Data Structures and Object Oriented Programming

Lecture 12

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Operator Overloading
Some More Binary Operators

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int x, y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
X = a; } Will it give me any error?
y = b;
}

}s

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int x, y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;

{ return 0;
X = a; } Will it give me any error?
y = b;

} V Member-wise copy

}s

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;

{ return 0;
X= new int } Will it give me any error?
X = a;

y= new int;
y = b;

}s

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
{ return 0;
X= new int } Will it give me any error?
X = aj;
y= new int;
y = b;

Be careful with member-wise copy

* If member data is a pointer, the
pointer address is copied

 this could be disastrous

X

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
{ return 0;
X= new int } Will it give me any error?
X = aj;
y= new int;
y 7 s FOO

}s

——————————
«—
-

———————————

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
{ return 0;
X= new int } Will it give me any error?
X = aj;
y= new int;
y 7 s FOO

}s

Sy

———————————

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
{ return 0;
X= new int } Will it give me any error?
X = a;
y= new int;
y = b;
} FOO BAR

}s

,---------_

g ————————
-—
-—

N -

——————————————————————

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
{ return 0;
X= new int } Will it give me any error?
X = a;
y= new int;
y = b;
} FOO BAR

———————————

}s

- ———— - —
-
- ————— -

——————————————————————

Assignment (=) Operator

* Consider this example:

class myclass { int main() {
int *x, *y; myclass foo(1l, 1);
public: myclass bar(0, 0);
myclass(int a, int b) bar = foo0;
{ return 0;
X= new int } Will it give me any error?
X = aj;
y= new int;
y = b;

}s

- ————— -

Sy

0 Memory leak

~

Solution = Assignment Operator Overloading

* Consider this example:

class myclass { myclass& operator= (myclass& paraml, myclass&
. * o param2)
int *x, *y; ‘

public:

* araml.x) = * aram2.Xx ;
myclass(int a, int b) (p) - (p)

*(paraml.y) = *(param2.y);

{ return paraml;
X= hew int }
X = a;
y= new int; . .
y = b; int main() {

myclass foo(1l, 1);
) myclass bar(@, 0);

friend myclass& operator= (myclass& bar = f0?3
paraml, myclass& param2); return 0;

}s

Solution = Assignment Operator Overloading

Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{
X= hew int
X = a;
y= new int;
y = b;

¥

friend myclass& operators=
paraml, myclass& param2);

}s

(myclass&

myclass& operator= (myclass& paraml, myclass&
param2)
{

*(paraml.x) = *(param2.Xx);

*(paraml.y) = *(param2.y);

return paraml;

If your object has a pointer to

.) memory that was dynamically
int main() {

myclass foo(1l, 1);
myclass bar(0, 0);
bar = foo;
return 0;

allocated previously, e.g., in the
constructor, you will need an
overloaded assignment operator

Solution = Assignment Operator Overloading

D |
e Consider this examp|e: Why taking reference parameters?
class myclass { mycla;;& operator+ (myclass& paraml, myclass&
int *x, *y; ?aram

public:

' : *(paraml.x) = *(param2.x);
myclass(int a, int b) () = *()

*(paraml.y) = *(param2.y);

{ return paraml;
X= hew int }
X = a;
y= new int;

int main() {

y =0 myclass foo(1l, 1);
) myclass bar(@, 0);
friend myclass& operator+ (myclass& bar = foo;
return 9;

paraml, myclass& param2);

}s

Solution = Assignment Operator Overloading

e Consider this examp|e: Why taking reference parameters?

