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A B S T R A C T

The proliferation of Internet of Things (IoT) based devices has led to a significant increase in their usage across
a broad range of application areas. However, the replacement and/or periodic maintenance of the billions
of conventional power supplies used by these systems is required on an annual basis, which raises serious
environmental and economic concerns. To subjugate these issues, transiently-powered embedded systems
(TPESs) make use of an ambient energy resource. However, the non-uniform availability of ambient energy
results in frequent system reboots. This problem can be mitigated by utilizing state checkpointing in non-
volatile memory, yet a high number of checkpoints can lead to excessive energy consumption. In this research,
a novel sleep mode-enabled multi-optimized intermittent computing method is proposed that combines data
sampling and memoization to reduce the number of checkpoints. The proposed method is validated using the
Microchip SAM-L11 embedded platform for the implementation of the Canny Edge Detection (CED) algorithm.
The results of the experiments indicate that the proposed method effectively reduces the number of checkpoints
for a given application by 50 percent in CED and maintains 70 percent accuracy in comparison to conventional
TPES checkpointing. It is believed that the proposed solution will have several exciting applications in both
the consumer market and industry.
1. Introduction

The systems of the future will involve trillions of Internet-of-Things
(IoT) devices that will sense and compute pragmatic operations all
around us [1–3]. The growth of IoT systems is augmented by factors
such as the fourth industrial revolution [4], technical advancements
in microelectronics [5,6], edge AI [7], and standardization of low
power communication protocols [8], etc. However, as the number of
IoT devices has increased in recent years, so has the volume of e-
waste, with depleted batteries being the primary contributor. These
depleted batteries contain a significant amount of hazardous, toxic, and
corrosive materials such as mercury, cadmium, lithium, and lead which
when soaked into the soil, during the coercion process, can have dire
effects on the environment [9]. Furthermore, monitoring and replacing
trillions of dead batteries every year not only increases the maintenance
costs but also overshadows the benefits of IoT and other internet-
connected devices. These issues prompted the scientific community to
look for innovative ways to reduce reliance on batteries, particularly in
the IoT domain.

Transiently-Powered Embedded Systems (TPES) have surfaced as a
potential solution to this problem. TPESs are battery-less devices that
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rely on ambient energy harvested from the environment and stored
in capacitors [10,11]. With these computing systems, the devices can
be engineered to operate battery-less using capacitors, which utilize
ambient energy to recharge [10].

However, ambient energy is not always consistent due to varying
environmental conditions. For example, in the case of a solar-powered
device, sunlight may not be available for a long period of time in
cloudy conditions. This may cause the harvested energy to deplete
to such a low level that the device stops functioning, leaving the
computational tasks incomplete. Therefore, a critical challenge faced
by battery-less energy harvesting systems is to ensure the completion
of tasks in unpredictable environments. Since the energy-less periods
are difficult to foresee therefore the task completion times are also
hard to predict [12,13]. Due to frequent reboots caused by the loss of
ambient energy, programs may corrupt or lose data, or fail to make
forward progress. To address this issue, checkpointing, a method where
applications save their current state to nonvolatile memory when the
battery level drops to a predefined threshold, has been proposed. Upon
system restart, the application restores the saved state and continues
its computational tasks [14–17]. A major drawback of checkpointing
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is the computational overhead due to writing and reading the state of
the system to and from memory. Excessive use of checkpointing can,
therefore, drain the energy that would otherwise be used for computing
and prevent the device from performing the desired computations.
Hence, it is preferred to avoid the frequent use of checkpointing for
TPESs [18,19].

Research has been carried out previously to identify methods for
increasing the efficiency of systems, which in turn results in the re-
duction of checkpoints. The previously proposed approaches either do
not target the energy harvesting systems [20], or demand hardware-
based modifications in the systems [21,22]. We aim to propose a
purely software-based solution that can be readily adopted on currently
available hardware platforms. In our previous work [23], we applied
memoization on a Kalman Filter application to show that optimization
methods can be effectively used to reduce the number of checkpoints
in a TPES. In this work, we propose a method that combines data sam-
pling, an approximation technique, with memoization to further reduce
the number of checkpoints. We evaluate the proposed Multi-OPtimized
Intermittent Computing technique, MOPTIC, on a Canny Edge Detec-
tor application running on SAM-L11 platform. Our experiments show
that the combination of data sampling and memoization significantly
enhances the application performance by considerably reducing the
number of checkpoints required for completing the computational task.
The proposed method also provides the user with an extra degree
of freedom to select the desired accuracy level by trading-off energy
consumption.

We also propose a novel combination of the MOPTIC approach
and the state-of-the-art sleep mode computing [24]. Experimental and
computational analyses of the worst-case scenario that we model in
our experiments demonstrate that the application of the proposed
method results in a significant reduction in checkpoints, indicative of
the guaranteed energy savings in the probable and best case. To the
best of our knowledge, the proposed MOPTIC-SM is a novel software-
based framework that we believe can have a profound impact on the
energy consumption, performance, and sustainability of the battery-less
IoT-based Transiently powered embedded systems.

