Object Oriented Programming

Lecture 5

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io



Separation of interface and
implementation




Separation of interface and implementation

* Public member function exposed by a class is called
interface

e Separation of implementation from the interface is
good software engineering



Separation of interface and implementation

* Usually functions are defined in implementation files
(.cpp) while the class definition is given in header file

(-h)

* Some authors also consider this as separation of
interface and implementation



Rectangle.h

class Rectangle

{
int width, height;

public:
Rectangle& set width(int width);
Rectangle& set height(int height);
int area();

s



Rectangle.cpp

#include “Rectangle.h”

Rectangle& Rectangle::set width(int width)

{
this->width = width;
return *this;
}
Rectangle& Rectangle::set height(int height)
{
this->height = height;
return *this;
}

int Rectangle::area()

{
}

return width * height;



main.cpp

#include <iostream>
using namespace std;

#include “Rectangle.h”

int main()

{

Rectangle ri;

rl.set width(10).set height(10);
cout << rl.area();

return 0;



N Overall Structure of the program

Rectangle.h Rectangle.cpp main.cpp



const Member Functions



const Member Functions

*There are functions that are meant to be
read only

*There must exist a mechanism to detect
error if such functions accidentally change
the data member




const Member Functions

*Keyword const is placed at the end of the
parameter list




const Member Functions

Declaration:

class ClassName

{

ReturnVal Function () const;

};

Definition:

ReturnVal ClassName: :Function () const

{

}




Example

class Rectangle

{
int width, height;
public:

int get width() const
{

¥

return width;
int get height() const
{

}
s

return height;



const Functions

* Constant member functions cannot modify the
state of any object

*They are just “read-only”

*Errors due to typing are also caught at compile
time




Example

bool Rectangle: :isWidth (int W) {
1f (Width == W) {
return true;

}

return false;

}



Example

bool Rectangle: :isWidth (int W) {
/*undetected typing mistake*/

1f (Width= W) {
return true;

}

return false;

}



Example

bool Rectangle: :isWidth(int W) const {

/*compiler error*/

1f (Width= W) {
return true;

}

return false;

}



const Functions

e Constructors and Destructors cannot be const

* Constructor and destructor are used to modify the
object to a well defined state



Example

class Rectangle({

public:

Rectangle () const {} //error...
~Rectangle () const {} //error..

};




const Functions

* Also, constant member function cannot access non-
constant member functions



Example

class Rectangle

{
int width, height;
public:
int set width(int a)
{

}
int get width() const
{
}

s

width=a;

set width(1);




this Pointer and const Member Function

* this pointer is passed as constant pointer to const
data in case of constant member functions

instead of Rectangle * const this;
const Rectangle *const this;




this Pointer and const Member Function

Constant Pointer

Rectangle* const this;

Pointer to

const RQCtangle* this; Constant Data

const Rectangle* const this;

Constant Pointer

to Constant Data



Thanks a lot

Lecture Over




	Slide 1
	Slide 2
	Slide 3: Separation of interface and implementation
	Slide 4: Separation of interface and implementation
	Slide 5: Rectangle.h
	Slide 6: Rectangle.cpp
	Slide 7: main.cpp
	Slide 8: Overall Structure of the program
	Slide 9
	Slide 10: const Member Functions
	Slide 11: const Member Functions
	Slide 12: const Member Functions
	Slide 13: Example
	Slide 14: const Functions
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: const Functions
	Slide 19: Example
	Slide 20: const Functions
	Slide 21: Example
	Slide 22: this Pointer and const Member Function
	Slide 23: this Pointer and const Member Function
	Slide 24: Thanks a lot