Avoid Copy Constructor]

myclass& operator+ (myclass& paraml, myclass&
param2)

{

class myclass {
int *x, *y;
public:

* araml.x = * aram2.Xx ;
myclass(int a, int b) (p) = *(p)

*(paraml.y) = *(param2.y);

{ return paraml;
X= new int }
X = a;
y= hew int; . .
y = b; int main() {
’ myclass foo(1, 1);
J myclass bar(@, 0);
friend myclass& operator+ (myclass& bar = foo;
return 0,

paraml, myclass& param2);

}s

Solution = Assignment Operator Overloading

* Consider this example:

class myclass { myclass& operator+ (myclass& paraml, myclass&
. * o param2)
int *x, *y; ‘

public:

* araml.x) = * aram2.Xx ;
myclass(int a, int b) (p) = *(p)

*(paraml.y) = *(param2.y);

{ return papraml;
X= new 1int } Why returning param1?
X = a;
y= new int; . .
- b: int main() {
y -) .
myclass foo(1l, 1);
) myclass bar(@, 0);
friend myclass& operator+ (myclass& bar = foo;
return 9;

paraml, myclass& param2);

}s

Solution = Assignment Operator Overloading

* Consider this example:

class myclass { myclass& operator+ (myclass& paraml, myclass&
int *x, *y; ?aramZ)
public:)) *(paraml.x) = *(param2.Xx);
{ return papraml;
x= new 1int } Why returning param1?
X = a;
y= new int; | , | baz=bar=foo; 222 |
y = b; int main() {
? myclass foo(1, 1);
} myclass bar(0, 0);
friend myclass& operator+ (myclass& bar = foo;
return 9;

paraml, myclass& param2);

}s

Solution = Assignment Operator Overloading

* Another complex example:
myclass& operator+ (myclass& pl, myclass& p2)

{
class myclass { delete [] pl.x;
int *X, *y; dElete [] pl.y;
public: pl.x= new int [sizeof(p2.x)];
myclass(int sizel, int size2) pl.y= new int [sizeof(p2.y)];
{ .
X= new int [sizel] // Memberwlse copy ///
y= new int [size2]; \ return pl;
}

int main
friend myclass operator+ (myclass& pl, t main()

myclass& p2); {
myclass foo(10, 10);
}s myclass bar(5, 5);
bar = foo;
return 0;

Solution = Assignment Operator Overloading

* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)

class myclass { {
1t =X, s delete [] pl.x;

public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];
{

. . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]

y= new int [sizel];) return pl;
} ° °
1nt main
friend myclass operator+ (myclass& pl, t main()
myclass& p2); {

myclass foo(10, 10);

}; foo = foo; Self Assignment
return 0;

Solution = Assignment Operator Overloading

* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)

class myclass { {
int *x, *y; delete [] pl.x;
public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];
{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, ?nt main()
myclass& p2);
myclass foo(10, 10);
return 0;
)

Solution = Assignment Operator Overloading

* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)
class myclass { {
int *x, *y; delete [] pl.X;

public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];

{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, int main() FOO
myclass& p2); { pmmm——————— .
myclass foo(10, 10); (X v \
}; foo = foo; i l 1 i
return 0; E :
} | (10] | [10] i

Solution = Assignment Operator Overloading

* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)
class myclass { {
int *x, *y; delete [] pl.X;

public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];

{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, int main() FOO
myclass& p2); { pmmm——————— .
myclass foo(10, 10); (X v \
}; foo = foo; i l 1 i
return 0; E :
} | (10] | [10] i

Solution = Assignment Operator Overloading

* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)
class myclass { {
int *x, *y; delete [] pl.X;

public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];

{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, int main() FOO
myclass& p2); { pmmm——————— .
myclass foo(10, 10); (X v \
}; foo = foo; i l 1 i
return 0; E :
) @

Solution = Assignment Operator Overloading

* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)
class myclass { {
int *x, *y; delete [] pl.X;

public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];

{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, int main() FOO
myclass& p2); { pmmm——————— .
myclass foo(10, 10); (X v \
}; foo = foo; i l 1 i
return 0; E :
) @

Solution = Assignment Operator Overloading

I I
* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)

class myclass { {
int *x, *y; delete [] pl.x;
public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];
{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, ?nt main() FOO
myclass& p2); e ————— .
/e P2) myclass foo(10, 10); (X v \
}; foo = foo; i l 1 |
return 0; E i
} a |