The contributions of this work can be summarized as stated below:

[C1] We propose MOPTIC – Multi-Optimized Intermittent Comput-
ing – using a novel combination of data sampling and memoiza-
tion for reducing the number of checkpoints

[C2] We enhance MOPTIC - with Sleep Mode enabled mechanism
- MOPTIC-SM - which promises to be an effective method for
achieving a greater reduction in the number of checkpoints

[C3] We implement MOPTIC — on a real application and perform
comprehensive experiments to demonstrate its effectiveness

This article proceeds as follows. In the subsequent section, the pre-
vious research carried out in the domain of intermittent computing is
discussed. Section 3 elaborates multi-optimized intermittent approach
for TPESs. The Sleep mode-enabled multi-optimized intermittent com-
puting (MOPTIC-SM) approach on TPESs is presented in Section 4. In
Section 5, experimental manifestation and results of the benchmark
application are provided which is followed by the conclusion and future
directions in Section 6.

2. Related work

Transiently powered embedded systems operate on ambient energy,
and due to the inherent uncertainty in the availability of ambient
energy, software and hardware-based improvements are often required
to make these systems sustainable. We discuss some previous work
on checkpointing techniques, which, while orthogonal to what we
propose, is the key software-based technique that allows these systems
to save their state during power outages. We also look at approximate

computing techniques that improve the performance of transiently
powered systems by sacrificing accuracy for throughput. Furthermore,
we examine a sleep mode proposed in the literature to further reduce
the number of checkpoints.

There are several checkpointing techniques proposed in the liter-
ature. Bhatti and Mottola [11,17] proposed techniques such as Split,
Heap trekker, and Copy If-Change to checkpoint and restore a device’s
state on stable storage. Because of the distinctive performance versus
energy trade-off for each application scenario, there is no ‘‘one-size-fits-
all’’ solution. The performance of each presented technique depends
on factors such as the amount of data to handle, the layout of data
in memory, as well as an application’s read/write patterns. However,
they conclude that such ‘‘smarter’’ approaches for checkpointing have
a favorable effect only when the application operates with a relatively
small quantity of data between checkpoints.

Approximate computing techniques are commonly utilized for em-
bedded applications, due to the low computational capacity and limited
battery power available to such systems. The approximation method for
a particular application needs to be very carefully balanced, keeping in
view the performance versus energy trade-off. Mittal [25] presented
a detailed analysis of various approximation techniques, their need,
and respective application areas. Some of the presented techniques are
precision scaling, loop perforation, load value approximation, memo-
ization, skipping tasks and memory accesses, etc. All the above ap-
proximation techniques have been used in the past for the devices
which are powered by the grid or battery. Mittal highlighted the
opportunities and problems while using approximate computing for op-
timization, followed by a detailed literature survey on such techniques.
Mittal also stated that researchers will have to turn their attention to
general-purpose applications, thus extending the scope of approximate
computing to the entire spectrum of computing applications. Ganesan
et al. [22] proposed a hardware based approach for speeding up
computations using approximation methods at a lower granularity. The
authors also evaluated their technique on check-point based volatile
processors as well as on non-volatile processors, and reported a signif-
icant speed-up of 300%. In a recent work, Mishra et al. [21] employed
data sampling and memoization to reduce communication overheads in
an IoT application, but their approach needs support from additional
hardware for faster coreset formation.

The bulk of previous work done in approximate computing for em-
bedded systems targets platforms that are either continuously powered
by a grid/battery or in case of TPES employed hardware changes. In
our previous work [23], we implemented memoization on transiently
powered devices to analyze its effect on energy consumption. We
highlighted that memoization is a machine-independent, cross-platform
strategy for approximate computing that works during the run-time
of the application instead of compile time. The use of memoization
resulted in increased speed of the computation in exchange for storage
space, as it requires memory to store precalculated values.

When someone is finding it difficult to make a decision, we advise
them to sleep over it, and the idea seems to be applicable to TPES too!
Lukosevicius et al. [24] presented a method for reducing reliance on
checkpointing that employs a ’sleep’ state that is entered when the
system’s power supply is detected to be failing. It employs two distinct
thresholds, namely the sleep threshold and the checkpoint threshold.
The sleep threshold is set higher than the checkpointing threshold. If
the TPES’s power is restored and rises above the sleep threshold, the
system wakes up and resumes computation. This enables the system to
recover without needing to take a state checkpoint. As a result, the ap-
plication can focus on useful computations rather than checkpointing.
When the system is in sleep mode, a snapshot is taken if the supply
voltage continues to fall and reaches the checkpoint threshold. This
method is effective in situations where the harvester output fluctuates
rapidly, for example when powering from vibrations or RF signals, etc.

The previous work discussed above separately focused on the use
of checkpointing, approximate computing and sleep mode in different

domains, while some of the previously proposed techniques addressed
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the problem from a hardware point of view. In our research, We have
taken a purely software-based approach, employing a combination of
these techniques in a specific application area for achieving the best
possible usage of ambient power.

