
Object Oriented Programming 

Webpage: naveedanwarbhatti.github.io

Lecture 11

Dr. Naveed Anwar Bhatti



Operator Overloading



Operator Overloading

• Operator Basic

o Operator: An operator is a symbol that tells the compiler to perform specific 
mathematical, logical manipulations, or some other special operation.

o Two Types: Binary Operator and Unary Operator



Operator Overloading

• Operator Basic

o Operator: An operator is a symbol that tells the compiler to perform specific 
mathematical, logical manipulations, or some other special operation.

o Two Types: Binary Operator and Unary Operator

• Operator Overloading

o Refers to the multiple definitions of an operator
o Arithmetic operator such as + and / are already overloaded in C/C++ for different 

built-in types.



For example

The compiler probably calls the correct overloaded low level function 
for addition i.e:

// for integer addition:

operator+(int a, int b)

// for float addition:

operator+(float a, float b)



Operator Overloading

• Why we need it?

o To make operators, i.e., +, -, <, >, etc., work for user defined data types/classes



Operator Overloading

• Why we need it?

o To make operators, i.e., +, -, <, >, etc., work for user defined data types/classes

• For example? class myclass {
int x, y;

public:
myclass(int a, int b)
{

x = a;
y = b;

}

};

int main() {
myclass foo(1, 1);
myclass bar(1, 1);
myclass result;
result = foo + bar;
return 0;

}

Error



Class: Operator Overloading

• Instead we have to do something like this?

class myclass {
int x, y;

public:
myclass(int a, int b)
{

x = a;
y = b;

}
myclass add(myclass a)
{

myclass temp;
temp.x= x + a.x
temp.y= y + a.y;
return temp;

}
};

int main() {
myclass foo(1, 1);
myclass bar(1, 1);
myclass result;
result = foo.add(bar);
return 0;

}

Correct



Operator Overloading

• If the mathematical expression is big:

o Converting it to C++ code will involve complicated  mixture of function calls

o Less readable

o Chances of human mistakes are very high

o Code produced is very hard to maintain



Solution! = Operator Overloading

• Example



Solution! = Operator Overloading

• Example



Solution! = Operator Overloading

• Example

To overload operator +, 
the name of the operator
function is operator+



Solution! = Operator Overloading

• Example

To overload operator +, 
the name of the operator
function is operator+



Solution! = Operator Overloading

• Example

To overload operator +, 
the name of the operator
function is operator+

Return type is myclass so as 
to facilitate assignments 

and cascaded expressions 



Solution! = Operator Overloading

• Example

No data encapsulation

To overload operator +, 
the name of the operator
function is operator+

Return type is myclass so as 
to facilitate assignments 

and cascaded expressions 



Operator Overloading

Two other methods which keeps “Data Encapsulation”:

• Member Function
• Friend Function



Operator Overloading

Two other methods which keeps “Data Encapsulation”:

• Member Function
• Friend Function

Incase of :

result = foo + bar; result = operator+ (foo, bar)Friend Function

result = foo + bar; result = foo.operator+ (bar)Member Function



Operator Overloading (using Member Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}



Operator Overloading (using Member Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = foo + bar;
result.print();
return 0;

}

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = x + param2.x;
temp.y = y + param2.y;
return temp;

}

result = foo.operator+(bar)



Operator Overloading (using Member Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;

result = 12 + bar;
result.print();
return 0;

}

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = x + param2.x;
temp.y = y + param2.y;
return temp;

}

result = foo.operator+(bar)

Now what?



Operator Overloading (using Member Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = 12 + bar;
result.print();
return 0;

}

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = x + param2.x;
temp.y = y + param2.y;
return temp;

}

result = foo.operator+(bar)

Error



Operator Overloading (using Member Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
myclass operator+ (myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = 12 + bar;
result.print();
return 0;

}

myclass myclass::operator+ (myclass param2) {
myclass temp;
temp.x = x + param2.x;
temp.y = y + param2.y;
return temp;

}

result = foo.operator+(bar)

Error

result = 12.operator+(bar)

NOT POSSIBLE



Operator Overloading (using Friend Function)

SOLUTION



Operator Overloading (using Friend Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend myclass operator+ (myclass, myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = foo + bar;
result.print();
return 0;

}

myclass operator+ (myclass param1, myclass param2) {
myclass temp;
temp.x = param1.x + param2.x;
temp.y = param1.y + param2.y;
return temp;

}



Operator Overloading (using Friend Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend myclass operator+ (myclass, myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = foo + bar;
result.print();
return 0;

