Data Structures and Object Oriented Programming

Lecture 15

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Typecasting

(Type Conversion)

Typecasting (Type conversion)

 The process of converting one predefined type into another is
called as type conversion

e C++ facilitates the type conversion into the following two
forms for built-in data types:

 Implicit Type Conversion
 Explicit Type Conversion

Implicit Type Conversion

 Conversion performed by the compiler without programmer's
intervention whenever differing data types are intermixed in
an expression

 The value of the right side (expression side) of the assignment
is converted to the type of the left side (target variable)

int main()
e Example:
short int x = 1417;
char ch;
ch = x; /f where ch is char (1 byte) and x is int (2 bytes)
return @;

Implicit Type Conversion

e X was having value 1417 (whose binary equivalent is

0000010110001001)
137

el

* ch will have lower 8-bits i.e., 10001001 resulting in loss of
information.

Implicit Type Conversion

* Another example

int main()

i

fleoat v = 4.1;

1P = 11

Output = " << x + y << endl;

oy,

cout <<

cout << "Type = " << typeid(x + y).name() << endl;

B Microsoft Visual Studio Debug Console — 4 >

utput = 14.1
ype = float

:\E_drive\Air University\DS & 00P\Codes\typecasting\ConsoleApplicationi\Debug\ConsoleApplicationl.exe (process 15948) e
tited with code 8.

o automat lose the console when debugging stops, enable Tools->0Options-»Debugging->Automatically close the conso

e when de ops.

close this window .

Explicit Type Conversion

 User-defined conversion that forces an expression to be of

specific type
int main() int main()
i i
int y = 3; int y = 3;
cout << (float)(y) / 2; cout << (y) / 2;
} }

Output= 1.5 Output= 1

Type Conversion for User-defined types

» Now what about User-defined data types?

» For user defined classes, there are two types of conversions
" From any other type to current type

* From current type to any other type

Type Conversion

» Conversion from any other type to current type:

= Requires a constructor with a single parameter

» Conversion from current type to any other type:

= Requires an overloaded operator

Type Conversion — Consider this example

[-
class Circle
{
double radius;
public:
Circle(double x) //constructor
{
radius = x;
}
}s
void Area(Circle N)
{
cout << "In Area function" << endl;
}
int main()
{
double x=10;
Area(x);
return 9;

Type Conversion — Consider this example

D -
class Circle
{
double radius;
public:
Circle(double x) //constructor
{

radius = x;
}
¥

Area is defined to take an argument

that is a Circle

void Area(Circle N)

{

cout << "In Area function" << endl;

}

int main()

{
double x=10;
Area(x);
return 9;

Type Conversion — Consider this example

D -
class Circle
{
double radius;
public:
Circle(double x) //constructor
{

radius = x;
}
¥

Area is defined to take an argument

that is a Circle

void Area(Circle N)

{
}

cout << "In Area function" << endl;
int main()

{ However, in main Area(x) is called
double x=18; with an argument that is a double
Area(x);

return 9;

Type Conversion — Consider this example

B 10
class Circle

{

double radius;
public:
Circle(double x) //constructor

{
}

radius = x;

}s

Area is defined to take an argument

that is a Circle

void Area(Circle N)
{

cout << "In Area function" << endl; So C++ tries to convert the

} argument to a Circle. It notices

that the constructor for Circle

int main() essentially converts a double

{ However, in main Area(x) is called into a Circle. So it uses the
double x=10; with an argument that is a double
Area(x);

constructor to do the type
return 9;

conversion

Type Conversion — Consider this example

D -
class Circle
{
double radius;
public:
Circle(double x) //constructor
{

radius = x;
}
¥

Area is defined to take an argument

that is a Circle

void Area(Circle N)

{

cout << "In Area function" << endl; So C++ tries to convert the

} argument to a Circle. It notices
that the constructor for Circle

int main() essentially converts a double

{ However, in main Area(x) is called into a Circle. So it uses the
double x=10; with an argument that is a double constructor to do the type
Area(x);
return 9;

}

conversion

Type Conversion — Consider another example

I -
class Circle void Area(Circle N)
{ {
double radius; cout << "In Area function" << endl;
public: }
Circle(double x) //constructor
{ void Area(AnotherCircle N)
radius = x; {
} cout << "In Area2 function" << endl;
}s }
class AnotherCircle
{ int main()
double radius; {
public: double x=10;
AnotherCircle(double x) //constructor Area(x);
{ return 0;
radius = x; }
}

s

Type Conversion — Consider another example

[-
class Circle void Area(Circle N)
{ {
double radius; cout << "In Area function" << endl;
public: }
Circle(double x) //constructor
{ void Area(AnotherCircle N)
radius = x; {
} cout << "In Area2 function" << endl;
}s }
class AnotherCircle To implement Area(x)
{ int main() compiler could convert x to
double radius; { a Circle and use Area(Circle
public: double x=10: N), or to AnotherCircle and
AnotherCircle(double x) //constructor Area(x); use Area(AnotherCircle N).
{ return 0;

radius = x; }
}
}s5

Type Conversion — Consider another example

class Circle

{

}s

double radius;
public:
Circle(double x) //constructor

{
}

radius = x;

class AnotherCircle

{

}s

double radius;
public:
AnotherCircle(double x) //constructor

{
}

radius = x;

void Area(Circle N)

{

cout << "In Area function" << endl;
}
void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

To implement Area(x)

int main() compiler could convert x to
{ a Circle and use Area(Circle

N), or to AnotherCircle and
use Area(AnotherCircle N).

double x=10;

Area(x);

return 9;

} With no way to resolve the
ambiguity, the compiler

won't compile the program.

