Object Oriented Programming

Lecture 7

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Static variables

Static Variables

e Lifetime of static variable is throughout the
program life

*They are declared and initialized only once

*|f static variables are not explicitly initialized
then they are initialized to 0 of appropriate type

Example

#include <iostream>
using namespace std;

void funcl(int i)

{
static int staticInt = i; Output:
cout << staticInt << endl; 1
}
1
int main()
{
funcl(1l);
funcl(2);

¥

Example (Default Values)

#include <iostream>
using namespace std;

void funcl(int i)

{
static int staticInt; Output;
cout << staticInt << endl;
) 0
0
int main()
{
funcl(l);
funcl(2);

¥

Example (Static vs Const)

##include <iostream>

using namespace std; Static variable is not a constant

variable. There values can be
void funcl(int 1) changed

{

static int staticI
staticInt = 1i;

cout << staticInt << endl; 1
} 2
int main()
{

funcl(1l);

funcl(2);

¥

Example (Life vs Access)

I W
#include <iostream>

using namespace std;

void funcl(int 1)

{
static int staticInt;
staticInt = 1i; Output:
cout << staticInt << endl;

) Error

int main()

{

funcl (1)) Lifetime is throughout the program
funcl(2); life.
cout << staticInt;

But access is limited to function
where they are defined

Static Data Member in Class
Definition
“A variable that is part of a class, yet is not
part of an object of that class, is called

static data member”

Also known as Class Variable

Static Data Member

*They are shared by all instances of the class

*They do not belong to any particular
instance of a class

N Class Variable vs. Instance Variable

*Rectangle rl, r2, r3;

a N
‘ Class Space

Instance Variable

/

Class Variable

Static Data Member (Syntax)

* Keyword static is used to make a data
member static

class ClassName {

static DataType VariableName;

};

Defining Static Data Member

e Static data member is declared inside the class
*But they are defined outside the class

Example

class Rectangle{

private:
static int noOfRectangles;

public:

};
int Rectangle: :noOfRectangles = 0;

/*private static member cannot be accessed
outside the class except for initialization*/

Initializing Static Data Member

*|f static data members are not explicitly
initialized at the time of definition then they
are initialized to O

Example

int Rectangle: :noOfRectangles ;

is equivalent to

int Rectangle: :noOfRectangles =0;

Accessing Static Data Member

* To access a static data member there are two ways
* Access like a normal data member
* Access using a scope resolution operator “::’

Example

class Rectangle

{
int width, height;

public:
static int NoOfRectangles;
Rectangle();

35

int Rectangle::NoOfRectangles=0;

int main()

{

cout << Rectangle::NoOfRectangles; Access Method 1

Rectangle rl;
cout << rl.NoOfRectangles; Access Method 2

Life of Static Data Member

* They are created even when there is no object of a class

* They remain in memory even when all objects of a class are
destroyed

Example

class Rectangle

{
int width, height;

public:
static int NoOfRectangles;
Rectangle();

35

int Rectangle::NoOfRectangles=0;

int main()

{

cout << Rectangle::NoOfRectangles;

Uses

* They can be used to store information that is required by all
objects, like global variables

Exercise

* Modify the class Rectangle such that one can know
the number of rectangles created in a system

Example

class Rectangle

{
int width, height;
public:
static int NoOfRectangles;
Rectangle();
~Rectangle();
35
Rectangle: :Rectangle()
{
NoOfRectangles++;
}

Rectangle: :~Rectangle()
{

}

NoOfRectangles--;

Example

int main()

{
cout << Rectangle::NoOfRectangles; Output:
Rectangle ri; 0
1

cout << Rectangle::NoOfRectangles;
Rectangle r2;

cout << Rectangle::NoOfRectangles;

Problem

* noOfRectangles is accessible outside the class
* Bad design as the local data member is kept public

Static Member Function

Definition:

“The function that needs access to the members of a
class, yet does not need to be invoked by a particular
object, is called static member function”

Static Member Function

* They are used to access static data members

e Access mechanism for static member functions is same as that of
static data members

* They cannot access any non-static members

Example

int main()

{

class Rectangle

{
int width, height;
static int NoOfRectangles;
public:

cout << Rectangle::getTotalStudent();
Rectangle ri;
cout << Rectangle::getTotalStudent();

Rectangle(){};
~Rectangle(){};

static int getTotalRectangles()
{

¥

return NoOfRectangles;

}s
int Rectangle::NoOfRectangles;

Accessing non static data members

class Rectangle int main()

|
|
1
{ o
int width, height; : cout << Rectangle::getTotalStudent();
static int NoOfRectangles; : Rectangle ri;
public: : cout << Rectangle::getTotalStudent();
3
Rectangle(){}; :
~Rectangle(){}; ;
|
|
static int getTotalRectangles() |,
{ |
return width;
h Error: Can ONLY
acess static data

}s |
int Rectangle::NoOfRectangles; |

this Pointer

* this pointer is passed implicitly to member functions
e this pointer is not passed to static member functions

e Reason is static member functions cannot access non static data
members

Global Variable vs. Static Members

* Alternative to static member is to use global variable

e Global variables are accessible to all entities of the
program
e Against information hiding

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Static Variables
	Slide 4: Example
	Slide 5: Example (Default Values)
	Slide 6: Example (Static vs Const)
	Slide 7: Example (Life vs Access)
	Slide 8: Static Data Member in Class
	Slide 9: Static Data Member
	Slide 10: Class Variable vs. Instance Variable
	Slide 11: Static Data Member (Syntax)
	Slide 12: Defining Static Data Member
	Slide 13: Example
	Slide 14: Initializing Static Data Member
	Slide 15: Example
	Slide 16: Accessing Static Data Member
	Slide 17: Example
	Slide 18: Life of Static Data Member
	Slide 19: Example
	Slide 20: Uses
	Slide 21: Exercise
	Slide 22: Example
	Slide 23: Example
	Slide 24: Problem
	Slide 25: Static Member Function
	Slide 26: Static Member Function
	Slide 27: Example
	Slide 28: Accessing non static data members
	Slide 29: this Pointer
	Slide 30: Global Variable vs. Static Members
	Slide 31: Thanks a lot

