout << “Parent class“ << endl;
}

};

class Child : public Parent {

public:
void myFunction()
{

Parent::myFunction();
cout << “Child class“ << endl;

}

};

int main()
{

Child myObj;
myObj.myFunction();
return 0;

}

Another Example

Class A Class B

Class C

Another Example

class A {
public:

void myFunction() {
cout << “class A“ << endl;
}

};

class B : {
public:

void myFunction() {
cout << “class B" << endl;
}

};

class C : public A, public B
{

};

int main()
{

C myObj;
myObj.myFunction();
return 0;

}

Error

myObj.A::myFunction();
Or

myObj.B::myFunction();

Another Scenario (Hybrid Inheritance)

Class B Class C

Class D

Class A

Diamond Problem

class A {
public:

void myFunction() {
cout << “class A“ << endl;
}

};

class B : public A{
public:

void myFunction() {
cout << “class B" << endl;
}

};

class C : public A{
public:

void myFunction() {
cout << “class C" << endl;
}

};

class D : public B, public C{
public:

void myFunction() {
cout << “class D" << endl;
}

};

int main() {
D myObj;
myObj.myFunction();

return 0;
}

Error

myObj.B::A::myFunction();
Or

myObj.C::A::myFunction();

myObj.B::myFunction();
myObj.A::myFunction();

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Overriding
	Slide 4: Overriding (example)
	Slide 5: Overloading vs. Overriding
	Slide 6: Overriding Member Functions of Base Class
	Slide 7: Overriding Example (example)
	Slide 8: We use scope operator
	Slide 9: Another Example
	Slide 10: Another Example
	Slide 11: Another Scenario (Hybrid Inheritance)
	Slide 12: Diamond Problem
	Slide 13: Thanks a lot

