Object Oriented Programming

Lecture 2

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Object Oriented Modeling
Concepts

N Last Class

* Model

* Object Oriented Model

* Object
J Stores Change internal state
e State g Fields
e Behavior
i Implementation
 |dentity

Exposes M

functionality through

Abstraction (Revised)
I W | NN
e Abstraction is a way to cope with complexity.
* Principle of abstraction:

“ Capture only those details about an object that are relevant to
current perspective ”

N Abstraction - Example

Big Al

. Y, .
\ / \. y, \.

unclassified “organisms" organisms, mammals, humans organisms, mammals,
dangerous mammals

Abstraction - Example

I
4 N
Pine Eucalypt
.
)m, The selection of significant attributes (to allow us to classify the @
Jumbo . . . hhere Khan
items that possess them) is abstraction
Daisy Bugs
$ 4))
Jane John Big Al Jane John Big Al Jane John Big Al
S 7 \. J \. -,
unclassified "things" organisms, mammals, humans organisms, mammals,

dangerous mammals

Abstraction — Advantages

* Simplifies the model by hiding irrelevant details

* Abstraction provides the freedom to defer implementation decisions
by avoiding commitment to details

N Classes

* In an OO model, some of the objects exhibit
identical characteristics (information

structure and behavior)
Organisms -

* We say that they belong to the same class

Y

S|eWWwe|Al

Few More Examples — Class

 Ali studies mathematics
 Anam studies physics
e Sohail studies chemistry

* Each one is a Student
* We say these objects are instances of the Student class

Few More Examples — Class

e Ahsan teaches mathematics
 Aamir teaches computer science
* Atif teaches physics

* Each one is a Teacher
* We say these objects are instances of the Teacher class

10

Graphical Representation of Classes

(Class Name)
(Class Name)

(states)

Suppressed

(behavior) Form

Normal Form

Example - Graphical Representation of Classes

Circle
* center
°_radius Suppressed
Draw() Form

computeArea()

Normal Form

12

Example - Graphical Representation of Classes

Suppressed
Form

Normal Form

This leads us to:

User-defined data types

Lets get into programming!

User defined data types

 The data types that are defined by the user are called:
* derived datatype or
* user-defined derived data type or
* user-defined data type)

 These types include:

J Enum
J Typedef
J Structure
J Union
J Class

User defined data types

 The data types that are defined by the user are called:
* derived datatype or
* user-defined derived data type or
* user-defined data type)

 These types include:

J Enum
J Typedef
J Structure
J Union
J Class

Typedef

* Allows you to define explicitly new data type names by using
the keyword typedef

 Does not actually create a new data class, rather it defines a
name for an existing type

#include <iostream:>
using namespace std;

typedef char BYTE;

int main()
{ — Output: YO
BYTE bl, b2;
b1 B
b2 '0';
cout << bl << " " << b2;
return 8;

Structures

e A struct (structure) is a collection of information of different
data types (heterogeneous). The fields of a struct are referred
to as members.

* Defining a Structure: Example:
[struct StructName '! (struct StudentRecord '!
! ! ! !
| { | l { e g . I
; dataType memberName; i ; sTring Name; i
: i ; int id; i
: : : floeat CGPA; ;
o ; b [

Structures

 Two ways to create instance of Structure and accessing the
Data Members

Option 1 Option 2
Etruct S__LIEIEI"I__F!ECE"I:I Structure dEfinition mUSt ztruct S:LIdEH:HECDFd
{ be followed either by a String Name;

?‘-’iﬂg NETEL semicolon or a list of int id;

int 1d; declarations float CGPA;

B CGPA; I
@ int main()
int main() 1
{ <::EEE§EHTHECE’d StUdent;EE:::>

student_1.Name = "ALi";
student_1.id = @87;
student 1.CGPA = 3.9;

student_1.MName = "Ali";
student_1.id = @a87;
student 1.CGPA = 3.9;

return 8; return @;

Passing structure to function

* Exercise: Find the output of the following program

int main()

d
struct MyBox MyBox BL = { 18, 15, 5 }, B2, B3;
I o ++B1.height;
int length, breadth, height; dimension(B1);
}s E3 = B1;

++B3.1length;
B3.breadth++;
dimension(B3);

{ —]
cout << M.length << "x" << M.breadth << "x"; Bz = ?3,
BE2.height += 5;

cout << M.height << endl;
} B2.length--;

dimension(B2);

vold dimension(MyBox M)

Output: [EFEEEG
11x16x6

return 8;

