
Data Structures and Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 15

Dr. Naveed Anwar Bhatti

Operator Overloading
Stream Insertion Operators

Class: Operator Overloading (<< and >>)

• Bitwise operator >> (right shift) and << (left shift) are built-in operators in
C/C++

• These two operators are overloaded in system library (iostream) for
formatted input (cin) and output (cout) of built-in types.

• cout is an object of ostream

• cin is an object of istream

Class: Operator Overloading (<< and >>)

• Bitwise operator >> (right shift) and << (left shift) are built-in operators in
C/C++

• These two operators are overloaded in system library (iostream) for
formatted input (cin) and output (cout) of built-in types.

• cout is an object of ostream

• cin is an object of istream Very Important:
Only one object of ostream
and istream can be created

Class: Operator Overloading (<< and >>)

• Overloading << and >> make it extremely easy to output your class to
screen and accept user input from the console

int main() {
myclass foo(3, 1);
cout << "My values are: ";
foo.print();
cout << "in centimeters";
return 0;

}

Class: Operator Overloading (<< and >>)

• Overloading << and >> make it extremely easy to output your class to
screen and accept user input from the console

int main() {
myclass foo(3, 1);
cout << "My values are: ";
foo.print();
cout << "in centimeters";
return 0;

}

int main() {
myclass foo(3, 1);
cout << "My values are: “<< foo << "in centimeters";
return 0;

}

This would be much easier

Class: Operator Overloading (<< and >>)

• Overloading operator <<

cout << foo;

Operand 1 Operand 2

Operator

Class: Operator Overloading (<< and >>)

• Overloading operator <<

cout << foo;

Operand 1 Operand 2

cout belong to
ostream class

Operator

Class: Operator Overloading (<< and >>)

• Overloading operator <<

cout << foo;

Operand 1 Operand 2

cout belong to
ostream class

foo belong to
myclass class

Operator

Class: Operator Overloading (<< and >>)

• Overloading operator <<

cout << foo;

Operand 1 Operand 2

cout belong to
ostream class

foo belong to
myclass class

• Two methods:
• Member Function
• Friend Function

Operator

Class: Operator Overloading (<< and >>)

• Overloading operator <<

cout << foo;

Operand 1 Operand 2

cout belong to
ostream class

foo belong to
myclass class

• Two methods:
• Member Function
• Friend Function

Incase of Member Function:
We have to modifiy ostream
class because cout is the first
operand

Operator

Class: Operator Overloading (<< and >>)

• Overloading operator<<

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend ostream& operator<<(ostream&, myclass);

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

ostream& operator<<(ostream& os, myclass a)
{

os << a.x << ‘,' << a.y;
return os;

}

int main() {
myclass foo(3, 1);
cout << "My values are: “<<
foo<< "in x,y cooridinates";
return 0;

}

Class: Operator Overloading (<< and >>)

• Overloading operator<<

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend ostream& operator<<(ostream&, myclass);

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

ostream& operator<<(ostream& os, myclass a)
{

os << a.x << ‘,' << a.y;
return os;

}

int main() {
myclass foo(3, 1);
cout << "My values are: “<<
foo<< "in x,y cooridinates";
return 0;

}

Pass-by-Reference to
avoid creating new object

Class: Operator Overloading (<< and >>)

Why are we returning ostream&?

• It allows us to “chain” output commands together
• And reference “&” to avoid creating new object

In case of void:

cout << foo; but cout << foo << “are x, y coordinates”;

(cout << foo) << “are x, y coordinates”;

void << “are x, y coordinates”;
Reason

Error

No Error

Class: Operator Overloading

Exercise: Overload ‘ >> ’ operator for same class using Friend Function.

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Class: Operator Overloading (<< and >>)
	Slide 4: Class: Operator Overloading (<< and >>)
	Slide 5: Class: Operator Overloading (<< and >>)
	Slide 6: Class: Operator Overloading (<< and >>)
	Slide 7: Class: Operator Overloading (<< and >>)
	Slide 8: Class: Operator Overloading (<< and >>)
	Slide 9: Class: Operator Overloading (<< and >>)
	Slide 10: Class: Operator Overloading (<< and >>)
	Slide 11: Class: Operator Overloading (<< and >>)
	Slide 12: Class: Operator Overloading (<< and >>)
	Slide 13: Class: Operator Overloading (<< and >>)
	Slide 14: Class: Operator Overloading (<< and >>)
	Slide 15: Class: Operator Overloading
	Slide 16: Thanks a lot