3. Multi-optimized intermittent computing approach (MOPTIC)

Several optimization methods have been proposed and implemented
for computing devices to reduce the computation expense [16]. Since
IoT-based devices used for TPESs are low cost commercial-off-the-
shelf (COTS) devices characterized by limited computational power
and memory, therefore optimization techniques having high compu-
tational needs are not suitable for such TPESs [18,26]. On the other
hand, approximation based optimization techniques such as precision
scaling, loop perforation, down-sampling and skipping tasks show great
potential for TPES related applications due to their low computational
requirements. There are a few challenges associated with approxi-
mate computing methods such as 1 limited application domain and
inadequate gains from approximate computing, 2 deteriorated ac-
uracy of results, 3 need for specific strategies per application and
4 computational overhead and scalability issues [25]. Therefore,

no specific approximation technique can be universally applied to all
TPES applications. Instead, the approximation techniques need to be
selected according to the computational requirements of the applica-
tion under investigation either by the developer or by an intelligent
program [25]. In summary, once the potential approximation processes
and variables have been identified in an application, these variables can
be approximated using any of the techniques stated above [25–27].
Conventionally, only one approximation technique is employed that
best fits the application requirements. However, in this research, the
applicability and advantage of collectively using multiple optimization
techniques for a single target application is demonstrated.

The canny edge detection (CED) algorithm is selected for the appli-
cation of the proposed approximation techniques. The major reason to
choose this algorithm is its widespread utility in IoT domain applica-
tions, such as the detection of changes in surveillance scenarios. IoT
devices that are used for detecting changes in the scene extract the
features from images being recorded by surveillance cameras. Applying
approximations on CED would enable the TPES to operate indefinitely
under the limited resource environment. The approximation techniques
that are selected for the application of canny edge detection are data
sampling and memoization [18,27,28]. A brief description of these
approximation techniques is provided below:

3.1. Data sampling

Input data sampling is an approximation technique in which only
a subset of the input data is used for computation. An application
may select a certain percentage of input data items for speeding up
the computation, or down-sample the data by reducing the resolution
or granularity of individual data items. For the canny edge detection
application, the data sampling technique will save computation by
applying the algorithm on low-resolution samples while achieving user
specified accuracy requirements [29–31]. In this work, the input image
of size 120 × 120 pixels is down-sampled to 6 × 6 pixels and then later
used for comparison between two samples to detect a change. In this
way, this technique not only helps reduce the computation of edges
in 120 × 120 samples but also enables the application to run on low

memory systems because of less space requirements.
Fig. 1. Process for computing peak difference between images.

3.2. Memoization

Memoization is an optimization technique that helps in achieving a
faster computation by reloading the previously acquired results against
the same input variables instead of computing them anew. In other
words, it reuses the previously calculated values instantly for a set of
repeatedly used inputs [16,25,31–33]. In the selected application, the
edges of the current down-sampled image are compared with the down-
sampled version of the previous image to detect a change in the input
data. As a result, the previously computed edges of a full-resolution
image are loaded instantly in case of unchanged input conditions in the
current image, resulting in considerable savings in energy that would
otherwise be used in computing the edges of the current full-resolution
image. This positively affects the energy efficiency of the system, and
reduces the energy consumption by the application for completing its
computational cycle.

Here we consider it necessary to introduce Delta Threshold which
cts as a tuning parameter for MOPTIC. Delta Threshold is a user
ettable parameter that is used by MOPTIC to determine if an appre-
iable change has occurred between previous and current images. To
ompare two images, the difference between corresponding pixel values
s calculated pixel by pixel, resulting in a difference matrix as shown in
ig. 1. The highest value in this matrix, termed as peak difference, is
ompared against Delta Threshold. If the peak difference is more than
he Delta Threshold then the algorithm considers the two images to be
onsiderably different. This process is described in Algorithm 1.

The value of the Delta Threshold plays an important part in the
Algorithm 1: GetPeakDiff

Input: 𝐼𝑚𝑎𝑔𝑒1, 𝐼𝑚𝑎𝑔𝑒2
Output: 𝑃𝑒𝑎𝑘𝐷𝑖𝑓𝑓

1

2 𝑃𝑒𝑎𝑘𝐷𝑖𝑓𝑓 = 0
3

4 for ℎ = 1 to 𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡 do
5 for 𝑑 = 1 to 𝐼𝑚𝑎𝑔𝑒𝑊 𝑖𝑑𝑡ℎ do
6 𝐷𝑖𝑓𝑓 = |(𝐼𝑚𝑎𝑔𝑒1[ℎ][𝑑] − 𝐼𝑚𝑎𝑔𝑒2[ℎ][𝑑])|
7 if (𝐷𝑖𝑓𝑓) > 𝑃𝑒𝑎𝑘𝐷𝑖𝑓𝑓 then
8 𝑃𝑒𝑎𝑘𝐷𝑖𝑓𝑓 = 𝐷𝑖𝑓𝑓

9 return 𝑃𝑒𝑎𝑘𝐷𝑖𝑓𝑓

effective utilization of the proposed method. Let us consider the case
when the value of Delta Threshold is kept 0; the algorithm will consider
the images being compared as different even if the values of a corre-
sponding pixel in the images differ by 1. This corresponds to the highest
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Fig. 2. Flow diagram for applying MOPTIC on canny edge detector.

accuracy, since the system is able to detect the smallest change in the
surveillance images. Consequently, the system will opt for recomputing
the edges of the current image instead of using memoization to load
the previously computed edges, resulting in more computation and
hence excessive energy consumption. Conversely, if the value of Delta
Threshold is set to the maximum value of 255, then the algorithm will
consider the two images as the same even if the white pixel in one
image is changed to black in the other image. It is evident that this
situation represents the worst accuracy because the system is not able to
detect even the biggest change in the surveillance footage. As a result,
the system will load the previously computed edges of the previous
image and save computation and energy. Due to this inherent trade-
off between accuracy and energy efficiency, the effectiveness of the
proposed algorithm depends on the correct setting for this parameter
as per the application requirements.

