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Operator Overloading
Some More Binary Operators



Assignment (=) Operator

• Consider this example:

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x = a;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?



Assignment (=) Operator

• Consider this example:

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x = a;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

Member-wise copy 



Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?



Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

Be careful with member-wise copy 
• If member data is a pointer, the 

pointer address is copied 
• this could be disastrous
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Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator= (myclass& param1, myclass&
param2) 
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator= (myclass&
param1, myclass& param2);
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baz=bar=foo; ???



Solution = Assignment Operator Overloading

• Another complex  example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size2];

}

};

int main() 
{

myclass foo(10, 10);
myclass bar(5, 5);
bar = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2) 
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

// Memberwise copy ///

}

friend myclass operator+ (myclass& p1, 
myclass& p2);

return p1;
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Solution = Assignment Operator Overloading

• Another complex  example:
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Overloading “+=” operator

• Example:

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x= a; 
y= b;

}

};

int main() 
{

myclass foo(10, 10);
foo += foo;
return 0;

}

myclass& operator+= (myclass& p1, myclass&
p2) 
{

p1.x= p1.x + p2.x;
p1.y= p1.y + p2.y;

return p1;
}

friend myclass operator+= (myclass& p1, 
myclass& p2);



Other binary operators

• The operators 

-=, /=, *=, |=, %=, &=, ^=, <<=, >>=, !=

can be overloaded in a very similar fashion



Thanks a lot

If you are taking a Nap, wake up........Lecture Over
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