Object Oriented Programming

Lecture 9

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io



Composition and Aggregation




Lets Recall

OOP: “its all about code reuse”




Lets Recall

OOP: “its all about code reuse”

One way Is to

Use object of one class in another class




N Lets Recall

OOP: “its all about code reuse”

One way Is to

Use object of one class in another class




N Lets Recall

OOP: “its all about code reuse”

One way Is to

Use object of one class in another class

/ \




Lets Recall

OOP: “its all about code reuse”

Aggregation

Chair

Table

Cupboard




Lets Recall

Arm exist
without Ali

OOP: “its all about code reuse”

Aggregation

Chair

Table

Cupboard




Lets Recall

OOP: “its all about code reuse”

Arm exist
without Ali

Chair can exist 7

without Room

Chair *—<>| Room K > 1 Table

Cupboard




Lets Recall

OOP: “its all about code reuse”

Aggregation

Arm

Chair can exist 7
without Ali

without Room

Chair *—<>| Room K> 1 Table

Life of Arm
depends on Ali

Life of Chair
does not depend 1
on Room

Cupboard




Lets Recall

OOP: “its all about code reuse”

Aggregation

1 Bed
Chair can exist 7
without Room <L
oo ol -,
I 1
¥ Y

i_ﬁ_rr_n__sz ’: . . ‘l/\> Table
. What does it mean in C++ 1
Life of A .

Body | | |Cupboard|

]
e e e o




N In C++

Aggregation

class Bar {

};

class Foo {
Private:
Bar barl;

}

void main {

Foo fool;




In C++

Aggregation

class Bar {

}i
class Foo {
Private:
Bar barl;
}
. . Foo own Bar object
void main { and responsible for
Bar lifetime. When
Foo fool; Foo dies, so does

} Bar




In C++

class Bar {

};

class Foo {
Private:
Bar baril;

}

void main {

Foo fool;

Foo own Bar object
and responsible for

Bar lifetime. When
Foo dies, so does
Bar

Aggregation

class Bar {

)
class Foo {
Private:
Bar* barl;
Foo(*Bar X)
{
barl=X;
}
}

void main {
Bar a
Foo fool(&a);



In C++
= N

Aggregation

class Bar {

class Bar { };
¥ class Foo {
Private:
class Foo { Bar* barl;
Private: Public:
Bar barl; Foo(*Bar X)
} {
barl=X;
Foo own Bar object } Foo has an object
void main { and responsible for h which it borrowed
Bar lifetime. When void main { from someone else.
Foo fool; Foo dies, so does Bar a When Foo dies, Bar
} Bar Foo fool(&a); EEUEVALZEXY




In C++
= N

Aggregation

class Bar {

class Bar { Constructors of the sub-objects :
s
}; are always executed before the 1 E
constructors of the master class c ?SS 00 {
Private:
class Foo { Bar* barl;
Private: Public:
Bar barl; Foo(*Bar X)
} {
barl=X;
. . Foo own Bar object } Foo has an object
void main { and res_ponsible for } which it borrowed
Bar lifetime. When void main { from someone else.
Foo fool; Foo dies, so does Bar a When Foo dies, Bar
} Bar Foo fool(&a); EEUEVALZEXY




In C++

Elass bar int main()
public: t
bar() foo f;
{ }
cout << "I'm in bar" << endl;
}
¥
[€8] Microsoft Visual Studio Debug Console
class foo o
I'm in bar
{ SRR
bar b; I'm 1n Too
public:
foo()
{
cout << "I'm in foo" << endl;
}

s



Thanks a lot

Lecture Over




	Slide 1
	Slide 2
	Slide 3: Lets Recall
	Slide 4: Lets Recall
	Slide 5: Lets Recall
	Slide 6: Lets Recall
	Slide 7: Lets Recall
	Slide 8: Lets Recall
	Slide 9: Lets Recall
	Slide 10: Lets Recall
	Slide 11: Lets Recall
	Slide 12: In C++
	Slide 13: In C++
	Slide 14: In C++
	Slide 15: In C++
	Slide 16: In C++
	Slide 17: In C++
	Slide 18: Thanks a lot