The proposed multi-optimized algorithm is described in Algorithm
2, while Fig. 2 provides its pictorial representation. The numbers within
the circles in the figure represent the corresponding statements in the
algorithm. We have not provided the description for Canny Edge and
Image Down-sampling since these are standard algorithms and the
interested reader will find many sources for further information on
these.

Algorithm 2: MOPTIC
Input: 𝐼𝑚𝑎𝑔𝑒𝐶𝑢𝑟𝑟 (120x120)
Output: 𝐸𝑑𝑔𝑒𝑠𝐶𝑢𝑟𝑟 (120x120)

1

2 𝐷𝑇 = 𝐷𝑒𝑙𝑡𝑎𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
3 𝐸𝐿𝐹𝐼 = 𝐸𝑑𝑔𝑒𝑠𝑜𝑓𝐿𝑎𝑠𝑡𝐹𝑢𝑙𝑙𝐼𝑚𝑎𝑔𝑒(120𝑥120)
4 𝐸𝐿𝐷𝐼 = 𝐸𝑑𝑔𝑒𝑠𝑜𝑓𝐿𝑎𝑠𝑡𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑚𝑎𝑔𝑒(6𝑥6)
5

6 𝐼𝑚𝑎𝑔𝑒𝐶𝑢𝑟𝑟_𝐷𝑆 = 𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑒(𝐼𝑚𝑎𝑔𝑒𝐶𝑢𝑟𝑟)
7 𝐸𝑑𝑔𝑒𝐶𝑢𝑟𝑟_𝐷𝑆 = 𝐶𝑎𝑛𝑛𝑦𝐸𝑑𝑔𝑒(𝐼𝑚𝑎𝑔𝑒𝐶𝑢𝑟𝑟_𝐷𝑆 )
8

9 if GetPeakDiff (𝐸𝑑𝑔𝑒𝐶𝑢𝑟𝑟_𝐷𝑆 , 𝐸𝐿𝐷𝐼) > 𝐷𝑇 then
10 𝐸𝐿𝐹𝐼 = 𝐶𝑎𝑛𝑛𝑦𝐸𝑑𝑔𝑒(𝐼𝑚𝑎𝑔𝑒𝐶𝑢𝑟𝑟)
11 𝐸𝐿𝐷𝐼 = 𝐸𝑑𝑔𝑒𝐶𝑢𝑟𝑟_𝐷𝑆

12 return 𝐸𝐿𝐹𝐼

4. Multi-optimized intermittent computing with sleep mode
(MOPTIC-SM)

In this section, different hypothetical scenarios are used to ana-
lyze the effect of various optimization approaches on a typical TPES
application life cycle. A TPES device configured for conventional check-
pointing has three different voltage thresholds – startup, checkpoint,
and cut-off – during its operating cycle. When the capacitor voltage
reaches the startup threshold, the TPES boots up and keeps operating
until the voltage drops to the checkpointing threshold as shown in
Fig. 3. The green portion illustrates the charging period of TPES while
the brown color represents the operational period. When TPES voltage
falls to the checkpointing threshold, TPES checkpoints its current state.
Ideally, the checkpointing threshold should be set low enough that
by the time the checkpointing operation gets completed, the voltage
should have dropped to the cut-off voltage. Any operations performed
after the checkpointing will be lost due to a power outage. When the
next cycle of ambient energy arrives, the voltage level of the TPES
rises up to the start-up threshold and the device restores its saved state
which is represented by the white region in Fig. 3. Upon restoration, the
device repeats the cycle. The device may undergo multiple checkpoints
during a complete application life cycle.

Lukosevicius et al. [24] proposed the introduction of a fourth volt-
age threshold – the sleep threshold – above the checkpointing thresh-
old. If the supply voltage drops to the sleep threshold, the device will
enter hibernation mode as shown in Fig. 3. The main idea behind
introducing this threshold is to keep the device on for a longer period of
time hence preventing it from undergoing frequent checkpointing. In an
ideal case, if the subsequent energy cycle arrives during the proposed
intermediate sleep mode duration, the device will retain its current
state and will start the operation from where it had hibernated (Sleep
Mode in Fig. 3), unlike the aforementioned conventional checkpointing.
One obvious advantage of using sleep mode is the eradication of
excessive state checkpointing. The energy preserved as a result of this
eradication will be available for performing the desired computing
task. Another benefit is that the device can resume computation as
soon as the supply voltage becomes available, in contrast with con-
ventional checkpointing where the device undergoes long idle cycles
while waiting for start-up threshold voltage attainment and during state
restoration. In the worst case, the subsequent energy cycle will not
arrive during the proposed sleep mode and the device voltage will
eventually drop to the checkpointing threshold voltage, consequently
forcing the device to turn-off as shown in Fig. 3 (Sleep Mode). The
disadvantage in worst case scenario is that the device is limited to
perform only 20 percent of the desired task as compared with the
conventional checkpointing without sleep mode (30 percent) and the
device will consume more energy cycles to complete the task.

