Object Oriented Programming

Lecture 3

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Object-Oriented Programming in C++

N Classes

* In an OO model, some of the objects exhibit
identical characteristics (information

structure and behavior)
Organisms -

* We say that they belong to the same class

Y

S|eWWwe|Al

Few More Examples — Class

 Ali studies mathematics
 Anam studies physics
e Sohail studies chemistry

* Each one is a Student
* We say these objects are instances of the Student class

Few More Examples — Class

e Ahsan teaches mathematics
 Aamir teaches computer science
* Atif teaches physics

* Each one is a Teacher
* We say these objects are instances of the Teacher class

Graphical Representation of Classes

(Class Name)
(Class Name)

(states)

Suppressed

(behavior) Form

Normal Form

Example - Graphical Representation of Classes

Circle
* center
°_radius Suppressed
Draw() Form

computeArea()

Normal Form

Example - Graphical Representation of Classes

Suppressed
Form

Normal Form

Class
I W N

* What s Class?
o Class is a blueprint from which individual objects are created

o An expanded concept of data structures: like data structures, they can
contain data members, but they can also contain functions as members.

Classname Rectangle Circle
W
n width radius
O Data Memebers height e
O Member Functions setValues() getRadius()

area() areal()

Member Functions

* Member functions are the functions that operate on the data
encapsulated in the class

e Public member functions are the interface to the class

Member Functions

* Member functions are the functions that operate on the data
encapsulated in the class

Public member functions

27?77

re the interface to the class

Member Functions

* Member functions are the functions that operate on the data
encapsulated in the class

Public member functions

27?77

re the interface to the class

o Class members (both data and functions)can restrict their access
through access specifiers

Classes Intro: Access Specifier

* An access specifier determines what kind of access do you
want to give to class members

* Access can be of three types:

* Private: members of a class are accessible only from within the same
class

* Protected: members of a class are not accessible outside of its
members, but is accessible from the members of any class derived from

same class

* Public: members are accessible from anywhere where the object is
visible

Class definition

* A class definition starts with the keyword class followed by the
class name

class Rectangle { class Rectangle {

int width, height; private:
. int width, height;
public: blic:
vold set values(int a, int b) pUBLLE: . .
r - void set wvalues(int a, int b)
. i
w1ﬁth = d width = a;
height = b; height = b;
; }
int area(wvoid) int area(void)
i {
return width * height; return width * height;
} }

I3 }s

Class definition

* Complete example:

class Rectangle { Acces.sor
int width, height; Functions
pUHllci : . int main()
voldhset wvalues(int a, int b /
i

Rectangle rect;

WIqth - rect.set wvalues(3, 4);
height = b; R .o
) cout << "area: << rect.areal();
return @,
int area(void) i
i
return width * height;
}

ts

Member Functions (contd.)

 Define member function inside the class definition

OR

 Define member function outside the class definition
e But they must be declared inside class definition

Class: Scope Operator

 Qutside Class: class Rectangle {
int width, height;
public:

vold set wvalues(int, int);
int areal);
}. : Scope Operator

vold He-:-_aﬂg'_et_'ufalu'aﬂ(int ¥, 1nt v) {
width = x;
height = v;

)

int Rectangle::area(void) {
return width * height;

)

Class: Scope Operator

 Another Example:

#include <iostream>
using namespace std;
class Student

{
int rollNo;
public:
void setRollNo(int aRollNo);
}; Scope Operator
J

void StudentRollNo(int aRol1No)
{

rollNo = aRollNoj;
}

Inline Functions

Inline Functions

* Instead of calling an inline function compiler replaces the code at the
function call point

* Keyword ‘inline’ is used to request compiler to make a function inline

Example

B = I
#include <iostream> #include <iostream>
using namespace std; using namespace std;

inline void hello()

{
¥

int main()

{
}

cout << "Hello World";

[cout << "Hello World";]

int main()

{
}

[hello();]

Inline Functions
I W N

* It is a request and not a command. Compiler may not perform inlining
in such circumstances like:

If a function contains a loop. (for, while, do-while)
If a function contains static variables.

If a function is recursive.

If a function contains switch or goto statement.

B w N

Inline Functions — Advantages and Disadvantages

Advantages:

1. Function call overhead doesn’t occur.

2. It also saves the overhead of push/pop variables on the stack when
function is called.

3. It also saves overhead of a return call from a function.

Disadvantages:

1. Too many inline functions will increase the size of the binary executable because
of the duplication of same code.

2. Inline function may increase compile time overhead. If someone changes the
code inside the inline function then all the calling location has to be recompiled.

