
Data Structures and Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 15

Dr. Naveed Anwar Bhatti

Typecasting
(Type Conversion)

Typecasting (Type conversion)

• The process of converting one predefined type into another is
called as type conversion

• C++ facilitates the type conversion into the following two
forms for built-in data types:

❑ Implicit Type Conversion
❑ Explicit Type Conversion

Implicit Type Conversion

• Conversion performed by the compiler without programmer's
intervention whenever differing data types are intermixed in
an expression

• The value of the right side (expression side) of the assignment
is converted to the type of the left side (target variable)

• Example:

Implicit Type Conversion

• x was having value 1417 (whose binary equivalent is
0000010110001001)

• ch will have lower 8-bits i.e., 10001001 resulting in loss of
information.

137

Implicit Type Conversion

• Another example

Explicit Type Conversion

• User-defined conversion that forces an expression to be of
specific type

Output= 1.5 Output= 1

Type Conversion for User-defined types

►Now what about User-defined data types?

►For user defined classes, there are two types of conversions

▪ From any other type to current type

▪ From current type to any other type

Type Conversion

►Conversion from any other type to current type:

▪ Requires a constructor with a single parameter

►Conversion from current type to any other type:

▪ Requires an overloaded operator

Type Conversion – Consider this example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

Type Conversion – Consider this example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

Area is defined to take an argument
that is a Circle

Type Conversion – Consider this example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

Area is defined to take an argument
that is a Circle

However, in main Area(x) is called
with an argument that is a double

Type Conversion – Consider this example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

Area is defined to take an argument
that is a Circle

However, in main Area(x) is called
with an argument that is a double

So C++ tries to convert the
argument to a Circle. It notices
that the constructor for Circle
essentially converts a double
into a Circle. So it uses the
constructor to do the type
conversion

Type Conversion – Consider this example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

Area is defined to take an argument
that is a Circle

However, in main Area(x) is called
with an argument that is a double

So C++ tries to convert the
argument to a Circle. It notices
that the constructor for Circle
essentially converts a double
into a Circle. So it uses the
constructor to do the type
conversion

Implicit type conversion

Type Conversion – Consider another example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

class AnotherCircle
{

double radius;
public:
AnotherCircle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

Type Conversion – Consider another example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

class AnotherCircle
{

double radius;
public:
AnotherCircle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

To implement Area(x)
compiler could convert x to
a Circle and use Area(Circle
N), or to AnotherCircle and
use Area(AnotherCircle N).

Type Conversion – Consider another example

class Circle
{

double radius;
public:
Circle(double x) //constructor
{

radius = x;
}

};

class AnotherCircle
{

double radius;
public:
AnotherCircle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

To implement Area(x)
compiler could convert x to
a Circle and use Area(Circle
N), or to AnotherCircle and
use Area(AnotherCircle N).

With no way to resolve the
ambiguity, the compiler

won't compile the program.

Type Conversion – Consider another example

class Circle
{

double radius;
public:
explicit Circle(double x) //constructor
{

radius = x;
}

};

class AnotherCircle
{

double radius;
public:
AnotherCircle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

int main()
{

double x=10;
Area(Circle(x));
return 0;

}

To resolve the ambiguity, we
add an explicit call to the
intended constructor

Type Conversion – Consider another example

class Circle
{

double radius;
public:
explicit Circle(double x) //constructor
{

radius = x;
}

};

class AnotherCircle
{

double radius;
public:
AnotherCircle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

void Area(AnotherCircle N)
{

cout << "In Area2 function" << endl;
}

int main()
{

double x=10;
Area(Circle(x));
return 0;

}

To resolve the ambiguity, we
add an explicit call to the
intended constructor

And explicit keywork here

Type Conversion – Consider this example

class Circle
{

double radius;
public:
explicit Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

If you do not want the constructor to be used
implicitly as a conversion operator, then declare
the constructor explicit. An explicit constructor
will be invoked only explicitly and implicit
conversion will be suppressed.

Note:

Type Conversion – Consider this example

class Circle
{

double radius;
public:
explicit Circle(double x) //constructor
{

radius = x;
}

};

void Area(Circle N)
{

cout << "In Area function" << endl;
}

int main()
{

double x=10;
Area(x);
return 0;

}

If you do not want the constructor to be used
implicitly as a conversion operator, then declare
the constructor explicit. An explicit constructor
will be invoked only explicitly and implicit
conversion will be suppressed.

Note:

error: no implicit double -> Circle conversion

Type Conversion

►There is another method for type conversion:
• “Operator overloading”

• (Converting from current type to any other type)

Type Conversion

►General Syntax:
• TYPE1::Operator TYPE2();

►Must be a member function

►NO return type and arguments are specified

►Return type is implicitly taken to be TYPE2 by compiler

Type Conversion

class Circle
{

double radius;
public:

Circle(double x) //constructor
{

radius = x;
}
operator double() //conversion operator overloading
{

return radius;
}

};

int main()
{

Circle C(10);
double x=C;
cout << x;
return 0;

}

Implicit type conversion

Type Conversion

class Circle
{

double radius;
public:

Circle(double x) //constructor
{

radius = x;
}
explicit operator double() //conversion operator overloading
{

return radius;
}

};

int main()
{

Circle C(10);
double x=C;
cout << x;
return 0;

}

error: no implicit Circle -> double conversion

Type Conversion

class Circle
{

double radius;
public:

Circle(double x) //constructor
{

radius = x;
}
explicit operator double() //conversion operator overloading
{

return radius;
}

};

int main()
{

Circle C(10);
double x=double(C);
cout << x;
return 0;

}

Explicit type conversion

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Typecasting (Type conversion)
	Slide 4: Implicit Type Conversion
	Slide 5: Implicit Type Conversion
	Slide 6: Implicit Type Conversion
	Slide 7: Explicit Type Conversion
	Slide 8: Type Conversion for User-defined types
	Slide 9: Type Conversion
	Slide 10: Type Conversion – Consider this example
	Slide 11: Type Conversion – Consider this example
	Slide 12: Type Conversion – Consider this example
	Slide 13: Type Conversion – Consider this example
	Slide 14: Type Conversion – Consider this example
	Slide 15: Type Conversion – Consider another example
	Slide 16: Type Conversion – Consider another example
	Slide 17: Type Conversion – Consider another example
	Slide 18: Type Conversion – Consider another example
	Slide 19: Type Conversion – Consider another example
	Slide 20: Type Conversion – Consider this example
	Slide 21: Type Conversion – Consider this example
	Slide 22: Type Conversion
	Slide 23: Type Conversion
	Slide 24: Type Conversion
	Slide 25: Type Conversion
	Slide 26: Type Conversion
	Slide 27: Thanks a lot

