
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 3

Dr. Naveed Anwar Bhatti

Object-Oriented Programming in C++

• In an OO model, some of the objects exhibit
identical characteristics (information
structure and behavior)

• We say that they belong to the same class

3

Classes

Organisms

Humans

M
am

m
als

• Ali studies mathematics

• Anam studies physics

• Sohail studies chemistry

• Each one is a Student

• We say these objects are instances of the Student class

4

Few More Examples – Class

5

Few More Examples – Class

• Ahsan teaches mathematics

• Aamir teaches computer science

• Atif teaches physics

• Each one is a Teacher

• We say these objects are instances of the Teacher class

(Class Name)(Class Name)

(states)(states)

(behavior)(behavior)

(Class Name)(Class Name)

Normal Form

Suppressed

Form

Graphical Representation of Classes

CircleCircle

• center

• radius

• center

• radius

Draw()

computeArea()

Draw()

computeArea()

Normal Form

Suppressed

Form

CircleCircle

7

Example - Graphical Representation of Classes

Normal Form

Suppressed

Form

PersonPerson

• Name

• Age

• Gender

• Name

• Age

• Gender

Eat()

Walk()

Eat()

Walk()

PersonPerson

8

Example - Graphical Representation of Classes

Normal Form

Suppressed

Form

Class

• What is Class?

o Class is a blueprint from which individual objects are created

o An expanded concept of data structures: like data structures, they can
contain data members, but they can also contain functions as members.

Classname

Data Memebers

Member Functions

Rectangle

width
height

setValues()
area()

Circle

radius
color

getRadius()
area()

C
la

s
s

• Member functions are the functions that operate on the data
encapsulated in the class

• Public member functions are the interface to the class

Member Functions

• Member functions are the functions that operate on the data
encapsulated in the class

• Public member functions are the interface to the class

Member Functions

????

• Member functions are the functions that operate on the data
encapsulated in the class

• Public member functions are the interface to the class

Member Functions

????

o Class members (both data and functions)can restrict their access
through access specifiers

Classes Intro: Access Specifier

• An access specifier determines what kind of access do you
want to give to class members

• Access can be of three types:

• Private: members of a class are accessible only from within the same
class

• Protected: members of a class are not accessible outside of its
members, but is accessible from the members of any class derived from
same class

• Public: members are accessible from anywhere where the object is
visible

Class definition

• A class definition starts with the keyword class followed by the
class name

Class definition

• Complete example:

Accessor
Functions

• Define member function inside the class definition

OR
• Define member function outside the class definition

• But they must be declared inside class definition

Member Functions (contd.)

Class: Scope Operator

• Outside Class:

Scope Operator

#include <iostream>
using namespace std;
class Student
{

int rollNo;
public:
void setRollNo(int aRollNo);

};

void Student::setRollNo(int aRollNo)
{

rollNo = aRollNo;
}

Class: Scope Operator

• Another Example:

Scope Operator

Inline Functions

• Instead of calling an inline function compiler replaces the code at the
function call point

• Keyword ‘inline’ is used to request compiler to make a function inline

Inline Functions

Example

#include <iostream>
using namespace std;

inline void hello()
{

cout << "Hello World";
}

int main()
{

hello();
}

#include <iostream>
using namespace std;

int main()
{

cout << "Hello World";
}

• It is a request and not a command. Compiler may not perform inlining
in such circumstances like:

1. If a function contains a loop. (for, while, do-while)

2. If a function contains static variables.

3. If a function is recursive.

4. If a function contains switch or goto statement.

Inline Functions

Inline Functions – Advantages and Disadvantages

1. Function call overhead doesn’t occur.
2. It also saves the overhead of push/pop variables on the stack when

function is called.
3. It also saves overhead of a return call from a function.

1. Too many inline functions will increase the size of the binary executable because
of the duplication of same code.

2. Inline function may increase compile time overhead. If someone changes the
code inside the inline function then all the calling location has to be recompiled.

3. Inline functions may not be useful for many embedded systems. Because in
embedded systems code size is more important than speed.