3. Inline functions may not be useful for many embedded systems. Because in
embedded systems code size is more important than speed.

Inline Functions and Classes

* If we define the function inside the class body then the function is by
default an inline function

* In case function is defined outside the class body then we must use
the keyword ‘inline’ to make a function inline

Example

#Hinclude <iostream>
using namespace std;
class Student

{

int rollNo;

public:

inline void setRollNo(int aRollNo);
¥

inline void Student::setRollNo(int aRollNo)
{

¥

rollNo = aRollNo;

Constructor & Destructor

Back to this example

What would happen if we called member function area() before
having called set_values(int, int)?

class Rectangle {
int width, height;

public: int main()
volid set walues(int a, int b) 1
1 Rectangle rect;
width = a;
height = b; cout << "area: " << rect.area();
t return 8;
]
int area(wvoid)
i
return width * height;
}

b

Class: Constructor

e C(Class can include a special function called its constructor

* Constructor is used to ensure that object is in well defined state at the time
of creation

 Automatically called when new object is created, allowing class to initialize
member variables or (allocate storage). Cannot be call explicitly

* Declared just like regular member function, but with a name that matches
the class name and without any return type; not even void

Class: Constructor

Example:

class Rectangle {
int width, height;

public:
Rectangle(int, int); _
vold set wvalues(int, int);
int area();

}s

Rectangle::Rectangle(int a, int b) {

width = a; —

height = b;

}

vold Rectangle::set values(int x, int vy) {
width = x;
height = v;

}

int Rectangle::area(void)} {
return width * height;

}

int main() {

Rectangle rect(3,4);

cout << "area:
return @;

" << rect.area();

Default Constructor

* Constructor without any argument is called default constructor

* If we do not define a default constructor the compiler will generate a
default constructor

* Compiler created default constructor has empty body, i.e., it doesn’t
assign default values to data members

* Example ;. . .1c::Rectangle() {
width = 5;
height = 5;

Class: Constructors Overloading

Constructors Overloading is derived from Function Overloading

* What is Function Overloading?

o Two functions can have the same name if their parameters are

different;

N/

** either because they have a different number of parameters

N/

** or because any of their parameters are of a different type

Function Overloading

E— -
e Example
#include <iostream?> int main()
using namespace std; 1
int x =5, yv = 2;

int operate(int a, int b) double n = 5.8, m = 2.0;
{ cout << operate(x, y) << "\n';

return (a * b); cout << operate(n, m) << "\n';
¥ return 9;

¥

double operate(double a, double b)
1

¢ Microsoft Visual Studio

return (a / b);

Function Overloading

Function cannot be
e Another exam ple overloaded only by its
return type. At least one
_ of its parameters must
USINE NamespaC gy have a different type.

#include <i1ostream®

int operate(int a, int b) int main()
{ 1

return (a * b); int x =5, vy =2, z = 3;
¥ double n = 5.8, m = 2.8;

cout << operate(x, y)} << "\n';
int operate(int 2, int b, int c) cout << operate(x, y, z) <<
\ cout << operate(n, m) << '"\n';

return (a2 ¥ b ¥ c):
()s return 8;

[€8] Microsoft Visual Studio Debug

double operate(double z, double b)
1 18

return (a2 / b); 30

|
A

Class: Constructors Overloading

* Back to Constructor Overloading;

o Like function, constructor can also be overloaded with different versions
taking different parameters

Rectangle: :Rectangle() {

width = 5;
height = 5;
¥
Rectangle: :Rectangle(int 2, int b) {
width = a;
height = b;

Class: Constructors Overloading

e Complete Example

class Rectangle {

int width, height; int Rectangle::area() {
public: return width * height;

Rectangle(); I

Rectangle(int, int);

int area(); Is called “default int main() {
¥ constructor”. Rectangle rect(3, 4);
Rectangle rectb;

Rectangle: :Rectangle() { cout << "rect area: " << rect.area() << endl;
width = 5: cout << "rectb area: " << rectb.area() << endl;
height = 5; return @;

i ¥

Rectangle::Rectangle(int a2, int b) { 4] Microsoft Visual Studio Debug Console
width = a;
height = b; rect area: 127

} rectb area:

Class: Constructors Overloading

* Use default parameter value to reduce the writing effort

Rectangle::Rectangle(int a=0, int b=0)

{
width = a;
height = b;
¥

* |s equivalent to

Rectangle::Rectangle()
Rectangle: :Rectangle(int 2a)

Rectangle::Rectangle(int a, int b)

Class: Destructor

 Automatically called when class object passes out of scope or is explicitly
deleted

 Mainly used to de-allocate the memory that has been allocated for the
object by the constructor (or any other member function).

