Data Structures and Object Oriented Programming

Lecture 19

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Overriding vs. Overloading

Overriding

 Derived class can override (modify) the
member functions of its base class

* To override a function the derived class
simply provides a function with the same
signature as that of its base class

Parent

Funcl

Child

Funcl

Overriding (example)

class Child : public Parent {

public:
#include <iostream> void myFunction()
using namespace std; {
cout << “Child class® << endl;

class Parent{ }
public:

void myFunction() }s

{

cout << “Parent class®“ << endl;

} int main()

}s {

Child myObj;
myObj.myFunction();
return 0;

Overloading vs. Overriding

* Overloading is done within the scope of one class
* Overriding is done in scope of parent and child

* Overriding within the scope of single class is error due to duplicate

declaration
e Exampl class Parent{
dmple public:
void myFunction()
{

cout << “Hello 1 << endl;

}
{

cout << “Hello 2 << endl;

}
}s

Overriding Member Functions of Base Class

e Derive class can override member function of base
class such that the working of function is totally
changed

* Derive class can override member function of base
class such that the working of function is based on
former implementation

Overriding Example (example)

class Child : public Parent {

public:
#include <iostream> void myFunction() Qexdle vl arurel
using namespace std; { : in recursive call
myFunction();

class Parent{ cout << “Child class“ << endl;
public: }

void myFunction()

{ }s5

cout << “Parent class®“ << endl;

} int main()

}s {

Child myObj;
myObj.myFunction();
return 0;

We use scope operator

class Child : public Parent {

public:
#include <iostream> void myFunction()
using namespace std; {

Parent::myFunction();
class Parent{ cout << “Child class® << endl;
public: }

void myFunction()
{ }s5
cout << “Parent class® << endl;
t int main()
}s {

Child myObj;
myObj.myFunction();
return 0;

Another Example

Class A

Class B

Class C

Another Example

[-
class A { class C : public A, public B
public: {
void myFunction() {
cout << “class A“ << endl; };
}
}s

int main()

class B : { { .
public: C myObj;

void myFunction() { myObj.myFunction();
;out << “class B" << endl; } return ©; myObj.A::myFunction();
Or

}; myObj.B::myFunction();

Another Scenario (Hybrid Inheritance)

Class A

A

Class B Class C

L/

Class D

Diamond Problem

I -

class A {
public: class D : public B, public C{

void myFunction() { public:

cout << “class A“ << endl; void myFunction() {

h cout << “class D" << endl;
¥ }

¥

class B : public A{
public:
void myFunction() {
cout << “class B" << endl;

} int main() {
}s D myObj;
’ myObj .myFunction();
class C : public A{ myObj.B: :myFunction();
public: myObj.A: :myFunction();

void myFunction() { : :
cout << “class C" << endl; return 0O; myObj.B::A::myFunction();

} } Or
}s myObj.C::A::myFunction();
J

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Overriding
	Slide 4: Overriding (example)
	Slide 5: Overloading vs. Overriding
	Slide 6: Overriding Member Functions of Base Class
	Slide 7: Overriding Example (example)
	Slide 8: We use scope operator
	Slide 9: Another Example
	Slide 10: Another Example
	Slide 11: Another Scenario (Hybrid Inheritance)
	Slide 12: Diamond Problem
	Slide 13: Thanks a lot

