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class Bar {

};

class Foo {
Private:
Bar baril;

}

void main {

Foo fool;

Foo own Bar object
and responsible for

Bar lifetime. When
Foo dies, so does
Bar

Aggregation

class Bar {

)
class Foo {
Private:
Bar* barl;
Foo(*Bar X)
{
barl=X;
}
}

void main {
Bar a
Foo fool(&a);
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class Bar {

class Bar { };
¥ class Foo {
Private:
class Foo { Bar* barl;
Private: Public:
Bar barl; Foo(*Bar X)
} {
barl=X;
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class Bar {

class Bar { Constructors of the sub-objects :
s
}; are always executed before the 1 E
constructors of the master class c ?SS 00 {
Private:
class Foo { Bar* barl;
Private: Public:
Bar barl; Foo(*Bar X)
} {
barl=X;
. . Foo own Bar object } Foo has an object
void main { and res_ponsible for } which it borrowed
Bar lifetime. When void main { from someone else.
Foo fool; Foo dies, so does Bar a When Foo dies, Bar
} Bar Foo fool(&a); EEUEVALZEXY




In C++

Elass bar int main()
public: t
bar() foo f;
{ }
cout << "I'm in bar" << endl;
}
¥
[€8] Microsoft Visual Studio Debug Console
class foo o
I'm in bar
{ SRR
bar b; I'm 1n Too
public:
foo()
{
cout << "I'm in foo" << endl;
}

s



Thanks a lot

Lecture Over
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