
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 4

Dr. Naveed Anwar Bhatti

Copy Constructor

• Copy constructor can used when:
• Initializing an object at the time of creation using another object

• When an object is passed by value to a function

Copy Constructor

“Pass by Value” and “Pass by Reference”

Pass by Value:
• Makes a copy in memory of the actual parameters

• Use pass by value when you are only using the parameter for some computation,
not changing it

Pass by Reference:
• Forwards the actual parameters

• Use pass by reference when you are changing the parameter passed in the program

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

“Pass by Value” “Pass by Reference”

“Pass by Value” “Pass by Reference”

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Function Declaration Function Declaration

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;

return 0;
}

Function Definition Function Definition

“Pass by Value” “Pass by Reference”

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Function Calling Function Calling

“Pass by Value” “Pass by Reference”

Another way for “Pass by Reference”

#include <iostream>
using namespace std;

int add(int &a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Reference Variable:
Reference variable is an alias for a variable which is
assigned to it.

Different from pointer:
• The reference variable can only be initialized at the time

of its creation

• The reference variable returns the address of the
variable preceded by the reference sign ‘&’

• The reference variable can never be reinitialized again in
the program

• The reference variable can never refer to NULL

• Copy constructor are used when:
• Initializing an object at the time of creation using another object

• When an object is passed by value to a function

Back to Copy Constructor

void func1(Rectangle rect)
{

…
}
void main()
{

Rectangle a;
Rectangle b = a;

func1(a);

}

• Example:

• Copy constructor are used when:
• Initializing an object at the time of creation using another object

• When an object is passed by value to a function

Copy Constructor

void func1(Rectangle rect)
{

…
}
void main()
{

Rectangle a;
Rectangle b = a;

func1(a);

}

• Example:

Rectangle::Rectangle(Rectangle const &rect)
{

width = rect.width;
height = rect.height;

}

• Syntax:

Because if it's not by reference,
it's by value. To do that you make
a copy, and to do that you call
the copy constructor.

You would have infinite recursion
because "to make a copy, you
need to make a copy".

Shallow Copy vs Deep Copy

Copy Constructor

Shallow copying is creating a new object and then copying the data
members of the Original Object to the Copied Object.

If the data members is a reference type, the reference is copied but the
referred object is not, therefore the original object and its clone refer
to the same object.

Shallow Copy

Memory

Original Object Copied Object

Heap

Example

class Rectangle{

public:
int *width, *height;
Rectangle();
Rectangle(Rectangle const& rect);

};

Rectangle::Rectangle()
{

width = new int[10];
height = new int[10];

}

Rectangle::Rectangle(Rectangle const& rect)
{

width = rect.width;
height = rect.height;

}

int main()
{

Rectangle a;
Rectangle b = a;

a.width[0] = 10;
cout << b.width[0];

}

10

reference type

Shallow Copy

width[10]
height[10]

Rectangle a Rectangle b

Heap

Deep Copy

10

Rectangle::Rectangle(Rectangle const& rect)
{

width = new int[10];
height = new int[10];

for (int i = 0; i < 10; i++)
{

width[i] = rect.width[i];
height[i] = rect.height[i];

}
}

int main()
{

Rectangle a;
Rectangle b = a;

a.width[0] = 10;
b.width[0] = 20;
cout << a.width[0];

}

Deep Copy

width[10]
height[10]

Rectangle a Rectangle b

width[10]
height[10]

Deep copying is creating a new
object and then copying the data
members of the Original Object to
the Copied Object.

If the data members is a reference
type, a new copy of the referred
object is performed. A deep copy of
an object is a new object with
entirely new instance variables, it
does not share objects with the old.

Heap Heap

• Copy constructor is normally used to perform deep copy

• If we do not make a copy constructor then the compiler
performs shallow copy

Copy Constructor (contd.)

• Question

MyClass t1, t2;
MyClass t3 = t1; // ----> (1)
t2 = t1; // -----> (2)

Copy Constructor (contd.)