Keeping in view the advantages of sleep mode, we propose that the
MOPTIC approach discussed above may be supplemented by a sleep
mode to further reduce checkpointing. The expected effect of multi-
optimized intermittent computing approach on conventional check-
pointing is that the device completes the task with 30 percent reduction
in checkpointing as shown in Fig. 3 (Sleep Mode). We predict that
the proposed MOPTIC approach combined with sleep mode can bring
improvements in mitigation of overall checkpoints and performance of
TPES during the worst case scenario as shown in Fig. 3 (MOPTIC-SM),
respectively. Even in the worst case, the performance of MOPTIC-SM
will be comparable to the conventional checkpointing case and better
than the worst case of SM approach without MOPTIC. Therefore, it
is expected that MOPTIC-SM will have significant improvement over
SM and conventional checkpointing in terms of the overall computing
efficiency and checkpointing reduction.

5. Methodology

5.1. Experimental setup

A commercially available Microchip SAM-L11 Xplained pro embed-
ded platform [34] is used to experimentally implement the Canny Edge
Detection algorithm using the proposed approach as shown in Fig. 4.
SAM-L11 provides an inbuilt solution to measure the current and power
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Fig. 3. The life-cycle of application running on transiently powered device with (a) conventional checkpointing, (b) sleep mode enabled conventional checkpointing — worst case,
(c) multi-optimized intermittent computing approach, (d) sleep mode enabled multi-optimized intermittent computing approach — worst case. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Proposed experimental setup using SAM-L11 as evaluation platform.

rawn during the application execution, making it an ideal platform
or measuring energy requirements for a given application. It may be
oted that this particular platform is only used for demonstration of
he effectiveness of the proposed approximation technique; the pro-
osed technique can be implemented for any similar application to be
xecuted on any hardware platform.

We selected 10 images from the target surveillance which capture a
omplete cycle of a scenario change. This kind of surveillance is most
avorable for TPES as the changing scenario happens less often and the
cene remains unchanged during no activity hours. The CED application
s allowed to run on SAM-L11 which is interfaced with a computer using
tmel Studio. SAM-L11 deploys the canny edge detection algorithm
hich takes the input samples from target surveillance and generates

he edge-detected images as output. One downside of using SAM-L11 is
ts limited memory, which prevented us from executing the application
n all images in one run. To subjugate this issue, we performed the
xperiments on micro-scale by processing the input surveillance images
n subsets, and then extrapolated the results to get the bigger picture.
owever, external memory can be used with SAM-L11 to resolve such

ssues. A Python measurement library is employed to extract the power
eadings from SAM-L11 and log to PC for further processing [35]. In the
final step, Jupyter Lab notebooks were used to draw and analyze the
output and power readings from SAM-L11.

To perform our experiments, we obtained ten images from a surveil-
lance camera’s prerecorded scenario for TPES [36]. The full images
were composed of 120 × 120 pixels and the down-sampling factor was
set as 20, so the size of the down-sampled image size was 6 × 6 pixels.

5.2. Calculation of checkpoints

In this section, we describe the methodology adopted for counting
the number of checkpoints required by the application for completing
one cycle. The process is explained separately for CED application
running on TPES using conventional checkpointing and with MOPTIC.

5.2.1. Conventional CED application
As the first step, we measure the actual energy consumed by the

platform for executing canny edge algorithm on 6 × 6 pixel input im-
age, 𝐸𝐶𝐸𝐷_6𝑥6. This measurement is made using the total current drawn
along with a timestamp, acquired from SAM-L11 kit as explained above.
To calculate the energy consumption for the processing of one image
of 120 × 120 pixels, 𝐸𝐶𝐸𝐷_120𝑥120, we use the energy consumption for
6 × 6 image as reference. Hence the total energy required for the full
application cycle, using conventional checkpointing, is calculated by
multiplying the total number of images with energy consumption for a
single 120 × 120 image. We call this energy 𝐸𝑐𝑜𝑛𝑣 as shown in Eq. (1).

𝐸𝑐𝑜𝑛𝑣 = 𝐸𝐶𝐸𝐷_120𝑥120 × 10 (1)

In a TPES application, the required energy will be provided by
the capacitor. The energy provided by a fully charged capacitor is
calculated by the capacitor energy formula as 𝐸𝑐𝑎𝑝 =

1
2𝐶𝑉 2, where 𝐶 is

he capacitance value and 𝑉 stands for supply voltage. However, it may
e noted that not all of this energy is usable for the computational tasks,
s such a device requires a certain minimum voltage level for operation
s shown in Fig. 5. Upon reaching this cut-off voltage threshold 𝑉𝑐𝑢𝑡_𝑜𝑓𝑓 ,
he device simply shuts down. In conclusion, the total capacitor energy
vailable for processing reduces to

𝑐𝑎𝑝 =
1
2
𝐶𝑉 2 − 1

2
𝐶𝑉 2

𝑐𝑢𝑡_𝑜𝑓𝑓 (2)

An application using checkpointing must set another voltage thresh-
old, 𝑉𝐶ℎ𝑘𝑃 𝑡, above the cut-off level as seen in Fig. 5. If the voltage level
drops to this threshold, the application stops performing the desired
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Fig. 5. Voltage thresholds and corresponding energy constraints in a TPES.