18x16x11

Nested Structures

¢ Exal I lple #include <iostream> cout << "Enter Employee Name : ”;

using namespace std; cin >> E.Name;

struct Address cout << "Enter Employee Job : ";
I cin »>» E.Job;
int HouseNo;
cout << "Enter Employee House No. : ";

char City[25];

int PinCode; cin »» E.Add.HouseNo;

cout << "Enter Employee City : “;
cin »»> E.Add.City;

1s

struct Employee . . .
f cout << "Enter Employee Pin Code : ";

int Id; cin »»> E.Add.PinCode;

char Name[25];
char Job[25];
Address Add;

cout << endl << "Details of Employee : ";
cout << endl << "Employee ID: "<< E.Id;

. cout << endl << "Employee Name: " << E.Name;
g cout << endl << "Employee Job: " << E.Job;
. . cout << endl << "Employee House No.: " << E.Add.HouseNo;
int main() cout << endl << "Employee City: " << E.Add.City;
1) cout << endl << "Employee Pin Code: " << E.Add.PinCode;
=mployee E; cout << endl;
cout << "Enter Employee ID : "; return(@);

cin »» E.Id; }

Structures

E— -
° Example 8" Microsoft Visual Studic Debug Console
(continued...) Enter Employes

Enter Empluy" Name :

Enter Employee Job : Pr

Enter Employee House Hu. -
Enter Employee City : Islamabad
Enter Emplu, Pin Code : 11111

Details of Employee
Employee ID: 1
Employee MName: Nawe
Employee Job: Protfe
Employee House No.: _L
Employee City: Islamabad
Employee Pin Code: 11111

2L
5

Structures (Recap)

 Some important points to remember:

J Aggregate I/O is not allowed. |/O must be performed on a member by member
basis.
d Aggregate assignment is allowed. All data members (fields) are copied (if both

structure variables are of same type)

U

Aggregate arithmetic is not allowed.
J Aggregate comparison is not allowed. Comparisons must be performed on a
member by member basis.

d Astructis a valid return type for a value returning function.

Passing structure to function

 Example of comparison:

int main()

i
#include <iostream: StudentRecord Students[2];
#include <string>
using namespace std; Students[@].Name ="Naveed";
Students[@].1id = 7;
Students[@].CGPA =3.9;
struct StudentRecord
1 Students[1l].Mame = "Aali";
string Name; Students[1].id = 8;
int id; Students[1].CGPA = 4;
float CaPA;
. if (compare_name(Students[@], Students[1l]))
I cout << "Name Matched" << endl;
else
bool compare name(StudentRecord a, StudentRecord b) cout << "Name not Matched” << endl;
1
if (a.Mame == b.Name) return @;
return true; }
else
return false; B Microsoft Visual Studio Debug Console

} Name not Matched

Passing structure to function

 Example of addition:

struct Fraction int main()
1 1
float numerator;
float denominator;

Fraction numl, num2, result;

1 cout << “For 1st fraction," << endl;
* cout << "Enter numerator and denominator:™ << endl;
cin *» numl.numerator :> numl.denominator;

cout << endl << “"For 2Znd fraction,"” << endl;

Fraction add(Fraction a, Fraction b ,
(?) cout << “Enter numerator and denominator:™ << endl;

{) cin *» num2.numerator :»> num2.denominator;
Fraction temp;
temp.numerator = a.numerator * b.denominator result = add(numl, num2);

+ a.denominator * b.numerator; cout << "Sum = "<<result.numerator<<'/'<< result.denominator<<endl;
temp.denominator = a.denominator * IFor 1st fraction,
b.denominator; return @; Enter numerator and denominator:

) !

return temp;

} Output: For 2nd fraction,

Enter numerator and denominator:

Pointers to Structure

Here is how you can create pointer for structures:

#tinclude <iostream:>
using namespace std;
struct temp {

int 1ij;
float f;
¥
int main() {
temp *ptr;
return @;

Pointers (Recap)

—— e —
1. Pointer variables Int *p, *q;
2. Static allocation Int X;
3. Address-of operator p = &X;
4. Memory cell to which P points *p = 6;
5. Pointer operations g=p,
T
land2 | 2 ? ? 3 ? ? 4|7 ? 6
P9 X P9 X P 9 X
T
5071 | — 6

Memory Allocation

* Dynamic memory allocation is necessary because, during
compile time, we may not know the exact memory needs

to run the program.

hew malloc()

e (C++ also does not have automatic garbage collection.
Therefore a programmer must manage all dynamic memory
used during the program execution

delete[] free()