Type Conversion — Consider another example

class Circle

{

double radius;
public:
explicit Circle(double x) //constructor

{
}

radius = x;

s

class AnotherCircle

{

double radius;
public:
AnotherCircle(double x) //constructor

{
}

radius = x;

}s

void Area(Circle N)

{

cout << "In Area function" << endl;
}
void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

To resolve the ambiguity, we
add an explicit call to the

int main())

{ intended constructor
double x=10;
Area(Circle(x));
return 9;

Type Conversion — Consider another example

class Circle

{

double radius;
public:
explicit Circle(double x) //constructor

{
}

And explicit keywork here

radius = x;

s

class AnotherCircle

{

double radius;
public:
AnotherCircle(double x) //constructor

{
}

radius = x;

}s

void Area(Circle N)

{

cout << "In Area function" << endl;
}
void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

To resolve the ambiguity, we
add an explicit call to the

int main())

{ intended constructor
double x=10;
Area(Circle(x));
return 9;

Type Conversion — Consider this example

I I
class Circle
{ e
double radius; " Note: ;
public:
..) If you do not want the constructor to be used
?xp11c1t Circle(double x) //constructor implicitly as a conversion operator, then declare

the constructor explicit. An explicit constructor

radius = x; will be invoked only explicitly and implicit

- e o e e -
. e ————

}s J conversion will be suppressed.
) N A
void Area(Circle N)
{
cout << "In Area function" << endl;
}
int main()
{
double x=10;
Area(x);
return 9;

Type Conversion — Consider this example

I I
class Circle
{ e
double radius; " Note: ;
public:
..) If you do not want the constructor to be used
?xp11c1t Circle(double x) //constructor implicitly as a conversion operator, then declare

the constructor explicit. An explicit constructor

radius = x; will be invoked only explicitly and implicit

- e o e e -
. e ————

}s J conversion will be suppressed.
) N A
void Area(Circle N)
{
cout << "In Area function" << endl;
}

int main()

{

double x=10; error: no implicit double -> Circle conversion

Type Conversion

» There is another method for type conversion:
e “Operator overloading”

* (Converting from current type to any other type)

Type Conversion

» General Syntax:
* TYPE, : :Operator TYPE, () ;

» Must be a member function
» NO return type and arguments are specified
P Return type is implicitly taken to be TYPE, by compiler

N Type Conversion

class Circle

{

double radius;
public:
Circle(double x) //constructor

{
}
operator double() //conversion operator overloading

{
}

radius = x;

return radius;
}s

int main()

{
Circle C(10);
double x=C;

cout << X; Implicit type conversion
return 0;

Type Conversion

D -
class Circle
{
double radius;
public:
Circle(double x) //constructor
{
radius = x;
}
explicit operator double() //conversion operator overloading
{ return radius;
}
¥

int main()

{

Circle C(10); error: no implicit Circle -> double conversion

double x=C;
cout << x;
return 0;

N Type Conversion

class Circle

{

double radius;
public:
Circle(double x) //constructor

{
}
explicit operator double() //conversion operator overloading

{
}

radius = x;

return radius;
}s

int main()

{
Circle C(10);
double x=double(C);

cout << Xx;
Explicit type conversion
return 0;

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Typecasting (Type conversion)
	Slide 4: Implicit Type Conversion
	Slide 5: Implicit Type Conversion
	Slide 6: Implicit Type Conversion
	Slide 7: Explicit Type Conversion
	Slide 8: Type Conversion for User-defined types
	Slide 9: Type Conversion
	Slide 10: Type Conversion – Consider this example
	Slide 11: Type Conversion – Consider this example
	Slide 12: Type Conversion – Consider this example
	Slide 13: Type Conversion – Consider this example
	Slide 14: Type Conversion – Consider this example
	Slide 15: Type Conversion – Consider another example
	Slide 16: Type Conversion – Consider another example
	Slide 17: Type Conversion – Consider another example
	Slide 18: Type Conversion – Consider another example
	Slide 19: Type Conversion – Consider another example
	Slide 20: Type Conversion – Consider this example
	Slide 21: Type Conversion – Consider this example
	Slide 22: Type Conversion
	Slide 23: Type Conversion
	Slide 24: Type Conversion
	Slide 25: Type Conversion
	Slide 26: Type Conversion
	Slide 27: Thanks a lot

