Object Oriented Programming

Lecture 11

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Operator Overloading

Operator Overloading

* Operator Basic

o Operator: An operator is a symbol that tells the compiler to perform specific
mathematical, logical manipulations, or some other special operation.

o Two Types: Binary Operator and Unary Operator

Operator Overloading

* Operator Basic

o Operator: An operator is a symbol that tells the compiler to perform specific
mathematical, logical manipulations, or some other special operation.

o Two Types: Binary Operator and Unary Operator

* Operator Overloading

o Refers to the multiple definitions of an operator
o Arithmetic operator such as + and / are already overloaded in C/C++ for different
built-in types.

For example

The compiler probably calls the correct overloaded low level function
for addition i.e:

// for integer addition:

operator+ (int a, int b)

// for float addition:
operator+ (float a, float b)

Operator Overloading

* Why we need it?

o To make operators, i.e., +, -, <, >, etc., work for user defined data types/classes

Operator Overloading

* Why we need it?

o To make operators, i.e., +, -, <, >, etc., work for user defined data types/classes

e For example? class myclass { int main() {
int x, y; myclass foo(1l, 1);
public: myclass bar(l, 1);
myclass(int a, int b) myclass result;
{ result = foo + bar; Error
X = a; return 0;
y = b; }
}
}s

Class: Operator Overloading

* |nstead we have to do something like this?

class myclass {

int x, y;
public: . .
myclass(int a, int b) int main() {
{ myclass foo(1l, 1);
X = a; myclass bar(1l, 1);
y = b; myclass result;
} result = foo.add(bar); CoOrrect
myclass add(myclass a) } return 0;
{

myclass temp;
temp.Xx= X + a.X

temp.y=y + a.y;
return temp;

}s

Operator Overloading

* |f the mathematical expression is big:

o Converting it to C++ code will involve complicated mixture of function calls
o Lessreadable
o Chances of human mistakes are very high

o Code produced is very hard to maintain

Solution! = Operator Overloading

e Example

class myclass {
public:
int x, y;
myclass() {};
myclass(int, int);

¥;

myclass::myclass(int a, int b)

1

y = b;

Solution! = Operator Overloading

e Example

class myclass {
public:
int x, y;

myclass() {};

myclass(int, int);

¥
myclass::myclass{(int a, int b)
1
= a3
= b;
¥

myclass operator+ {myclass paraml, myclass param2) {
myclass temp;
temp.x = paraml.x + paraml.x;
temp.y = paraml.y + paraml.y;
return temp;

Solution! = Operator Overloading

D -
* Example
class myclass {
public

int x, y;

myclass() {};

myclass(int, int);

¥
myclass::myclass{(int a, int b)
1
v - - To overload operator +,
y = ’ the name of the operator
) - function is operator+
myclass operator+ {myclass paraml, myclass param2) {
myclass temp;
temp.x = paraml.x + paraml.x;
temp.y = paraml.y + paraml.y;

return temp;

Solution! = Operator Overloading

Example
class myclass {
public:

int x, y;
myclass() {};
myclass(int, int);

¥;

myclass::myclass{(int a, int b)

1
To overload operator +,
the name of the operator

! Y function is operator+

temp.x = paraml.x + paraml.x;
temp.y = paraml.y + paraml.y;
return temp;

int main() {

myclass foo(3, 1);
myclass bar(l, 2);
yclass result;

result = foo + bar;
cout << result.x << ',

return @;

<< result.y <<

&4 Microsoft Visual Studio Debug Console

li’l-_, 3

"\n'j

Solution! = Operator Overloading

I I
* Example
class myclass { int main() {
public: myclass foo(3, 1);
int x, y; myclass bar(l, 2);
myclass() {}; yvclass result;

result = foo + bar;
cout << result.x << '," << result.y << "\n';

return @;

myclass(int, intEESilQaRa =R\ 4CRI R
ks to facilitate assignments
and cascaded expressions

To overload operator +,
the name of the operator

function is operator+

[&8] Microsoft Visual Studio Debug Console

temp.x = paraml.x + param

paraml.y + param

l_l_
i
=
L=
=
1]

return temp;

Solution! = Operator Overloading

e Example

class myclass {

int main() {
No data encapsulation myclass foo(3, 1);

public:
int x, y; myclass bar(l, 2);
myclass() {}; myclass result;
UYSELLISLIPIRRL Return type is myclass so as result = foo + bar; .
}; to facilitate assignments cout << result.x << '," << result.y << "\n';

. return @;
and cascaded expressions !

myclass::myclass{int

1
To overload operator +,
the name of the operator
y function is operator+
. . _] [€%] Microsoft Visual Studio Debug Console
myclass operator+ (Wy:_555 paraml, myclass :5“5“2} {

myclass temp;

