Object Oriented Programming

Lecture 4

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Copy Constructor

Copy Constructor

* Copy constructor can used when:
* |nitializing an object at the time of creation using another object
 When an object is passed by value to a function

“Pass by Value” and “Pass by Reference”

Pass by Value:

* Makes a copy in memory of the actual parameters

* Use pass by value when you are only using the parameter for some computation,
not changing it

Pass by Reference:
* Forwards the actual parameters

e Use pass by reference when you are changing the parameter passed in the program

“Pass by Value” “Pass by Reference”

DR |
#include <iostream> #include <iostream>
using namespace std; using namespace std;
int add(int a) int add(int* 2a)

{ {
int b = 0; int b = 0;
a=a+ 1; %3 = *3 4+ 1;
b=2a; b=*2a;
return b; return b;

} }

int main() { int main() {
int x = 0; int x = 0;
int result = add(x); int result = add(&x);
cout << result << endl; cout << result << endl;
cout << X << endl; cout << X << endl;
return 9; return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a) Function Declaration

int b = 0;
a =a+ 1;
b=3;
return b;

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 9;

“Pass by Reference”

##tinclude <iostream>
using namespace std;

int add(int* a) Function Declaration

int b = 0;
*a = *a + 1;
b=*a;
return b;

}

int main() {
int x = 9;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a)
{

int b = 0;

= a + 1; Function Definition
b=3;

return b;

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 9;

}

“Pass by Reference”

##tinclude <iostream>
using namespace std;

int add(int* a)
{

int b = 0;

*a = *a + 1; Function Definition
b=*a;

return b;

int main() {
int x = 9;
int result = add(&x);
cout << result << endl;
cout << X << endl;
return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a)

{
int b = 0;
a =a+ 1;
b=3;
return b;
}

int main() {

N = (]

int result = add(x);

- 1;

cout << x << endl;
return 9;

}

Function Calling

pass bY PO'\“‘.”_”Bass-b»,-ReFere'rrCé“_'

##tinclude <iostream>
using namespace std;

int add(int* a)

{
int b = 0;
*a = *a + 1;
b=*a;
return b;

}

int main() {

int result = add(&x);

OU oS U 210
cout << X << endl;
return 9;

}

J

Function Calling

Another way for “Pass by Reference”

#tinclude <iostream>

using namespace std; B 4 Reference Variable:
Reference variable is an alias for a variable which is

int add(in : :
(assigned to it.

int b = 9;

T 1; Different from pointer:

’ * The reference variable can only be initialized at the time

return b; of its creation

}

e The reference variable returns the address of the

int main() { variable preceded by the reference sign ‘&

It x =9 * The reference variable can never be reinitialized again in
int result = add(x);

cout << result << endl; the program

cout << X << endl;

return 0; * The reference variable can never refer to NULL

Back to Copy Constructor

e Copy constructor are used when:

* |nitializing an object at the time of creation using another object
* When an object is passed by value to a function

* Example:

void funcl(Rectangle rect)

{
}

void main()

{

Rectangle a;

Rectangle b = a; «
funcl(a);«

Copy Constructor

Because if it's not by reference,
* Copy constructor are used when: it's by value. To do that you make
a copy, and to do that you call
the copy constructor.

* |nitializing an object at the time of creation using another

* When an object is passed by value to a function
You would have infinite recursion

because "to make a copy, you

° Example: o Syntax: need to make a copy".
void funcl(Rectangle rect)
{ Rectangle::Rectangle(Rectangle const &rect)
{
} width = rect.width;
void main() height = rect.height;
{ }

Rectangle a;

Rectangle b = aj; «
funcl(a);«

Copy Constructor

Shallow Copy vs Deep Copy

N Shallow Copy

Shallow copying is creating a new object and then copying the data
members of the Original Object to the Copied Object.

If the data members is a reference type, the reference is copied but the

referred object is not, therefore the original object and its clone refer
to the same object.

Original Object Copied Object

Heap

Example

class Rectangle{

public:
int |*width, *height; | reference type

Rectangle();
Rectangle(Rectangle const& rect);

}s
Rectangle: :Rectangle()
{
width = new int[10];
height = new int[10];
}

Rectangle: :Rectangle(Rectangle const& rect)

{
width = rect.width;

height = rect.height;

int main()

{

Rectangle a;
Rectangle b = a;

a.width[0] = 10;
cout << b.width[0];

N Shallow Copy

Rectangle a Rectangle b

width[10]
height[10]

Heap

Deep Copy

I -
Rectangle: :Rectangle(Rectangle const& rect) int main()
{ {

width = new int[10]; Rectangle a;

height = new int[10]; Rectangle b = a;

for (int i = 0; 1 < 10; i++) a.width[0] = 10;

{ b.width[@] = 20;
width[i] = rect.width[i]; cout << a.width[0];
height[i] = rect.height[i];

} }

}

N Deep Copy

Rectangle a

width[10]

height[10]

Heap

Deep copying is creating a new
object and then copying the data
members of the Original Object to
the Copied Object.

If the data members is a reference
type, a new copy of the referred
object is performed. A deep copy of
an object is a new object with
entirely new instance variables, it
does not share objects with the old.

