
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 8

Dr. Naveed Anwar Bhatti

Array of Objects

Before we start “Array of Objects”

class Rectangle
{

int width, height;
static int NoOfRectangles;

public:

static int getTotalRectangles(Rectangle &a)
{

a.width=0;
return a.width;

}
};

int Rectangle::NoOfRectangles=0;

int main()
{

Rectangle r1;
cout << r1.getTotalRectangles (r1);

}

What if we pass this pointer (or self-
pointer)?

Static functions cannot access non-static
members

In last lecture:

Question:

Yes! Then it will work

Answer:

Array of Objects

• [Dynamic] Array of objects can only be created if an object can be
created without supplying an explicit initializer

• There must always be a default constructor if we want to create array
of objects

Example

class Test

{

int i;

public:

};

int main(){

Test array[2];

}

// OK

Example

class Test

{

int i;

public:

Test();

};

int main(){

Test array[2];

}

// OK

Example

class Test

{

int i;

public:

Test(int x) {i=x;}

};

int main(){

Test array[2];

}

// Error

Example

class Test

{

int i;

public:

Test(int x) {i=x};

};

int main(){

Test array[2]= {1,2};

}

Array[0].i = 1
Array[1].i = 2

Explicit initializer

Example

class Test

{

int i,j;

public:

Test(int x, int y) {i=x; j=y;};

};

int main(){

Test array[2]= {{1,1},{2,2}};

}

Array[0].i = 1
Array[1].i = 2

Array[0].j = 1
Array[1].j = 2

Example

class Test

{

int i,j;

public:

Test(int x, int y) {i=x; j=y;};

};

int main(){

Test a(1,1), b(2,2);

Test array[2]= {a,b};

}

Array[0].i = 1
Array[1].i = 2

Array[0].j = 1
Array[1].j = 2

Pointer to Objects

Pointer to Objects

• Pointer to objects are similar as pointer to built-in types

• They can also be used to dynamically allocate objects

Example

class Rectangle
{

int width, height;
public:

Rectangle(int x=0, int y=0);
int get_width();
int get_height();

};

Rectangle::Rectangle(int x = 0, int y = 0)
{

width = x;
height = y;

}

int Rectangle::get_width()
{

return width;
}

int Rectangle::get_height()
{

return height;
}

int main()
{

Rectangle obj;
Rectangle* ptr;
ptr = &obj;
ptr->get_width;
return 0;

}

Case Study

Case Study

Design a class date through which user must be able to perform
following operations

• Get and set current day, month and year

• Increment by X number of days, months and year

• Set global Exam date

Attributes

• Attributes that can be seen in this problem statement are
• Day

• Month

• Year

• Exam date

Attributes

• The Exam date is a feature shared by all objects
• This attribute must be declared a static member

Structure of Files

Date.h Date.cpp main.cpp

Attributes in Date.h

class Date

{

int day;

int month;

int year;

static Date ExamDate;

…

};

Interfaces

• getDay

• getMonth

• getYear

• setDay

• setMonth

• setYear

• addDay

• addMonth

• addYear

• setExamDate

• getExamDate

Interfaces

• As the Exam date is a static member the interface setExamDate and
getExamDate should also be declared static

Interfaces in Date.h

class Date{

…

public:

void setDay(int aDay);

int getDay() const;

void addDay(int x);

…

…

};

Interfaces in Date.h

class Date{

…

public:

static void setExamDate(

int aDay,int aMonth, int aYear);

…

};

Constructors and Destructors Interfaces in Date.h

Date(int aDay = 0,

int aMonth= 0, int aYear= 0);

~Date(); //Destructor

};

Implementation of Date Class

• The static member variables must be initialized

Date Date::ExamDate (07,3,2020);

Constructors

Date::Date(int aDay, int aMonth, int aYear)

{

setDay(aDay);

//similarly for other members

}

Destructor

• We are not required to do any house keeping chores in destructor

Date::~Date

{

}

Getter and Setter

void Date::setMonth(int a)

{

if(a > 0 && a <= 12){

month = a;

}

int getMonth() const{

return month;

}

addYear

void Date::addYear(int x){

year += x;

if(day == 29 && month == 2 && !leapyear(year)){

day = 1;

month = 3;

}

}

Helper Function

class Date{

…

private:

bool leapYear(int x) const;

…

};

Helper Function

bool Date::leapYear(int x) const{

if((x%4 == 0 && x%100 != 0)||(x%400==0)){

return true;

}

return false;

}

If you are taking a Nap, wake up........Lecture Over

Thanks a lot

	Slide 1
	Slide 2
	Slide 3: Before we start “Array of Objects”
	Slide 4: Array of Objects
	Slide 5: Example
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11
	Slide 12: Pointer to Objects
	Slide 13: Example
	Slide 14
	Slide 15: Case Study
	Slide 16: Attributes
	Slide 17: Attributes
	Slide 18: Structure of Files
	Slide 19: Attributes in Date.h
	Slide 20: Interfaces
	Slide 21: Interfaces
	Slide 22: Interfaces in Date.h
	Slide 23: Interfaces in Date.h
	Slide 24: Constructors and Destructors Interfaces in Date.h
	Slide 25: Implementation of Date Class
	Slide 26: Constructors
	Slide 27: Destructor
	Slide 28: Getter and Setter
	Slide 29: addYear
	Slide 30: Helper Function
	Slide 31: Helper Function
	Slide 32: Thanks a lot

