Data Structures and Object Oriented Programming

Lecture 17

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Allocation in Memory

* Every object of derived class has an anonymous
object of base class

Allocation in Memory

* The object of derived class is represented in memory
as follows

base memberl
base member? Data members of base

class

derived memberl
derived member2 | > Data members of

derived class

Constructors

* The anonymous object of base class must be initialized using constructor
of base class

* When a derived class object is created the constructor of base class is
executed before the constructor of derived class

Constructors

base memberl Base class constructor
base member2 initializes the anonymous
object
~
derived memberl Derived class constructor
derived member2 | ~initializes the derived class
_J object

Example

class Parent

{
public:

Parent()
{

¥

cout << "Parent Constructor...”;

}s

class Child : public Parent

{
public:

Child()
{

¥

cout << "Child Constructor...";

s

Example

int main()

{
Child cobj;

return 0;

¥

Output:
Parent Constructor...
Child Constructor...

Constructor

* If default constructor of base class does not exist then the compiler
will try to generate a default constructor for base class and execute it
before executing constructor of derived class

Constructor

* If the user has given only an argument based constructor for base class,
the compiler will not generate default constructor for base class

Example

class Parent

{
public:

Parent(int i)

{
}

cout << "Parent Constructor...”;

}s

class Child : public Parent

{
public:

Child()
{

¥

cout << "Child Constructor...";

s

Example

int main()

{
Child cobj;
return 0;
}
Output:

Error

Base Class Initializer

* C++ has provided a mechanism to explicitly call a
constructor of base class from derived class

* The syntax is similar to member initializer and is
referred as base-class initialization

Example

class Parent

{
public:

Parent(int 1)

{
}

cout << "Parent Constructor...”;

}s

class Child : public Parent

{
public:

Child(int 1i): Parent(i)
{

¥

cout << "Child Constructor...";

s

Base Class Initializer

* User can provide base class initializer (through
constructor) and member initializer simultaneously

Example

[-
class Parent int main()
{ {
public: Child recl(1,2);

Parent(int i
(int 1) system("pause");

{ . . return 0;
cout << "Parent Constructor..."; }
}
}s
class Child : public Parent
{
int member;
public:
Child(int i, int x) : member(x), Parent(i)
{

cout << "Child Constructor...";

}
s

Base Class Initializer

* The base class initializer can be written after member
initializer for derived class

* The base class constructor is executed before the
initialization of data members of derived class.

Initializing Members

* Derived class can only initialize members of base class
using base class constructor constructors

* Derived class can not initialize the public data member of
base class using member initialization list

NI Example

class Parent

{
public:
int member;
Parent()
{
cout << "Parent Constructor...";
}
¥
class Child : public Parent
{
public:
Child(int 1i): member‘(i)m
{

cout << "Child Constructor..."”; Reason:

} It will be an assignment not
}; an initialization

Destructors

I N
 Destructors are called in reverse order of constructor
called

e Derived class destructor is called before the base class
destructor is called

Example

class Parent

{
public:
Parent() { cout << "Parent Constructor"; }
~Parent() { cout << "Parent Destructor”; } .
}; €4 Microsoft Visual Studio Debug Console
Parent Constructor
class Child : public Parent Child Constructor
{ Child Destructor
public: Parent Destructor
Child() { cout << "Child Constructor"; }
~Child() { cout << "Child Destructor"; }
}s

int main()

{
Child var;

return 9;

Thanks a lot

Lecture Over

	Slide 1
	Slide 2: Allocation in Memory
	Slide 3: Allocation in Memory
	Slide 4: Constructors
	Slide 5: Constructors
	Slide 6: Example
	Slide 7: Example
	Slide 8: Constructor
	Slide 9: Constructor
	Slide 10: Example
	Slide 11: Example
	Slide 12: Base Class Initializer
	Slide 13: Example
	Slide 14: Base Class Initializer
	Slide 15: Example
	Slide 16: Base Class Initializer
	Slide 17: Initializing Members
	Slide 18: Example
	Slide 19: Destructors
	Slide 20: Example
	Slide 21: Thanks a lot

