
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 5

Dr. Naveed Anwar Bhatti

Separation of interface and
implementation

Separation of interface and implementation

•Public member function exposed by a class is called
interface

• Separation of implementation from the interface is
good software engineering

Separation of interface and implementation

•Usually functions are defined in implementation files
(.cpp) while the class definition is given in header file
(.h)

• Some authors also consider this as separation of
interface and implementation

Rectangle.h

class Rectangle
{

int width, height;
public:

Rectangle& set_width(int width);
Rectangle& set_height(int height);
int area();

};

Rectangle.cpp

#include “Rectangle.h”

Rectangle& Rectangle::set_width(int width)
{

this->width = width;
return *this;

}

Rectangle& Rectangle::set_height(int height)
{

this->height = height;
return *this;

}

int Rectangle::area()
{

return width * height;
}

main.cpp

#include <iostream>
using namespace std;

#include “Rectangle.h”

int main()
{

Rectangle r1;
r1.set_width(10).set_height(10);
cout << r1.area();
return 0;

}

Overall Structure of the program

Rectangle.h Rectangle.cpp main.cpp

const Member Functions

•There are functions that are meant to be
read only

•There must exist a mechanism to detect
error if such functions accidentally change
the data member

const Member Functions

•Keyword const is placed at the end of the
parameter list

const Member Functions

const Member Functions

Declaration:

class ClassName

{

ReturnVal Function() const;

};

Definition:

ReturnVal ClassName::Function() const

{

…

}

Example

class Rectangle
{

int width, height;
public:

int get_width() const
{

return width;
}

int get_height() const
{

return height;
}

};

const Functions

•Constant member functions cannot modify the
state of any object

•They are just “read-only”

•Errors due to typing are also caught at compile
time

Example

bool Rectangle::isWidth(int W){

if(Width = = W){

return true;

}

return false;

}

Example

bool Rectangle::isWidth(int W){

/*undetected typing mistake*/

if(Width = W){

return true;

}

return false;

}

Example

bool Rectangle::isWidth(int W) const {

/*compiler error*/

if(Width = W){

return true;

}

return false;

}

const Functions

•Constructors and Destructors cannot be const

•Constructor and destructor are used to modify the
object to a well defined state

Example

class Rectangle{

public:

Rectangle() const {} //error…

~Rectangle() const {} //error…

};

•Also, constant member function cannot access non-
constant member functions

const Functions

Example

class Rectangle
{

int width, height;
public:

int set_width(int a)
{

width=a;
}
int get_width() const
{

set_width(1);
}

};

Error

this Pointer and const Member Function

•this pointer is passed as constant pointer to const
data in case of constant member functions

instead of Rectangle * const this;

const Rectangle *const this;

this Pointer and const Member Function

Rectangle* const this;

const Rectangle* this;

const Rectangle* const this;

Constant Pointer

Pointer to
Constant Data

Constant Pointer
to Constant Data

If you are taking a Nap, wake up........Lecture Over

Thanks a lot

	Slide 1
	Slide 2
	Slide 3: Separation of interface and implementation
	Slide 4: Separation of interface and implementation
	Slide 5: Rectangle.h
	Slide 6: Rectangle.cpp
	Slide 7: main.cpp
	Slide 8: Overall Structure of the program
	Slide 9
	Slide 10: const Member Functions
	Slide 11: const Member Functions
	Slide 12: const Member Functions
	Slide 13: Example
	Slide 14: const Functions
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: const Functions
	Slide 19: Example
	Slide 20: const Functions
	Slide 21: Example
	Slide 22: this Pointer and const Member Function
	Slide 23: this Pointer and const Member Function
	Slide 24: Thanks a lot