-

temp.x = paraml.x + par

temp.y = paraml.y + par
return temp;

Operator Overloading

Two other methods which keeps “Data Encapsulation”:

e Member Function
* Friend Function

Operator Overloading

Two other methods which keeps “Data Encapsulation”:

e Member Function
* Friend Function

Incase of :

Member Function result

foo + bar; =P result = foo.operator+ (bar)

Friend Function result

foo + bar; =P result = operator+ (foo, bar)

Operator Overloading (using Member Function)

* Example

class myclass {
int x, y;
public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

¥
myclass::myclass(int a, int b)
{
X = a;
y = b;
}

void myclass::print() {
cout << x << '," <<y << '"\n';

}

Operator Overloading (using Member Function)

* Example

class myclass {
int x, y;
public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

}s

myclass::myclass(int a, int b)
{

X = a;

y = b;
}

void myclass::print() {

cout << x << ', <<y << "\n';

}

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = X + param2.Xx;
temp.y =y + param2.y;
return temp;

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = foo + bar;
result.print();
return 0;

result = foo.operator+(bar)

t4 Microsoft Visual Studio Debug Console

4,3

Operator Overloading (using Member Function)

* Example

class myclass {
int x, y;
public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

s

myclass::myclass(int a, int b)
{

X = a;

y = b;
}

void myclass::print() {

cout << x << ', <<y << "\n';

¥

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = X + param2.Xx;
temp.y =y + param2.y;
return temp;

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;

result = foo.operator+(bar)

result = 12 + bar:
result.print();
return 0;

t4 Microsoft Visual Studio Debug Console

§4,3

Operator Overloading (using Member Function)

* Example

class myclass {
int x, y;
public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

}s

myclass::myclass(int a, int b)
{

X = a;

y = b;
}

void myclass::print() {

cout << x << ', <<y << "\n';

}

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = X + param2.Xx;
temp.y =y + param2.y;
return temp;

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = 12 + bar; Frror
result.print();
return 0;

result = foo.operator+(bar)

t4 Microsoft Visual Studio Debug Console

4,3

Operator Overloading (using Member Function)

* Example

class myclass {
int x, y;
public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

s

myclass::myclass(int a, int b)

{

X = a;
y = b;
t

void myclass::print() {

cout << x << ', <<y << "\n';

¥

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = X + param2.Xx;
temp.y =y + param2.y;
return temp;

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = 12 + bar; Frror
result.print();
return 0;

} result = 12.operator+(bar)
NOT POSSIBLE

result = foo.operator+(bar)

&4 Microsoft Visual Studio Debug Console

T

Operator Overloading (using Friend Function)

SOLUTION

Operator Overloading (using Friend Function)

D I
* Example
myclass operator+ (myclass paraml, myclass param2) {

class myclass { myclass temp;

int x, y; temp.x = paraml.x + param2.x;
public: temp.y = pa?aml.y + param2.y;

myclass() {}; return temp;

myclass(int, int); }

friend myclass operator+ (myclass, myclass);
void print();

}; int main() {
myclass foo(3, 1);
myclass::myclass(int a, int b) myclass bar(1l, 2);
{ myclass result;
X = a; result = foo + bar;
y = b; result.print();
} return 0;
}

void myclass::print() {

cout << x << '," <<y << "\n' —_— . I -
€5 Microsoft Visual Studio Debug Console

}

4,3

Operator Overloading (using Friend Function)

D -
* Example
F) myclass operator+ (myclass paraml, myclass param2) {
class myclass { myclass temp;
int x, y; temp.x = paraml.x + param2.x;

public: temp.y = paraml.y + param2.y,
myclass() {}; return temp;

}; int main() {
myclass foo(3, 1);
myclass::myclass(int a, int b) myclass bar(1l, 2);
{ myclass result;
X = a; result = foo + bar;
y = b; result.print();
} return 0;
}

void myclass::print() {

cout << x << ', <« << "\n'; —_— . i -
} ’ y ’ €5 Microsoft Visual Studio Debug Console

4,3

Operator Overloading (using Friend Function)

* Example
F) myclass operator+ (myclass paraml, myclass param2) {
class myclass { myclass temp;
int x, y; temp.x = paraml.x + param2.x;
public: > temp.y = paraml.y + param2.y;
myclass() {}; return temp;

I int main() {
myclass foo(3, 1); result = operator+(foo,bar)

myclass::myclass(int a, int b) myclass bar(1l, 2);
{ myclass result;

X =9 result = foo + bar;

y = b result.print();
} return 0;

}

void myclass::print() {
cout << x << '," <<y << "\n'; __— - I -
} €5 Microsoft Visual Studio Debug Console

