
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 9

Dr. Naveed Anwar Bhatti

Composition and Aggregation

Lets Recall

OOP: “its all about code reuse”

Lets Recall

OOP: “its all about code reuse”

Use object of one class in another class

One way is to

Lets Recall

OOP: “its all about code reuse”

Use object of one class in another class

One way is to

Recall !!!!

Lets Recall

OOP: “its all about code reuse”

Use object of one class in another class

One way is to

CompositionComposition AggregationAggregation

Lets Recall

OOP: “its all about code reuse”

CompositionComposition AggregationAggregation

Lets Recall

Composition Aggregation

OOP: “its all about code reuse”

Arm cannot exist
without Ali

CompositionComposition AggregationAggregation

Lets Recall

Composition Aggregation

OOP: “its all about code reuse”

Arm cannot exist
without Ali

Chair can exist
without Room

CompositionComposition AggregationAggregation

Lets Recall

Composition Aggregation

OOP: “its all about code reuse”

Arm cannot exist
without Ali

Chair can exist
without Room

CompositionComposition AggregationAggregation

Life of Arm
depends on Ali

Life of Chair
does not depend

on Room

Lets Recall

Composition Aggregation

OOP: “its all about code reuse”

Arm cannot exist
without Ali

Chair can exist
without Room

CompositionComposition AggregationAggregation

Life of Arm
depends on Ali

Life of Chair
does not depend

on Room

What does it mean in C++
programming?

What does it mean in C++
programming?

In C++

CompositionComposition AggregationAggregation

class Foo {
Private:

Bar bar1;
}

class Bar {
} ;

void main {

Foo foo1;
}

In C++

CompositionComposition AggregationAggregation

class Foo {
Private:

Bar bar1;
}

class Bar {
} ;

void main {

Foo foo1;
}

Foo own Bar object

and responsible for

Bar lifetime. When

Foo dies, so does

Bar

In C++

CompositionComposition AggregationAggregation

class Foo {
Private:

Bar bar1;
}

class Bar {
} ;

void main {

Foo foo1;
}

class Foo {
Private:

Bar* bar1;
Foo(*Bar X)
{

bar1=X;
}

}

class Bar {
} ;

void main {
Bar a
Foo foo1(&a);

}

Foo own Bar object

and responsible for

Bar lifetime. When

Foo dies, so does

Bar

In C++

CompositionComposition AggregationAggregation

class Foo {
Private:

Bar bar1;
}

class Bar {
} ;

void main {

Foo foo1;
}

class Foo {
Private:

Bar* bar1;
Public:

Foo(*Bar X)
{

bar1=X;
}

}

class Bar {
} ;

void main {
Bar a
Foo foo1(&a);

}

Foo own Bar object

and responsible for

Bar lifetime. When

Foo dies, so does

Bar

Foo has an object

which it borrowed

from someone else.

When Foo dies, Bar

may live on.

In C++

CompositionComposition AggregationAggregation

class Foo {
Private:

Bar bar1;
}

class Bar {
} ;

void main {

Foo foo1;
}

class Foo {
Private:

Bar* bar1;
Public:

Foo(*Bar X)
{

bar1=X;
}

}

class Bar {
} ;

void main {
Bar a
Foo foo1(&a);

}

Foo own Bar object

and responsible for

Bar lifetime. When

Foo dies, so does

Bar

Foo has an object

which it borrowed

from someone else.

When Foo dies, Bar

may live on.

Constructors of the sub-objects
are always executed before the
constructors of the master class

In C++

CompositionComposition

class bar
{
public:

bar()
{

cout << "I'm in bar" << endl;
}

};

class foo
{

bar b;
public:

foo()
{

cout << "I'm in foo" << endl;
}

};

int main()
{

foo f;
}

If you are taking a Nap, wake up........Lecture Over

Thanks a lot

	Slide 1
	Slide 2
	Slide 3: Lets Recall
	Slide 4: Lets Recall
	Slide 5: Lets Recall
	Slide 6: Lets Recall
	Slide 7: Lets Recall
	Slide 8: Lets Recall
	Slide 9: Lets Recall
	Slide 10: Lets Recall
	Slide 11: Lets Recall
	Slide 12: In C++
	Slide 13: In C++
	Slide 14: In C++
	Slide 15: In C++
	Slide 16: In C++
	Slide 17: In C++
	Slide 18: Thanks a lot