———————————

Solution = Assignment Operator Overloading

I I
* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)

class myclass { {
int *x, *y; delete [] pl.x;
public: .~ delete [] pl.y;
myclass(int sizel, int size2) 0l.x= new int [sizeof(p2.x)];
{ . . pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, ?nt main() FOO
myclass& p2); e ————— .
/e P2) myclass foo(10, 10); (X v \
}; foo = foo; i l 1 |
return 0; E i
} a |

———————————

Solution = Assignment Operator Overloading

I I
* Another complex example:

myclass& operator+ (myclass& pl, myclass& p2)

class myclass { {
int *x, *y; delete [] pl.x;
public: delete [] pl.y; ——
myclass(int sizel, int size2) 01.x= new int [sizeof(p2.x)]1;
{ .] pl.y= new int [sizeof(p2.y)];
X= new int [sizel]
y= new int [sizel];) return pl;
} ° °
friend myclass operator+ (myclass& pl, ?nt main()
myclass& p2); < 0\ emeem————
a P2) myclass foo(10, 10); v
}s foo = foo; 7

return 0;

—
—
N

™

Solution = Assignment Operator Overloading

I -
e Another complex example: myclass& operator+ (myclass& pl, myclass& p2)
{
if(&pl =! &p2)
class myclass { {
int *x, *y; delete [] pl.x;
public: delete [] pl.y;
myclass(int sizel, int size2) pl.x= new int [sizeof(p2.x)];
{ pl.y= new int [sizeof(p2.y)];
X= new int [sizel] }
y= new int [sizel]; } return pl;
}

int main
friend myclass operator+ (myclass& pl, t main()

myclass& p2); {
myclass foo(10, 10);

s foo = foo;
return 0;

Overloading “+=" operator

 Example:

myclass& operator+= (myclass& pl, myclass&

class myclass { ?2)
ubf;:'X, Y pl.x= pl.X + p2.X;
P ' . . pl.y= pl.y + p2.y;
myclass(int a, int b)
{ return pl;
X= a; }
y= b;
} int main()
friend myclass operator+= (myclass& pl, {
myclass& p2); myclass foo(10, 10);
. foo += foo0;
¥ return 0;
}

Other binary operators

* The operators

can be overloaded in a very similar fashion

Thanks a lot

If you are taking a Nap, wake up........ Lecture Over

	Slide 1
	Slide 2
	Slide 3: Assignment (=) Operator
	Slide 4: Assignment (=) Operator
	Slide 5: Assignment (=) Operator
	Slide 6: Assignment (=) Operator
	Slide 7: Assignment (=) Operator
	Slide 8: Assignment (=) Operator
	Slide 9: Assignment (=) Operator
	Slide 10: Assignment (=) Operator
	Slide 11: Assignment (=) Operator
	Slide 12: Solution = Assignment Operator Overloading
	Slide 13: Solution = Assignment Operator Overloading
	Slide 14: Solution = Assignment Operator Overloading
	Slide 15: Solution = Assignment Operator Overloading
	Slide 16: Solution = Assignment Operator Overloading
	Slide 17: Solution = Assignment Operator Overloading
	Slide 18: Solution = Assignment Operator Overloading
	Slide 19: Solution = Assignment Operator Overloading
	Slide 20: Solution = Assignment Operator Overloading
	Slide 21: Solution = Assignment Operator Overloading
	Slide 22: Solution = Assignment Operator Overloading
	Slide 23: Solution = Assignment Operator Overloading
	Slide 24: Solution = Assignment Operator Overloading
	Slide 25: Solution = Assignment Operator Overloading
	Slide 26: Solution = Assignment Operator Overloading
	Slide 27: Solution = Assignment Operator Overloading
	Slide 28: Solution = Assignment Operator Overloading
	Slide 29: Overloading “+=” operator
	Slide 30: Other binary operators
	Slide 31: Thanks a lot