4,3

Operator Overloading (using Friend Function)

D -
* Example
F) myclass operator+ (int paraml, myclass param2) {
class myclass { myclass temp;
int x, y; temp.x = paraml + param2.X;
public: > temp.y = paraml + param2.y;
myclass() {}; return temp;

myclass(int, int);
friend myclass operator+ (myclass, myclass);
void print();

}; int main() {
myclass foo(3, 1);

myclass::myclass(int a, int b) myclass bar(1l, 2);
{ myclass result;

X = a; result = 12 + bar; Correct

y = b; result.print();
} return 0;

}

void myclass::print() {

cout << x << << << "\n'; —_— . i -
’ y ’ €5 Microsoft Visual Studio Debug Console

}

4,3

Operator Overloading (using Friend Function)

I -
e Example |
myclass operator+ (int paraml, myclass param2) {
class myclass { myclass temp;
i . temp.x = paraml +_oog
int x, y;

UbliC' temp.y = par‘am H M o ”
P ' return temp; In friend function, the “operator
myclass() {}; } function must have at least one

myclass(int, int); p |

friend myclass operator+ (myclass, myclass); paﬁnnetero type class (user
}; int main() { . o _

nyclass F0o(3 Following is an error:

myclass::myclass(int a, int b) myclass bar(1l int operator + (int, int);
{ myclass result)

X = a result = 12 + bar; (COrrect

y = b; result.print();
} return 0;

}

void myclass::print() {
cout << x << ', <« << "\n’) . i -
’ y le4] Microsoft Visual Studio Debug Console

¥

Operator Overloading

Overloadable Operators:

- / % A
& -~ | =
< > <= >= —-

<< >> == 1= && |

+= = /= %= A= &=
= = <<= >>=] 0

> " new new [] delete delete []

Operator overloading

* List of operators that can’t be overloaded:

K s 7 H HH

* Reason: They take name, rather than value in their argument except
for ?:

& ?2is the only ternary operator in C++ and can’t be overloaded

Operator overloading

* The precedence of an operator is NOT affected due to
overloading

* Example:
e foo*bar+baz
*baz+bar*foo

* both yield the same answer

Operator overloading

* Associativity is NOT changed due to overloading

* Following arithmetic expression always is evaluated
from left to right:

Example: foo + bar + baz
——————————————————————

Operator overloading

* Unary operators and assignment operator are right
associative, e.g:

* foo=bar=baz is same as foo=(bar=baz)

* All other operators are left associative:

e foo+bar+baz is same as

* (foot+bar) +baz

Operator overloading

* Always write code representing the operator

* Example:

* Adding subtraction code inside the + operator will create
chaos

Operator overloading

 Creating a new operator is a syntax error (whether
unary, binary or ternary)

- You cannot create S

Class: Operator Overloading

Exercise: Overload ‘ *’ operator for same class using both methods,
i.e., Friend Function and Member Function.

Exercise: Overload ‘ -’ operator for same class using both methods, i.e.,
Friend Function and Member Function.

Exercise: Overload ‘ /’ operator for same class using both methods,
i.e., Friend Function and Member Function.

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Operator Overloading
	Slide 4: Operator Overloading
	Slide 5: For example
	Slide 6: Operator Overloading
	Slide 7: Operator Overloading
	Slide 8: Class: Operator Overloading
	Slide 9: Operator Overloading
	Slide 10: Solution! = Operator Overloading
	Slide 11: Solution! = Operator Overloading
	Slide 12: Solution! = Operator Overloading
	Slide 13: Solution! = Operator Overloading
	Slide 14: Solution! = Operator Overloading
	Slide 15: Solution! = Operator Overloading
	Slide 16: Operator Overloading
	Slide 17: Operator Overloading
	Slide 18: Operator Overloading (using Member Function)
	Slide 19: Operator Overloading (using Member Function)
	Slide 20: Operator Overloading (using Member Function)
	Slide 21: Operator Overloading (using Member Function)
	Slide 22: Operator Overloading (using Member Function)
	Slide 23: Operator Overloading (using Friend Function)
	Slide 24: Operator Overloading (using Friend Function)
	Slide 25: Operator Overloading (using Friend Function)
	Slide 26: Operator Overloading (using Friend Function)
	Slide 27: Operator Overloading (using Friend Function)
	Slide 28: Operator Overloading (using Friend Function)
	Slide 29: Operator Overloading
	Slide 30: Operator overloading
	Slide 31: Operator overloading
	Slide 32: Operator overloading
	Slide 33: Operator overloading
	Slide 34: Operator overloading
	Slide 35: Operator overloading
	Slide 36: Class: Operator Overloading
	Slide 37: Thanks a lot