}

myclass operator+ (myclass param1, myclass param2) {
myclass temp;
temp.x = param1.x + param2.x;
temp.y = param1.y + param2.y;
return temp;

}



Operator Overloading (using Friend Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend myclass operator+ (myclass, myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = foo + bar;
result.print();
return 0;

}

myclass operator+ (myclass param1, myclass param2) {
myclass temp;
temp.x = param1.x + param2.x;
temp.y = param1.y + param2.y;
return temp;

}

result = operator+(foo,bar)



Operator Overloading (using Friend Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend myclass operator+ (myclass, myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = 12 + bar;
result.print();
return 0;

}

myclass operator+ (int param1, myclass param2) {
myclass temp;
temp.x = param1 + param2.x;
temp.y = param1 + param2.y;
return temp;

}

Correct



Operator Overloading (using Friend Function)

• Example

class myclass {
int x, y;

public:
myclass() {};
myclass(int, int);
friend myclass operator+ (myclass, myclass);
void print();

};

myclass::myclass(int a, int b)
{

x = a;
y = b;

}

void myclass::print() {
cout << x << ',' << y << '\n';

}

int main() {
myclass foo(3, 1);
myclass bar(1, 2);
myclass result;
result = 12 + bar;
result.print();
return 0;

}

myclass operator+ (int param1, myclass param2) {
myclass temp;
temp.x = param1 + param2.x;
temp.y = param1 + param2.y;
return temp;

}

Correct

In friend function, the “operator” 
function must have at least one 
parameter of type class (user 
defined type)

• Following is an error:

int operator + (int, int);



Operator Overloading

Overloadable Operators:



Operator overloading

• List of operators that can’t be overloaded:

• Reason: They take name, rather than value in their argument except 

for ?:

❖ ?: is the only ternary operator in C++ and can’t be overloaded



Operator overloading

• The precedence of an operator is NOT affected due to 
overloading

• Example:

• foo*bar+baz

• baz+bar*foo

• both yield the same answer



Operator overloading

•Associativity is NOT changed due to overloading

• Following arithmetic expression always is evaluated 
from left to right:

Example: foo + bar + baz



Operator overloading

•Unary operators and assignment operator are right 
associative, e.g:

• foo=bar=baz is same as foo=(bar=baz)

•All other operators are left associative:

• foo+bar+baz is same as

• (foo+bar)+baz



Operator overloading

•Always write code representing the operator

• Example:

• Adding subtraction code inside the + operator will create 
chaos



Operator overloading

•Creating a new operator is a syntax error (whether 
unary, binary or ternary)

• You cannot create $



Class: Operator Overloading

Exercise: Overload ‘ * ’ operator for same class using both methods, 
i.e., Friend Function and Member Function.

Exercise: Overload ‘ - ’ operator for same class using both methods, i.e., 
Friend Function and Member Function.

Exercise: Overload ‘ / ’ operator for same class using both methods, 
i.e., Friend Function and Member Function.



Thanks a lot

If you are taking a Nap, wake up........Lecture Over


	Slide 1
	Slide 2
	Slide 3: Operator Overloading
	Slide 4: Operator Overloading
	Slide 5: For example
	Slide 6: Operator Overloading
	Slide 7: Operator Overloading
	Slide 8: Class: Operator Overloading
	Slide 9: Operator Overloading
	Slide 10: Solution! = Operator Overloading
	Slide 11: Solution! = Operator Overloading
	Slide 12: Solution! = Operator Overloading
	Slide 13: Solution! = Operator Overloading
	Slide 14: Solution! = Operator Overloading
	Slide 15: Solution! = Operator Overloading
	Slide 16: Operator Overloading
	Slide 17: Operator Overloading
	Slide 18: Operator Overloading (using Member Function)
	Slide 19: Operator Overloading (using Member Function)
	Slide 20: Operator Overloading (using Member Function)
	Slide 21: Operator Overloading (using Member Function)
	Slide 22: Operator Overloading (using Member Function)
	Slide 23: Operator Overloading (using Friend Function)
	Slide 24: Operator Overloading (using Friend Function)
	Slide 25: Operator Overloading (using Friend Function)
	Slide 26: Operator Overloading (using Friend Function)
	Slide 27: Operator Overloading (using Friend Function)
	Slide 28: Operator Overloading (using Friend Function)
	Slide 29: Operator Overloading
	Slide 30: Operator overloading
	Slide 31: Operator overloading
	Slide 32: Operator overloading
	Slide 33: Operator overloading
	Slide 34: Operator overloading
	Slide 35: Operator overloading
	Slide 36: Class: Operator Overloading
	Slide 37: Thanks a lot