Which of the following two statements call copy constructor and
which one calls assignment operator?

this Pointer

this Pointer

class Rectangle
{

int width, height;
public:

void set_width(int a);
void set_height(int b);
int area();

};

void Rectangle::set_width(int a)
{

width = a;

}

void Rectangle::set_height(int b)
{

height = b;

}

int Rectangle::area()
{

return width * height;
}

this Pointer

• The compiler reserves space for the functions defined
in the class

• Space for data is not allocated (since no object is yet
created)

•Rectangle r1, r2, r3;

Function Space
set_width(), …

r1(width,…)

r2(width,…)

r3(width,…)

this Pointer

• Function space is common for every object

• Whenever a new object is created:
• Memory is reserved for variables only
• Previously defined functions are used over and over again

this Pointer

• Memory layout for objects created:

r1

width, …

Function Space

set_width(), …

r2

width, …

r3

width, …

How does the functions know on which object to act?

this Pointer

• Address of each object is passed to the calling function

• This address is deferenced by the functions and hence they act on
correct objects

address

r1

width, …

r2

width, …

r3

width, …

r4

width, …

address address address

The variable containing the “self-address” is called this pointer

this Pointer

Passing this Pointer

• Whenever a function is called the this pointer is passed as a
parameter to that function

• Function with n parameters is actually called with n+1 parameters

Example

void Rectangle::set_width(int a)

is internally represented as

void Rectangle::set_width(int a, Rectangle* const this)

Compiler Generated Code

Rectangle::set_width(int a)

{

width = a;

}

is internally represented as

Rectangle::set_width(int a, Rectangle* const this)

{

this->width = a;

}

this Pointer

There are situations where designer wants
to use this pointer explicitly

class Rectangle
{

int width, height;
public:

void set_width(int width);
void set_height(int height);
int area();

};

void Rectangle::set_width(int width)
{

width = width;

}

void Rectangle::set_height(int height)
{

height = height;

}

int Rectangle::area()
{

return width * height;
}

Case 1: When local variable’s name is same as member’s name

Case 1: When local variable’s name is same as member’s name

class Rectangle
{

int width, height;
public:

void set_width(int width);
void set_height(int height);
int area();

};

void Rectangle::set_width(int width)
{

this->width = width;

}

void Rectangle::set_height(int height)
{

this->height = height;

}

int Rectangle::area()
{

return width * height;
}

Case 2: To return reference to the calling object

class Rectangle
{

int width, height;
public:

Rectangle& set_width(int width);
Rectangle& set_height(int height);
int area();

};

Rectangle& Rectangle::set_width(int width)
{

this->width = width;
return *this;

}

Rectangle& Rectangle::set_height(int height)
{

this->height = height;
return *this

}

int Rectangle::area()
{

return width * height;
}

Case 2: To return reference to the calling object

class Rectangle
{

int width, height;
public:

Rectangle& set_width(int width);
Rectangle& set_height(int height);
int area();

};

Rectangle& Rectangle::set_width(int width)
{

this->width = width;
return *this;

}

Rectangle& Rectangle::set_height(int height)
{

this->height = height;
return *this

}

int Rectangle::area()
{

return width * height;
}

int main()
{

Rectangle r1;
r1.set_width(10).set_height(10);
cout << r1.area();
return 0;
}

Case 2: To return reference to the calling object

class Rectangle
{

int width, height;
public:

Rectangle& set_width(int width);
Rectangle& set_height(int height);
int area();

};

Rectangle& Rectangle::set_width(int width)
{

this->width = width;
return *this;

}

Rectangle& Rectangle::set_height(int height)
{

this->height = height;
return *this

}

int Rectangle::area()
{

return width * height;
}

int main()
{

Rectangle r1;
r1.set_width(10).set_height(10);
cout << r1.area();
return 0;
}

When a reference to a local object is returned, the
returned reference can be used to chain function

calls on a single object.

If you are taking a Nap, wake up........Lecture Over

Thanks a lot

	Slide 1
	Slide 2
	Slide 3
	Slide 4: “Pass by Value” and “Pass by Reference”
	Slide 5: “Pass by Value” “Pass by Reference”
	Slide 6: “Pass by Value” “Pass by Reference”
	Slide 7: “Pass by Value” “Pass by Reference”
	Slide 8: “Pass by Value” “Pass by Reference”
	Slide 9: Another way for “Pass by Reference”
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: this Pointer
	Slide 22: this Pointer
	Slide 23: this Pointer
	Slide 24: this Pointer
	Slide 25: this Pointer
	Slide 26: this Pointer
	Slide 27: Passing this Pointer
	Slide 28: Example
	Slide 29: Compiler Generated Code
	Slide 30: this Pointer
	Slide 31
	Slide 32: Case 1: When local variable’s name is same as member’s name
	Slide 33: Case 2: To return reference to the calling object
	Slide 34: Case 2: To return reference to the calling object
	Slide 35: Case 2: To return reference to the calling object
	Slide 36: Thanks a lot

