
Data Structures and Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 17

Dr. Naveed Anwar Bhatti

Allocation in Memory

• Every object of derived class has an anonymous
object of base class

Allocation in Memory

• The object of derived class is represented in memory
as follows

Data members of base
class

Data members of
derived class

base member1
base member2

...

derived member1
derived member2

...

Constructors

• The anonymous object of base class must be initialized using constructor
of base class

• When a derived class object is created the constructor of base class is
executed before the constructor of derived class

Constructors

Base class constructor
initializes the anonymous
object

Derived class constructor
initializes the derived class
object

base member1
base member2

...

derived member1
derived member2

...

Example

class Parent
{
public:

Parent()
{

cout << "Parent Constructor...";
}

};

class Child : public Parent
{
public:

Child()
{

cout << "Child Constructor...";
}

};

Example

Output:
Parent Constructor...
Child Constructor...

int main()
{

Child cobj;
return 0;

}

Constructor

• If default constructor of base class does not exist then the compiler
will try to generate a default constructor for base class and execute it
before executing constructor of derived class

Constructor

• If the user has given only an argument based constructor for base class,
the compiler will not generate default constructor for base class

Example

class Parent
{
public:

Parent(int i)
{

cout << "Parent Constructor...";
}

};

class Child : public Parent
{
public:

Child()
{

cout << "Child Constructor...";
}

};

Example

Output:
Error

int main()
{

Child cobj;
return 0;

}

Base Class Initializer

• C++ has provided a mechanism to explicitly call a
constructor of base class from derived class

• The syntax is similar to member initializer and is
referred as base-class initialization

Example

class Parent
{
public:

Parent(int i)
{

cout << "Parent Constructor...";
}

};

class Child : public Parent
{
public:

Child(int i): Parent(i)
{

cout << "Child Constructor...";
}

};

Base Class Initializer

• User can provide base class initializer (through
constructor) and member initializer simultaneously

Example

class Parent
{
public:

Parent(int i)
{

cout << "Parent Constructor...";
}

};

class Child : public Parent
{

int member;
public:

Child(int i, int x) : member(x), Parent(i)

{
cout << "Child Constructor...";

}
};

int main()
{

Child rec1(1,2);

system("pause");
return 0;

}

Base Class Initializer

• The base class initializer can be written after member
initializer for derived class

• The base class constructor is executed before the
initialization of data members of derived class.

Initializing Members

• Derived class can only initialize members of base class
using base class constructor constructors
• Derived class can not initialize the public data member of

base class using member initialization list

Example

class Parent
{
public:

int member;
Parent()
{

cout << "Parent Constructor...";
}

};

class Child : public Parent
{
public:

Child(int i): member(i)
{

cout << "Child Constructor...";
}

};

Reason:
It will be an assignment not
an initialization

Error

Destructors

• Destructors are called in reverse order of constructor
called

• Derived class destructor is called before the base class
destructor is called

Example

class Parent
{
public:

Parent() { cout << "Parent Constructor"; }
~Parent() { cout << "Parent Destructor"; }

};

class Child : public Parent
{
public:

Child() { cout << "Child Constructor"; }
~Child() { cout << "Child Destructor"; }

};

int main()
{

Child var;
return 0;

}

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2: Allocation in Memory
	Slide 3: Allocation in Memory
	Slide 4: Constructors
	Slide 5: Constructors
	Slide 6: Example
	Slide 7: Example
	Slide 8: Constructor
	Slide 9: Constructor
	Slide 10: Example
	Slide 11: Example
	Slide 12: Base Class Initializer
	Slide 13: Example
	Slide 14: Base Class Initializer
	Slide 15: Example
	Slide 16: Base Class Initializer
	Slide 17: Initializing Members
	Slide 18: Example
	Slide 19: Destructors
	Slide 20: Example
	Slide 21: Thanks a lot