Memory Allocation

new / delete[]

int main() Return same pointer
1 type

int £
X =ir1t[11]j.
Is a operator

fgr (int 1 = 8; 1 <= 18; 1++)
x[1] = @.1%1;

delete[] x;
}

Allocate memory and
calls constructor
for initialization

int main()

i

malloc() / free() / realloc()

return void *

int *x;
x = (int*) 11 * sizeof(int));
for (int i A B3 \L <= 18; i++)

x[1] o @.1%1i;

stdlib function

free(x);

v

Allocate memory and
Does not calls constructor

Memory Allocation (2D array)

new / delete[] malloc() / free()

int main()

i
int rowCount = 18;
int colCount = 18;
int** a = new int*[rowCount]; YOUR TURN

for (int i = @; 1 < rowCount; ++1)
a[i] = new int[colCount];

for (int i = 8; 1 < rowCount; +4+1)
delete[] a[i];
delete[] aj;

Pointers to Structure

Here is how you can create pointer for structures:

#tinclude <iostream:>
using namespace std;
struct temp {

int 1ij;
float f;
¥
int main() {
temp *ptr;
return @;

Pointers to Structure

* Example
Note: Since pointer ptr is pointing to
variable d in this program, (*ptr).inch and
d.inch is exact same cell. Similarly,

#include <iostream>
using namespace std;

struct Distance

{ (*ptr).feet and d.feet is exact same cell.
int feet;
float inch;
HE
int main()
{ [
v o2 & The syntax to access member function using

pointer is ugly and there is alternative
cout << "Enter feet: "; . . .
cin 5> (*ptr).feet; notation -> which is more common..
cout **(;Ezt';'",i”;h’ E ptr->feet is same as (*ptr).feet
cin > ptr).inch; . . .
’ ptr->inch is same as (*ptr).inch

cout << "Displaying information.” << endl;
cout << "Distance = " << (*ptr).feet << " feet " << (¥ptr).inch << " inches"<<endl;
return 8;

Pointers to Structure

* Example

#include <iostream>

using namespace std; Can you tell me the sizeof(ptr)?

struct Distance

i

int feet;

float inch;

b

int main()

1
Distance *ptr, dj;
ptr = &d;

cout << "Enter feet: ";
cin »> (*ptr).feet;
cout << "Enter inch: "3
cin >» (*ptr).inch;

cout << "Displaying information.” << endl;
cout << "Distance = " << (*ptr).feet << " feet " << (¥ptr).inch << " inches"<<endl;
return 8;

Passing Structure Array to Function

@ -
Option 1 Option 1
void myFunction(StudentRecord Student[10]) void myFunction(StudentRecord Student[], int size)

{ {

Unions

* A union is comprised of two or more variables that share the
same memory location.

A union declaration is similar to that of a structure, as shown
below:

union example

{
Int a;
double b;
char ¢

Unions

* Example

#include <iostream>
using namespace std;

union example test

: short int count; * Be clear on one point: It is not possible to have

s char chizls this union hold both an integer and a character at

example test test; the same time, because count and ch overlay
each other.

int main() * Advantage of union?

1

test.ch[@] = "X';

test.ch[1l] = "Y';

cout << "unicn as chars: " << test.ch[@] << test.ch[l] << endl;
cout << "unicn as integer: " << test.count << endl;

return(@);

Unions

* Example

#include <iostream>
using namespace std;

union examplel {
int a;
float b;

char *c;

s

struct example2 {

int a; Can you tell me the output?
float b;

char *c3

155

int main()

cout<< sizeof(U)<< endl;
cout << sizeof(S) << endl;

return 8;

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: User defined data types
	Slide 16: User defined data types
	Slide 17: Typedef
	Slide 18: Structures
	Slide 19: Structures
	Slide 21: Passing structure to function
	Slide 22: Nested Structures
	Slide 23: Structures
	Slide 24: Structures (Recap)
	Slide 25: Passing structure to function
	Slide 26: Passing structure to function
	Slide 27: Pointers to Structure
	Slide 28: Pointers (Recap)
	Slide 29: Memory Allocation
	Slide 30: Memory Allocation
	Slide 31: Memory Allocation (2D array)
	Slide 32: Pointers to Structure
	Slide 33: Pointers to Structure
	Slide 34: Pointers to Structure
	Slide 35: Passing Structure Array to Function
	Slide 36: Unions
	Slide 37: Unions
	Slide 38: Unions
	Slide 39: Thanks a lot