Rectangle b

width[10]
height[10]

Heap

Copy Constructor (contd.)

* Copy constructor is normally used to perform deep copy

* If we do not make a copy constructor then the compiler
performs shallow copy

Copy Constructor (contd.)

* Question

MyClass t1, t2;
MyClass t3 = t1; // ----> (1)
t2 = ti1; /] ----- > (2)

Which of the following two statements call copy constructor and
which one calls assignment operator?

th1is Pointer

this Pointer

class Rectangle void Rectangle::set width(int a)
{ {
int width, height; width = a;
public:
void set width(int a); }
void set height(int b);
int area(); void Rectangle::set_height(int b)
¥ {
height = b;
}

int Rectangle::area()

{
}

return width * height;

this Pointer

* The compiler reserves space for the functions defined
in the class

* Space for data is not allocated (since no object is yet
created)

N\l this Pointer

/
1

I
I
|
\
\

\

—
- ~ o

r2 (width,..)

\

--__~~
-~
~
~

Function Space
set width(), ...

-~
55- —’f
-———_—_—

this Pointer

* Function space is common for every object

* Whenever a new object is created:
* Memory is reserved for variables only
* Previously defined functions are used over and over again

this Pointer

* Memory layout for objects created:

r3
width, ...

Function Space
set_width(), ...

How does the functions know on which object to act?

this Pointer

* Address of each object is passed to the calling function

* This address is deferenced by the functions and hence they act on
correct objects

The variable containing the “self-address” is called this pointer

r1 r2 r3 r4
width, ... width, ... width, ... width, ...
address address address address

Passing this Pointer

* Whenever a function is called the th1is pointer is passed as a
parameter to that function

* Function with n parameters is actually called with n+1 parameters

Example

void Rectangle::set width(int a)

is internally represented as

void Rectangle::set width(int a, Rectangle* const this)

Compiler Generated Code

Rectangle::set width(int a)

{
width = a;

}

is internally represented as

Rectangle::set width(int a, Rectangle* const this)

{
this->width = a;

}

th1is Pointer

There are situations where designer wants
to use th1is pointer explicitly

Case 1: When local variable’s name is same as member’s name

class Rectangle void Rectangle::set width(int width)
{ {
int width, height; width = width;
public:
void set width(int width); }
void set height(int height);
int area(); void Rectangle::set _height(int height)
¥ {

height = height;

¥

int Rectangle::area()

{
}

return width * height;

Case 1: When local variable’s name is same as member’s name

class Rectangle void Rectangle::set width(int width)
{ {
int width, height; this->width = width;
public:
void set width(int width); }
void set height(int height);
int area(); void Rectangle::set _height(int height)
¥ {

this->height = height;

¥

int Rectangle::area()

{
}

return width * height;

Case 2: To return reference to the calling object

E— -
class Rectangle Rectangle& Rectangle::set width(int width)
{ {
int width, height; this->width = width;
public: return *this;

Rectangle& set width(int width);
Rectangle& set height(int height); }
int area();
}s Rectangle& Rectangle::set height(int height)

{
this->height = height;
return *this

¥

int Rectangle::area()

{
¥

return width * height;

Case 2: To return reference to the calling object

E— -
class Rectangle Rectangle& Rectangle::set width(int width)
{ {
int width, height; this->width = width;
public: return *this;

Rectangle& set width(int width);
Rectangle& set height(int height); }
int area();
}s Rectangle& Rectangle::set height(int height)
{
SO0 ™ this->height = height;
int main() return *this
{

}
Rectangle ri;

rl.set width(10).set height(10); int Rectangle::area()
cout << rl.area();

{
return 0;

\\ /' }

- —
i ——— -

return width * height;

Case 2: To return reference to the calling object

E—— -
class Rectangle Rectangle& Rectangle::set width(int width)
{ {
int width, height; this->width = width;
public: return *this;

Rectangle& set
Rectangle& set

int area(); When a reference to a local object is returned, the
¥ returned reference can be used to chain function ALY
e calls on a single object.
int main()

{

¥

Rectangle ri;
rl.set width(10).set height(10); int Rectangle::area()
cout << rl.area();

{
return 0;

\\ /' }

__

- —

e L L L L L L T

return width * height;

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3
	Slide 4: “Pass by Value” and “Pass by Reference”
	Slide 5: “Pass by Value” “Pass by Reference”
	Slide 6: “Pass by Value” “Pass by Reference”
	Slide 7: “Pass by Value” “Pass by Reference”
	Slide 8: “Pass by Value” “Pass by Reference”
	Slide 9: Another way for “Pass by Reference”
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: this Pointer
	Slide 22: this Pointer
	Slide 23: this Pointer
	Slide 24: this Pointer
	Slide 25: this Pointer
	Slide 26: this Pointer
	Slide 27: Passing this Pointer
	Slide 28: Example
	Slide 29: Compiler Generated Code
	Slide 30: this Pointer
	Slide 31
	Slide 32: Case 1: When local variable’s name is same as member’s name
	Slide 33: Case 2: To return reference to the calling object
	Slide 34: Case 2: To return reference to the calling object
	Slide 35: Case 2: To return reference to the calling object
	Slide 36: Thanks a lot

