Object Oriented Programming

Lecture 8

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Array of Objects

Before we start “Array of Objects”

D -
class Rectangle In last lecture:
{

int width, height;
static int NoOfRectangles;
public:

Static functions cannot access non-static

members

static int getTotalRectangles(Rectangle &a)
{ Question:
a.width=0;

return a.width; _) _
} What if we pass this pointer (or self-

}; pointer)?
J

int Rectangle::NoOfRectangles=0;

Answer:
int main()
{

Rectangle ril; Yes! Then it will work
cout << rl.getTotalRectangles (rl);

Array of Objects

e [Dynamic] Array of objects can only be created if an object can be
created without supplying an explicit initializer

* There must always be a default constructor if we want to create array
of objects

Example

class Test

{

int 1;
public:
};

int main () {
Test array[2]; // OK

}

Example

class Test

{
int 1i;
public:
Test () ;

};

int main () {
Test array([2]; // OK

}

Example

class Test

{
int 1;
public:
Test (int x) {i=x;}

};

int main () {

Test array[2]; // Error
}

Example

class Test

{
int 1i;
public:
Test (int x) {i=x};

}; Array[0].i=1

Array[1].i =2

int main () {

Test array[2]= {1,2};
} ﬁ Explicit initializer }

Example

class Test

{
int 1,3,
public:
Test (int x, int y) {i=x; j=y;}; Array[0].i=1
} ; Array[1].i=2

_ _ Array[0].j=1
int main() { Array[1].j = 2

Test array[2]= {{1,1},{2,2}};
}

Example

class Test

{

int 1,73;

public:
Test(int x, int y) {i=x; j=y;};
}; Array[0].i=1
Array[1].i=2

int main () {

Test a(l,1), b(2,2); Array[0].j =1

Test array[2]= {a,b}; Array[1].j =2

}

Pointer to Objects

Pointer to Objects

* Pointer to objects are similar as pointer to built-in types
* They can also be used to dynamically allocate objects

Example

B = I
class Rectangle
{ : :
int width, height; int main()
public: {
Rectangle(int x=0, int y=0); _
int get width(); Rectangle obj;
int get_height(); Rectangle* ptr;
}; ptr = &obj;
_ _ ptr->get width;
?ectangle::Rectangle(lnt Xx =0, int y = Q) return 0;
width = x;
height = vy; }
}
int Rectangle::get width()
{
return width;
}

int Rectangle::get height()
{

}

return height;

Case Study

Case Study

Design a class date through which user must be able to perform
following operations

* Get and set current day, month and year
* Increment by X number of days, months and year
» Set global Exam date

Attributes

 Attributes that can be seen in this problem statement are
* Day
* Month
* Year
* Exam date

Attributes

 The Exam date is a feature shared by all objects
* This attribute must be declared a static member

N Structure of Files

Date.h Date.cpp main.cpp

Attributes in Date.h

class Date
{
int day;
int month;
int year;
static Date ExamDate;

};

Interfaces

I W | NN
e getDay * addDay
e getMonth * addMonth
e getYear e addYear
* setDay * setExamDate
e setMonth * getExamDate

e setYear

Interfaces

 As the Exam date is a static member the interface setExamDate and
getExamDate should also be declared static

Interfaces in Date.h

class Date{

public:
void setDay (int aDay) ;
int getDay () const;
void addDay(int x);

Interfaces in Date.h

class Date{

public:
static void setExamDate (
int aDay,int aMonth, int aYear);

Constructors and Destructors Interfaces in Date.h

Date (int abDay = O,
int aMonth= 0, int aYear= 0);

~Date () ; //Destructor
};

Implementation of Date Class

e The static member variables must be initialized

Date Date::ExamDate (07,3,2020);

Constructors

Date::Date(int aDay, int aMonth, int aYear)

{
setDay(aDay);

//similarly for other members

Destructor

* We are not required to do any house keeping chores in destructor

Date: : ~Date

{
}

Getter and Setter

volid Date: :setMonth (int a)

{
if(a > 0 && a <= 12) {

month = a;

}
int getMonth () const{

return month;

}

addYear

void Date: :addYear (int x) {
year += X;
if (day == 29 && month == 2 && !'leapyear (year)) {
day = 1;
month = 3;

Helper Function

class Date{

private:
bool leapYear (int x) const;

};

Helper Function

bool Date::leapYear (int x) const{
1f((x%4 == 0 && x%100 '= 0) || (x%400==0)) {
return true;

}

return false;

}

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Before we start “Array of Objects”
	Slide 4: Array of Objects
	Slide 5: Example
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11
	Slide 12: Pointer to Objects
	Slide 13: Example
	Slide 14
	Slide 15: Case Study
	Slide 16: Attributes
	Slide 17: Attributes
	Slide 18: Structure of Files
	Slide 19: Attributes in Date.h
	Slide 20: Interfaces
	Slide 21: Interfaces
	Slide 22: Interfaces in Date.h
	Slide 23: Interfaces in Date.h
	Slide 24: Constructors and Destructors Interfaces in Date.h
	Slide 25: Implementation of Date Class
	Slide 26: Constructors
	Slide 27: Destructor
	Slide 28: Getter and Setter
	Slide 29: addYear
	Slide 30: Helper Function
	Slide 31: Helper Function
	Slide 32: Thanks a lot

