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Constructors of the sub-objects 
are always executed before the 
constructors of the master class
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class bar
{
public:

bar()
{

cout << "I'm in bar" << endl;
}

};

class foo
{

bar b;
public:

foo()
{

cout << "I'm in foo" << endl;
}

};

int main() 
{

foo f;
}



If you are taking a Nap, wake up........Lecture Over

Thanks a lot
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