Advantages:

Disadvantages:

• If we define the function inside the class body then the function is by
default an inline function

• In case function is defined outside the class body then we must use
the keyword ‘inline’ to make a function inline

Inline Functions and Classes

#include <iostream>
using namespace std;
class Student
{

int rollNo;
public:
inline void setRollNo(int aRollNo);

};

inline void Student::setRollNo(int aRollNo)
{

rollNo = aRollNo;
}

Example

Constructor & Destructor

Back to this example

What would happen if we called member function area() before
having called set_values(int, int)?

Class: Constructor

• Class can include a special function called its constructor

• Constructor is used to ensure that object is in well defined state at the time
of creation

• Automatically called when new object is created, allowing class to initialize
member variables or (allocate storage). Cannot be call explicitly

• Declared just like regular member function, but with a name that matches
the class name and without any return type; not even void

Class: Constructor

• Example:

• Constructor without any argument is called default constructor

• If we do not define a default constructor the compiler will generate a
default constructor

• Compiler created default constructor has empty body, i.e., it doesn’t
assign default values to data members

• Example

Default Constructor

Class: Constructors Overloading

• Constructors Overloading is derived from Function Overloading

• What is Function Overloading?

o Two functions can have the same name if their parameters are

different;

❖ either because they have a different number of parameters

❖ or because any of their parameters are of a different type

Function Overloading

• Example

Function Overloading

• Another example
Function cannot be

overloaded only by its
return type. At least one
of its parameters must
have a different type.

Class: Constructors Overloading

• Back to Constructor Overloading;

o Like function, constructor can also be overloaded with different versions
taking different parameters

Class: Constructors Overloading

• Complete Example

Is called “default
constructor”.

• Use default parameter value to reduce the writing effort

Class: Constructors Overloading

Rectangle::Rectangle(int a=0, int b=0)
{

width = a;
height = b;

}

• Is equivalent to

Rectangle::Rectangle()

Rectangle::Rectangle(int a)

Rectangle::Rectangle(int a, int b)

Class: Destructor

• Automatically called when class object passes out of scope or is explicitly
deleted

• Mainly used to de-allocate the memory that has been allocated for the
object by the constructor (or any other member function).

• Syntax is same as constructor except preceded by the tilde sign

• Neither takes any arguments nor does it returns value

• Can’t be overloaded

Class: Destructor

• Example (out-of-scope)

Class: Destructor

• Example (out-of-scope)

Class: Destructor

• Example (out-of-scope)

Class: Destructor

• Example (delete) int main() {
Rectangle *rect= new Rectangle;
delete rect;
return 0;

}

Class: Destructor

• Example (when its useful)

Constructor & Destructor

Sequence of Calls

• [Again Remember] Constructors and destructors are called
automatically

• Constructors are called in the sequence in which object is
declared

• Destructors are called in reverse order

Sequence of Calls

Sequence of Calls

#include <iostream>
using namespace std;

class Sequence {
int check;

public:
Sequence(int a);
~Sequence();

};

Sequence::Sequence(int a)
{

check = a;
cout << "I am in constructor " << check << endl;

}

Sequence::~Sequence()
{

cout << "I am in destructor " << check << endl;
}

int main()
{
Sequence rect1(1);
Sequence rect2(2);

return 0;
}

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Class
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Classes Intro: Access Specifier
	Slide 14: Class definition
	Slide 15: Class definition
	Slide 16
	Slide 17: Class: Scope Operator
	Slide 18: Class: Scope Operator
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Back to this example
	Slide 28: Class: Constructor
	Slide 29: Class: Constructor
	Slide 30
	Slide 31: Class: Constructors Overloading
	Slide 32: Function Overloading
	Slide 33: Function Overloading
	Slide 34: Class: Constructors Overloading
	Slide 35: Class: Constructors Overloading
	Slide 36
	Slide 37: Class: Destructor
	Slide 38: Class: Destructor
	Slide 39: Class: Destructor
	Slide 40: Class: Destructor
	Slide 41: Class: Destructor
	Slide 42: Class: Destructor
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Thanks a lot