Table 1
Energy measured for computational tasks.

Parameter Description Value

𝐸𝐶𝐸𝐷_60 × 60 Applying CED on 6 × 6 image 1.86E−04 J
𝐸𝐶𝐸𝐷_120 × 120 Applying CED on 120 × 120 image 7.45E−02 J
𝐸𝑑𝑜𝑤𝑛 Down-sampling 3.16E−04 J
𝐸𝑐𝑜𝑚𝑝 Comparing two 6 × 6 images 6.32E−06 J
𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Checkpointing 1.56E−04 J
𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑒 Restoration of state 1.85243E−05 J

computation and writes the system state to memory, consuming an
amount of energy that we term as 𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡. In addition, when the
device reboots after a shutdown, it must restore the state which is also
an energy consuming task. Let us call the energy spent on restoration
𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑒. We treat checkpointing and restoring as overhead tasks, since
these are not part of the CED application as such. It is, therefore,
essential that energy used for these tasks be excluded from the total
energy available for computations by the CED application. In essence,
the total energy available for the application can be calculated as:

𝐸𝑎𝑣𝑎𝑖𝑙 = 𝐸𝑐𝑎𝑝 − (𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 + 𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑒) (3)

Once we have the total energy required for a complete applica-
tion cycle (Eq. (1)) and available capacitor energy (Eq. (3)), we can
calculate the total number of checkpoints that occur during the full
application cycle using conventional checkpointing as given by Eq. (4).

𝐶ℎ𝑘𝑃 𝑡𝑠𝑐𝑜𝑛𝑣 =
𝐸𝑐𝑜𝑛𝑣
𝐸𝑎𝑣𝑎𝑖𝑙

(4)

An important assumption that we make here is that the ambient en-
rgy becomes unavailable once the capacitor is fully charged, and only
ecomes available when the voltage drops below the checkpointing
hreshold. In other words, we are modeling the worst case scenario.

Here it is pertinent to mention that all these calculations are based
n actual values of 𝐸𝐶𝐸𝐷_6𝑥6, 𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 and 𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑒 measured on the
AM-L11 platform. These values are provided in Table 1.

.2.2. Conventional CED with sleep mode
If an application is configured to enter sleep mode in order to

revent frequent checkpointing, then another voltage threshold 𝑉𝑠𝑙𝑒𝑒𝑝
ust be set above the checkpointing threshold voltage as shown in

ig. 5. Therefore, in a sleep mode enabled application the total energy
vailable for computation is less. In such a case, Eq. (2) can be modified
s

𝑐𝑎𝑝_𝑆𝑀 = 1
2
𝐶𝑉 2 − 1

2
𝐶𝑉 2

𝑠𝑙𝑒𝑒𝑝 (5)

Calculation of total energy available for the application can be made
by substituting 𝐸𝑐𝑎𝑝_𝑆𝑀 for 𝐸𝑐𝑎𝑝 in Eq. (3) and, subsequently, number
of checkpoints can be computed using 𝐸𝑎𝑣𝑎𝑖𝑙 in Eq. (4).

It may be noted that we are modeling the worst case scenario
or the sleep mode — when the application enters sleep mode it
Table 2
Parameters for experimental evaluation.

Parameter Description Value

𝑉 Supply voltage 5 V
𝑉𝑐𝑢𝑡_𝑜𝑓𝑓 Cut-off threshold voltage 1.8 V
𝑉𝐶ℎ𝑘𝑃 𝑡 Checkpointing threshold voltage 1.89 V
𝑉𝑠𝑙𝑒𝑒𝑝 Sleep threshold voltage 2.2 V
𝐶 Capacitor size 200/500/1000 μF

eventually checkpoints because of the unavailability of ambient energy.
As pointed out earlier, the benefits of sleep mode become evident in
TPES applications where there is irregular arrival of energy bursts for
charging the capacitor. We believe that if the proposed algorithm is
demonstrated to have completed the application with fewer number of
checkpoints in the worst case scenario, then it can be inferred that the
algorithm will show a similar advantage in situations where the source
of ambient energy becomes available before reaching the checkpointing
threshold.

5.2.3. CED with MOPTIC
The calculation of the number of checkpoints for MOPTIC is slightly

different. In each complete application cycle, tasks including down-
sampling of the current 120 × 120 image into 6 × 6 image, calculation
of 6 × 6 edges, and comparison of current 6 × 6 edges with the previous
6 × 6 edges are performed for each image. The energy consumption for
each of these tasks is measured separately on SAM-L11, represented
by 𝐸𝑑𝑜𝑤𝑛, 𝐸𝐶𝐸𝐷_6𝑥6, and 𝐸𝑐𝑜𝑚𝑝 respectively in Table 1. In addition to
these tasks, the calculation of edges for the full current image may
also need to be performed for images that are considerably different
from the previous image. In such cases, the energy 𝐸𝐶𝐸𝐷_120𝑥120 will be
additionally consumed. So the total energy requirement for CED using
MOPTIC can be formulated as:
𝐸𝑀𝑂𝑃𝑇𝐼𝐶 = (𝐸𝑑𝑜𝑤𝑛 + 𝐸𝐶𝐸𝐷_6𝑥6 + 𝐸𝑐𝑜𝑚𝑝) × 𝑛

