
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 7

Dr. Naveed Anwar Bhatti

Static variables

Static Variables

•Lifetime of static variable is throughout the
program life

•They are declared and initialized only once

• If static variables are not explicitly initialized
then they are initialized to 0 of appropriate type

Example

Output:
1
1

#include <iostream>
using namespace std;

void func1(int i)
{

static int staticInt = i;
cout << staticInt << endl;

}

int main()
{

func1(1);
func1(2);

}

Example (Default Values)

Output:
0
0

#include <iostream>
using namespace std;

void func1(int i)
{

static int staticInt;
cout << staticInt << endl;

}

int main()
{

func1(1);
func1(2);

}

Example (Static vs Const)

Output:
1
2

#include <iostream>
using namespace std;

void func1(int i)
{

static int staticInt;
staticInt = i;
cout << staticInt << endl;

}

int main()
{

func1(1);
func1(2);

}

Static variable is not a constant
variable. There values can be
changed

Example (Life vs Access)

Output:
Error

#include <iostream>
using namespace std;

void func1(int i)
{

static int staticInt;
staticInt = i;
cout << staticInt << endl;

}

int main()
{

func1(1);
func1(2);
cout << staticInt;

}

Lifetime is throughout the program
life.

But access is limited to function
where they are defined

Static Data Member in Class

Definition

“A variable that is part of a class, yet is not
part of an object of that class, is called
static data member”

Also known as Class Variable

Static Data Member

•They are shared by all instances of the class

•They do not belong to any particular
instance of a class

Class Variable vs. Instance Variable

•Rectangle r1, r2, r3;

Class Space

r1(width,…)

r2(width,…)

r3(width,…)

Instance Variable

Class Variable

Static Data Member (Syntax)

•Keyword static is used to make a data
member static

class ClassName{

…

static DataType VariableName;

};

Defining Static Data Member

•Static data member is declared inside the class

•But they are defined outside the class

Example

class Rectangle{

private:

static int noOfRectangles;

public:

…

};

int Rectangle::noOfRectangles = 0;

/*private static member cannot be accessed

outside the class except for initialization*/

Initializing Static Data Member

•If static data members are not explicitly
initialized at the time of definition then they
are initialized to 0

Example

int Rectangle::noOfRectangles ;

is equivalent to

int Rectangle::noOfRectangles =0;

Accessing Static Data Member

• To access a static data member there are two ways
• Access like a normal data member

• Access using a scope resolution operator ‘::’

Example

class Rectangle
{

int width, height;
public:

static int NoOfRectangles;
Rectangle();

};

int Rectangle::NoOfRectangles=0;

int main()
{

cout << Rectangle::NoOfRectangles;

Rectangle r1;
cout << r1.NoOfRectangles;

}

Access Method 1

Access Method 2

Life of Static Data Member

• They are created even when there is no object of a class

• They remain in memory even when all objects of a class are
destroyed

Example

class Rectangle
{

int width, height;
public:

static int NoOfRectangles;
Rectangle();

};

int Rectangle::NoOfRectangles=0;

int main()
{

cout << Rectangle::NoOfRectangles;

}

Uses

• They can be used to store information that is required by all
objects, like global variables

Exercise

•Modify the class Rectangle such that one can know
the number of rectangles created in a system

Example

class Rectangle
{

int width, height;
public:

static int NoOfRectangles;
Rectangle();
~Rectangle();

};

Rectangle::Rectangle()
{

NoOfRectangles++;
}

Rectangle::~Rectangle()
{

NoOfRectangles--;
}

Example

Output:
0
1
2

int main()
{

cout << Rectangle::NoOfRectangles;

Rectangle r1;

cout << Rectangle::NoOfRectangles;

Rectangle r2;

cout << Rectangle::NoOfRectangles;

}

Problem

• noOfRectangles is accessible outside the class

• Bad design as the local data member is kept public

Static Member Function

Definition:

“The function that needs access to the members of a
class, yet does not need to be invoked by a particular
object, is called static member function”

Static Member Function

• They are used to access static data members

• Access mechanism for static member functions is same as that of
static data members

• They cannot access any non-static members

Example

class Rectangle
{

int width, height;
static int NoOfRectangles;
public:

Rectangle(){};
~Rectangle(){};

static int getTotalRectangles()
{

return NoOfRectangles;
}

};
int Rectangle::NoOfRectangles;

int main()
{

cout << Rectangle::getTotalStudent();
Rectangle r1;
cout << Rectangle::getTotalStudent();

}

Accessing non static data members

int main()
{

cout << Rectangle::getTotalStudent();
Rectangle r1;
cout << Rectangle::getTotalStudent();

}

class Rectangle
{

int width, height;
static int NoOfRectangles;
public:

Rectangle(){};
~Rectangle(){};

static int getTotalRectangles()
{

return width;
}

};
int Rectangle::NoOfRectangles;

Error: Can ONLY
acess static data

this Pointer

• this pointer is passed implicitly to member functions

• this pointer is not passed to static member functions

• Reason is static member functions cannot access non static data
members

Global Variable vs. Static Members

•Alternative to static member is to use global variable

•Global variables are accessible to all entities of the
program
• Against information hiding

If you are taking a Nap, wake up........Lecture Over

Thanks a lot

	Slide 1
	Slide 2
	Slide 3: Static Variables
	Slide 4: Example
	Slide 5: Example (Default Values)
	Slide 6: Example (Static vs Const)
	Slide 7: Example (Life vs Access)
	Slide 8: Static Data Member in Class
	Slide 9: Static Data Member
	Slide 10: Class Variable vs. Instance Variable
	Slide 11: Static Data Member (Syntax)
	Slide 12: Defining Static Data Member
	Slide 13: Example
	Slide 14: Initializing Static Data Member
	Slide 15: Example
	Slide 16: Accessing Static Data Member
	Slide 17: Example
	Slide 18: Life of Static Data Member
	Slide 19: Example
	Slide 20: Uses
	Slide 21: Exercise
	Slide 22: Example
	Slide 23: Example
	Slide 24: Problem
	Slide 25: Static Member Function
	Slide 26: Static Member Function
	Slide 27: Example
	Slide 28: Accessing non static data members
	Slide 29: this Pointer
	Slide 30: Global Variable vs. Static Members
	Slide 31: Thanks a lot

