
Object Oriented Programming

Webpage: naveedanwarbhatti.github.io

Lecture 2

Dr. Naveed Anwar Bhatti

Object Oriented Modeling
Concepts

• Model

• Object Oriented Model

• Object
• State

• Behavior

• Identity

3

Last Class

Fields
Stores

Interfaces

Implementation

Exposes their
functionality through

Change internal state

• Abstraction is a way to cope with complexity.

• Principle of abstraction:

“ Capture only those details about an object that are relevant to
current perspective ”

4

Abstraction (Revised)

5

Abstraction - Example

unclassified “organisms" organisms, mammals, humans organisms, mammals,

dangerous mammals

6

Abstraction - Example

unclassified "things" organisms, mammals, humans organisms, mammals,

dangerous mammals

The selection of significant attributes (to allow us to classify the

items that possess them) is abstraction

• Simplifies the model by hiding irrelevant details

• Abstraction provides the freedom to defer implementation decisions
by avoiding commitment to details

7

Abstraction – Advantages

• In an OO model, some of the objects exhibit
identical characteristics (information
structure and behavior)

• We say that they belong to the same class

8

Classes

Organisms

Humans

M
am

m
als

• Ali studies mathematics

• Anam studies physics

• Sohail studies chemistry

• Each one is a Student

• We say these objects are instances of the Student class

9

Few More Examples – Class

10

Few More Examples – Class

• Ahsan teaches mathematics

• Aamir teaches computer science

• Atif teaches physics

• Each one is a Teacher

• We say these objects are instances of the Teacher class

(Class Name)(Class Name)

(states)(states)

(behavior)(behavior)

(Class Name)(Class Name)

Normal Form

Suppressed

Form

Graphical Representation of Classes

CircleCircle

• center

• radius

• center

• radius

Draw()

computeArea()

Draw()

computeArea()

Normal Form

Suppressed

Form

CircleCircle

12

Example - Graphical Representation of Classes

Normal Form

Suppressed

Form

PersonPerson

• Name

• Age

• Gender

• Name

• Age

• Gender

Eat()

Walk()

Eat()

Walk()

PersonPerson

13

Example - Graphical Representation of Classes

Normal Form

Suppressed

Form

User-defined data types
This leads us to:

Lets get into programming!

User defined data types

• The data types that are defined by the user are called:
• derived datatype or
• user-defined derived data type or
• user-defined data type)

• These types include:

❑ Enum
❑ Typedef
❑ Structure
❑ Union
❑ Class

User defined data types

• The data types that are defined by the user are called:
• derived datatype or
• user-defined derived data type or
• user-defined data type)

• These types include:

❑ Enum
❑ Typedef
❑ Structure
❑ Union
❑ Class

Typedef

• Allows you to define explicitly new data type names by using
the keyword typedef

• Does not actually create a new data class, rather it defines a
name for an existing type

Output: Y O

Structures

• A struct (structure) is a collection of information of different
data types (heterogeneous). The fields of a struct are referred
to as members.

• Defining a Structure:

struct StructName

{

dataType memberName;

…

…

};

Example:

Structures

• Two ways to create instance of Structure and accessing the
Data Members

Option 1 Option 2

Structure definition must
be followed either by a

semicolon or a list of
declarations

Output:

Passing structure to function

• Exercise: Find the output of the following program

Nested Structures

• Example

Structures

• Example
(continued…)

Structures (Recap)

• Some important points to remember:

❑ Aggregate I/O is not allowed. I/O must be performed on a member by member

basis.

❑ Aggregate assignment is allowed. All data members (fields) are copied (if both

structure variables are of same type)

❑ Aggregate arithmetic is not allowed.

❑ Aggregate comparison is not allowed. Comparisons must be performed on a

member by member basis.

❑ A struct is a valid return type for a value returning function.

Passing structure to function

• Example of comparison:

Passing structure to function

• Example of addition:

Output:

Fraction add(Fraction a, Fraction b)
{

Fraction temp;
temp.numerator = a.numerator * b.denominator

+ a.denominator * b.numerator;
temp.denominator = a.denominator *
b.denominator;

return temp;
}

Pointers to Structure

Here is how you can create pointer for structures:

Pointers (Recap)

1. Pointer variables int *p, *q;

2. Static allocation int x;

3. Address-of operator p = &x;

4. Memory cell to which P points *p = 6;

5. Pointer operations q = p;

? ? ?

p q x

? ?

p q x

? 6

p q x

1 and 2 3 4

6

p q x

5

Memory Allocation

• Dynamic memory allocation is necessary because, during
compile time, we may not know the exact memory needs
to run the program.

• C++ also does not have automatic garbage collection.
Therefore a programmer must manage all dynamic memory
used during the program execution

new malloc()

delete[] free()

Memory Allocation

new / delete[] malloc() / free()

return void *Return same pointer
type

Is a operator

stdlib function

Allocate memory and
calls constructor
for initialization

Allocate memory and
Does not calls constructor

/ realloc()

Memory Allocation (2D array)

new / delete[] malloc() / free()

YOUR TURN

Pointers to Structure

Here is how you can create pointer for structures:

Pointers to Structure

• Example
Note: Since pointer ptr is pointing to

variable d in this program, (*ptr).inch and
d.inch is exact same cell. Similarly,

(*ptr).feet and d.feet is exact same cell.

The syntax to access member function using
pointer is ugly and there is alternative
notation -> which is more common..

ptr->feet is same as (*ptr).feet
ptr->inch is same as (*ptr).inch

Pointers to Structure

• Example

Can you tell me the sizeof(ptr)?

Passing Structure Array to Function

Option 1

void myFunction(StudentRecord Student[10])
{

.

.

.
}

void myFunction(StudentRecord Student[], int size)
{

.

.

.
}

Option 1

Unions

• A union is comprised of two or more variables that share the
same memory location.

• A union declaration is similar to that of a structure, as shown
below:

union example

{

int a;

double b;

char c;

};

Unions

• Be clear on one point: It is not possible to have
this union hold both an integer and a character at
the same time, because count and ch overlay
each other.

• Advantage of union?

Output:
union as chars: XY
union as integer: 22872

• Example

Unions

• Example

Can you tell me the output?

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: User defined data types
	Slide 16: User defined data types
	Slide 17: Typedef
	Slide 18: Structures
	Slide 19: Structures
	Slide 21: Passing structure to function
	Slide 22: Nested Structures
	Slide 23: Structures
	Slide 24: Structures (Recap)
	Slide 25: Passing structure to function
	Slide 26: Passing structure to function
	Slide 27: Pointers to Structure
	Slide 28: Pointers (Recap)
	Slide 29: Memory Allocation
	Slide 30: Memory Allocation
	Slide 31: Memory Allocation (2D array)
	Slide 32: Pointers to Structure
	Slide 33: Pointers to Structure
	Slide 34: Pointers to Structure
	Slide 35: Passing Structure Array to Function
	Slide 36: Unions
	Slide 37: Unions
	Slide 38: Unions
	Slide 39: Thanks a lot