+ 𝐸𝐶𝐸𝐷_120𝑥120 × 𝑥,
(6)

where 𝑛 is the total number of images (10 in our experiments) and 𝑥
represents the number of cases where the edges of the full 120 × 120
image were calculated. The value of 𝑥 is determined on the basis of
the Delta Threshold and peak difference between the previous and
current images. The number of checkpoints that occur during the full
application cycle using MOPTIC is calculated as:

𝐶ℎ𝑘𝑃 𝑡𝑠𝑀𝑂𝑃𝑇𝐼𝐶 =
𝐸𝑀𝑂𝑃𝑇𝐼𝐶
𝐸𝑎𝑣𝑎𝑖𝑙

(7)

5.2.4. CED with MOPTIC and sleep mode
In order to count the number of checkpoints required by CED with

MOPTIC in sleep mode, we need to use 𝐸𝑐𝑎𝑝_𝑆𝑀 (Eq. (5)) for calculating
𝐸𝑎𝑣𝑎𝑖𝑙 (Eq. (3)) and then apply Eq. (7) accordingly.

In our experiments we used there different capacitance values, i.e,
200 μF, 500 μF and 1000 μF, for calculating available energy. The
operating voltage for the device was specified as 5 V and the cut-off
voltage threshold 𝑉𝑐𝑢𝑡_𝑜𝑓𝑓 was 1.8 V as per the device specifications.
𝑉𝐶ℎ𝑘𝑃 𝑡 was set to 1.89 V by incorporating the exact energy requirements
for performing the checkpointing operation as measured on SAM-L11.
Sleep voltage level 𝑉𝑠𝑙𝑒𝑒𝑝 was set at 2.2 V following the work presented
by Lukosevicius et al. [24]. These figures are provided in Table 2.

5.3. Evaluation

For evaluating the effectiveness of MOPTIC against conventional
checkpointing, we used the energy measurements given in Table 1
and calculated the number of checkpoints required by the conventional
checkpointing application for completing its task as explained in Sec-
tion 5.2.1. We then applied the methodology described in Section 5.2.3
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Fig. 6. Accuracy calculation for different values of delta Threshold.
to calculate the number of checkpoints required by MOPTIC against
different values of Delta Threshold to complete the same task.

We also evaluated the sleep mode enabled MOPTIC-SM against the
state-of-the-art sleep mode with conventional checkpointing (SM) as
proposed by Lukosevicius et al. [24]. For performing this comparison,
we modeled the worst-case scenario in terms of the availability of
ambient energy; the calculations were performed with the assumption
that in both SM and MOPTIC-SM the ambient energy cycle did not
arrive before the system voltage dropped to cut-off level, and therefore
both the applications had to enter sleep mode and then perform check-
pointing. As described in related work section, a previous research [22]
has also proposed the use of approximation techniques for energy
harvesting systems and evaluated the proposed method on an image
processing application, but we have not considered comparing our
work with the aforementioned scheme because there exists a funda-
mental difference between the two methods; we have relied on software
based approximation and the previous work suggests improvements at
the hardware level.

For the sake of this research, the values of Delta Threshold were
manually selected based on peak difference between consecutive im-
ages. Though naive, this approach does emphasize the point that IoT
applications in general have various parameters that need to be fine-
tuned keeping in view the trade-offs in a particular application sce-
nario. In conclusion, the values of Delta Threshold for the same CED
application in another environment may be entirely different than those
used in this research.

The accuracy of results for MOPTIC was also computed against each
value of Delta Threshold. For each new image, MOPTIC either uses
memoization to load previously computed full edge or computes full
edges of new image, based on the how it perceives the difference be-
tween previous and current images as per the value of Delta Threshold.
The algorithm is considered to have taken correct action in two cases:
(i) the new image was considerably different from the previous and the
algorithm computed full edges of the new image, and (ii) there was no
appreciable difference between the previous and new images and the
algorithm used memoization to load full edges of the previous image.
There are also incorrect actions that the algorithm might perform — the
new image was considerably different but the algorithm reloaded full
edge of the previous image, or the new image was not considerably
different but its full edges were computed. Hence the accuracy of
the algorithm for any value of Delta Threshold was calculated as the
percentage of correct actions taken over the full application cycle. This
process is depicted in Fig. 6.

5.4. Results and analysis

In this section, we present and analyze the results obtained from the
experiments. First, we discuss the accuracy of the proposed algorithm as
a function of the Delta Threshold. As we described earlier, Delta Thresh-
old is a ‘tuning’ parameter that can be used to adjust the algorithm’s
energy efficiency in terms of reduction of checkpoints by trading off
accuracy, and vice-versa. We ran the application with various values
of Delta Threshold and computed the accuracy of results as per the
methodology described in Section 5.3. Our experiments showed that
increasing the values of Delta Threshold resulted in deterioration of
accuracy, as shown in Fig. 6. We shall use these results subsequently in
the discussion on the energy saving vs. accuracy trade-off.

We now compare and analyze the effectiveness of the proposed
technique, MOPTIC, against the conventional checkpointing in terms of
the number of checkpoints required by the two methods for completing
one application cycle. This comparison, for a 200 μF capacitor, is shown
in Fig. 7. The graph plots the number of checkpoints required by
MOPTIC against different values of Delta Threshold which helps us to
analyze the accuracy vs. energy-saving trade-off for MOPTIC.