* Syntax is same as constructor except preceded by the tilde sign

* Neither takes any arguments nor does it returns value

e (Can’t be overloaded

Class: Destructor

 Example (out-of-scope)

class Rectangle {
int width, height;

public:
Rectangle();
~Rectangle();
¥

Rectangle: :Rectangle() {
cout << "Hey look I am in constructor" << endl;

—

Rectangle::~Rectangle() {

cout << "Hey look I am in destructor"™ << endl;

int main()} {

I am 1n constructor

I am 1n destructor

Class: Destructor

I W .
 Example (out-of-scope) int main() {
Rectangle *rect;

class Rectangle { return @;

int width, height; K
public:

Rectangle();

~Rectangle();
¥

Rectangle: :Rectangle() {
cout << "Hey look I am in constructor" << endl;

—

Rectangle: :~Rectangle() {
cout << "Hey look I am in destructor"™ << endl;

Class: Destructor

* Example (out-of-scope)

class Rectangle {
int width, height;
public:
Rectangle();
~Rectangle();

¥;

— |
g ~% F% i T
neCtangle

: :Rectangle() {
"Hey look I am in constructor” << endl;

—

. :~Rectangle() {

"Hey look I am in destructor" << endl;

int main() {
ngle *rect= new Rectan
9;

s

return

Hey look I am 1n constructor

|
—

3

Class: Destructor

D -
 Example (delete) int main() {
Rectangle *rect= new Rectangle;

class Rectangle { delete rect;

int width, height; return 0;
public: }

Rectangle();

~Rectangle();
¥

am 1n constructor

Rectangle: HectanglE[} 1 i .

cout << "Hey look I am in constructor” << endl; ¥ LR am 1n destructor
¥
Rectangle: :~Rectangle() {

cout << "Hey look I am in destructor" << endl;

Class: Destructor

D -
Example (when its useful)

class Rectangle {

L
=

int main() {

int *width, *height; return @
public:

¥
Rectangle();

~Rectangle();
¥

Rectangle: :Rectangle() {

cout << "Hey look I am in constructor" << endl; I am 1n constructor
width = new int[18];

ey look I am 1n destructor
height = new int[10];

T

angle: :~Rectangle() {

™
al =T,
=

k. T

cout << "Hey look I am in destructor" << endl;
delete [] width;

delete [] height;

Sequence of Calls

Constructor & Destructor

Sequence of Calls

* [Again Remember] Constructors and destructors are called
automatically

* Constructors are called in the sequence in which object is
declared

e Destructors are called in reverse order

Sequence of Calls

#tinclude <iostream>

using namespace std;

int main()

class Sequence { {

int check;

Sequence rectl(1);

public: Sequence rect2(2);
Sequence(int a);
~Sequence(); return 0;
}s }
Sequence: :Sequence(int a)
{
check = a;
cout << "I am in constructor " << check << endl;
h ¢4 Microsoft Visual Studio Debug Console
Sequence: :~Sequence() I am in constructor 1
{ I am 1in constructor 2
cout << "I am in destructor " << check << endl; I am 1n destructor 2
} I am in destructor 1

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Class
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Classes Intro: Access Specifier
	Slide 14: Class definition
	Slide 15: Class definition
	Slide 16
	Slide 17: Class: Scope Operator
	Slide 18: Class: Scope Operator
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Back to this example
	Slide 28: Class: Constructor
	Slide 29: Class: Constructor
	Slide 30
	Slide 31: Class: Constructors Overloading
	Slide 32: Function Overloading
	Slide 33: Function Overloading
	Slide 34: Class: Constructors Overloading
	Slide 35: Class: Constructors Overloading
	Slide 36
	Slide 37: Class: Destructor
	Slide 38: Class: Destructor
	Slide 39: Class: Destructor
	Slide 40: Class: Destructor
	Slide 41: Class: Destructor
	Slide 42: Class: Destructor
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Thanks a lot

