
Data Structures and Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 12

Dr. Naveed Anwar Bhatti

Operator Overloading
Some More Binary Operators

Assignment (=) Operator

• Consider this example:

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x = a;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

Assignment (=) Operator

• Consider this example:

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x = a;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

Member-wise copy

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

Be careful with member-wise copy
• If member data is a pointer, the

pointer address is copied
• this could be disastrous

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

FOO

x y

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

FOO

1 1

x y

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

FOO BAR

1 1

x y x y

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

FOO BAR

1 1

x y

0 0

x y

Assignment (=) Operator

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

} Will it give me any error?

FOO BAR

1 1

x y

0 0

x y

Memory leak

Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator= (myclass& param1, myclass&
param2)
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator= (myclass&
param1, myclass& param2);

Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator= (myclass& param1, myclass&
param2)
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator= (myclass&
param1, myclass& param2);

If your object has a pointer to
memory that was dynamically
allocated previously, e.g., in the
constructor, you will need an
overloaded assignment operator

Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator+ (myclass& param1, myclass&
param2)
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator+ (myclass&
param1, myclass& param2);

Why taking reference parameters?

Avoid Copy Constructor

Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator+ (myclass& param1, myclass&
param2)
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator+ (myclass&
param1, myclass& param2);

Why taking reference parameters?

Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator+ (myclass& param1, myclass&
param2)
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator+ (myclass&
param1, myclass& param2);

Why returning param1?

Solution = Assignment Operator Overloading

• Consider this example:

class myclass {
int *x, *y;

public:
myclass(int a, int b)
{

x= new int
x = a;
y= new int;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(0, 0);
bar = foo;
return 0;

}

myclass& operator+ (myclass& param1, myclass&
param2)
{

*(param1.x) = *(param2.x);
*(param1.y) = *(param2.y);
return param1;

}

friend myclass& operator+ (myclass&
param1, myclass& param2);

Why returning param1?

baz=bar=foo; ???

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size2];

}

};

int main()
{

myclass foo(10, 10);
myclass bar(5, 5);
bar = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

// Memberwise copy ///

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

Self Assignment

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

Self Assignment

Any Problem???

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

[10] [10]

x y

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

[10] [10]

x y

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

[10]

x y

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

[10]

x y

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

x y

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

x y

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

FOO

x y
??

Solution = Assignment Operator Overloading

• Another complex example:

class myclass {
int *x, *y;

public:
myclass(int size1, int size2)
{

x= new int [size1]
y= new int [size1];

}

};

int main()
{

myclass foo(10, 10);
foo = foo;
return 0;

}

myclass& operator+ (myclass& p1, myclass& p2)
{

if(&p1 =! &p2)
{

delete [] p1.x;
delete [] p1.y;
p1.x= new int [sizeof(p2.x)];
p1.y= new int [sizeof(p2.y)];

}

}

friend myclass operator+ (myclass& p1,
myclass& p2);

return p1;

Overloading “+=” operator

• Example:

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x= a;
y= b;

}

};

int main()
{

myclass foo(10, 10);
foo += foo;
return 0;

}

myclass& operator+= (myclass& p1, myclass&
p2)
{

p1.x= p1.x + p2.x;
p1.y= p1.y + p2.y;

return p1;
}

friend myclass operator+= (myclass& p1,
myclass& p2);

Other binary operators

• The operators

-=, /=, *=, |=, %=, &=, ^=, <<=, >>=, !=

can be overloaded in a very similar fashion

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Assignment (=) Operator
	Slide 4: Assignment (=) Operator
	Slide 5: Assignment (=) Operator
	Slide 6: Assignment (=) Operator
	Slide 7: Assignment (=) Operator
	Slide 8: Assignment (=) Operator
	Slide 9: Assignment (=) Operator
	Slide 10: Assignment (=) Operator
	Slide 11: Assignment (=) Operator
	Slide 12: Solution = Assignment Operator Overloading
	Slide 13: Solution = Assignment Operator Overloading
	Slide 14: Solution = Assignment Operator Overloading
	Slide 15: Solution = Assignment Operator Overloading
	Slide 16: Solution = Assignment Operator Overloading
	Slide 17: Solution = Assignment Operator Overloading
	Slide 18: Solution = Assignment Operator Overloading
	Slide 19: Solution = Assignment Operator Overloading
	Slide 20: Solution = Assignment Operator Overloading
	Slide 21: Solution = Assignment Operator Overloading
	Slide 22: Solution = Assignment Operator Overloading
	Slide 23: Solution = Assignment Operator Overloading
	Slide 24: Solution = Assignment Operator Overloading
	Slide 25: Solution = Assignment Operator Overloading
	Slide 26: Solution = Assignment Operator Overloading
	Slide 27: Solution = Assignment Operator Overloading
	Slide 28: Solution = Assignment Operator Overloading
	Slide 29: Overloading “+=” operator
	Slide 30: Other binary operators
	Slide 31: Thanks a lot