Fig. 7 reveals that the number of checkpoints for MOPTIC is slightly
more than the conventional checkpointing for Delta Threshold of 0,
but drops significantly for all values of Delta Threshold above 0. As
discussed earlier, the Delta Threshold of 0 forces MOPTIC to treat each
image as different from the previous, hence causing a recalculation
of edges for each new image regardless of the result of comparison.
Therefore, for Delta Threshold = 0, MOPTIC acts just as conven-
tional checkpointing. For this case, despite behaving like conventional
checkpointing, MOPTIC is additionally performing the tasks such as
down-sampling, 6 × 6 edge computation, and comparison operations
for each image hence causing excessive energy consumption, resulting
in more checkpoints.

The reduction in the number of checkpoints for MOPTIC comes at a
cost. As we increase Delta Threshold, the algorithm’s capability of de-
tecting change in consecutive images is reduced, resulting in a decline
in accuracy as explained earlier. Fig. 8 depicts the trade-off between
improvement in energy saving due to reduced checkpoints vs. accuracy
for 200 μF capacitor. It is observed that for this particular scenario,
Delta Threshold value of 4 resulted in an optimal situation with almost
50% reduction in the number of checkpoints against conventional
checkpointing with acceptable accuracy figure of 70%. Here we wish to
emphasize the fact that the effectiveness of the proposed algorithm over
conventional checkpointing also depends on the surveillance scenario.
For input images where the change is not observed frequently, such as
the footage taken from inside a bank vault, the propose method will
show significant improvement over the conventional method. On the
other hand, the benefits of proposed method will be on a lower scale
for the images captured by surveillance camera at the bank’s entrance
because of rapidly changing scenes requiring frequent calculation of
edges for new images.

When sleep mode is introduced, as shown in Fig. 9 for 200 μF,
we observe the similar pattern as before: the number of checkpoints
for MOPTIC-SM reduces with increasing values of Delta Threshold.
Similarly, Fig. 10 shows that the accuracy line meets the improvement
line roughly at a point that corresponds to Delta Threshold’s value of
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Fig. 7. Comparison of No. of checkpoints in conventional checkpointing and MOPTIC.

Fig. 8. MOPTIC: Trade-off between accuracy and reduction in checkpoints.

, marking it as the optimal setting for accuracy vs. energy saving
rade-off just as without sleep mode.

An important observation to be made here is that the number of
heckpoints increased for both the conventional sleep mode application
nd MOPTIC-SM as compared to without sleep mode. The reason
ehind this increase lies in the fact that the sleep voltage threshold
s kept above the checkpointing threshold voltage, as shown in Fig. 5.
herefore, the total energy available for computation is less than in case
f non-sleep mode application, requiring the application to undergo
ore checkpoints to complete one computational cycle.

As noted earlier, we modeled the worst case scenario for the sleep
ode, representing situations where the application eventually check-
oints after going to sleep mode because of unavailability of ambient
nergy cycle. We believe that since the proposed algorithm has been
emonstrated to complete the application with fewer number of check-
oints in the worst case scenario as compared with conventional sleep
ode, therefore it is expected to perform even better in situations
here the source of ambient energy becomes available before the
evice reaches the checkpointing threshold.

We carried out similar experiments with 500 μF and 1000 μF capaci-
tors, as shown in the graphs in Fig. 11. For both these cases, the number
of checkpoints is reduced as compared with 200 μF capacitor due to
more available energy per charging cycle. The overall improvement

between MOPTIC and traditional checkpointing remains unchanged.
Fig. 9. Comparison of No. of checkpoints in conventional sleep mode and MOPTIC-SM.

Fig. 10. MOPTIC-SM: Trade-off between accuracy and reduction in checkpoints.

In summary, the experimental results presented herein are fully
in agreement with the hypothetical values predicted in Section 4,
showing clear advantages of the proposed multi-optimized intermittent
computing approach over conventional checkpointing in TPES with and
without sleep mode.

6. Conclusion and future directions

This work presented a novel sleep mode-enabled multi-optimized
computing approach and demonstrated its effectiveness on the bench-
mark application of canny-edge detection. Comprehensive experiments
were conducted by applying conventional checkpointing and MOP-
TIC on a sample footage using SAM-L11, an embedded evaluation
platform. Evaluation parameters including accuracy and number of
checkpoints were numerically computed and experimentally verified.
The experiments show that the proposed approach offers a unique
trade-off between number of checkpoints and accuracy of the TPES.
It is concluded that the proposed MOPTIC-SM approach outperforms
the conventional checkpointing method with and without sleep mode
with 50 percent reduction in checkpoints while maintaining 70 percent
accuracy. To the best of our knowledge, the proposed MOPTIC-SM
approach is the best possible software based solution for reducing the
number of checkpoints with an extra degree of freedom in terms of
accuracy selection.

The image processing application for TPESs was implemented for
the first time. We had to evaluate the results one by one because
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Fig. 11. Comparison of No. of checkpoints in conventional, MOPTIC, conventional
sleep mode and MOPTIC-SM using 500 μF and 1000 μF capacitors.

we could not process all of the images at once due to memory con-
straints. Furthermore, we did not use the actual energy harvesting
mechanism with SAM-L11 because we desired to introduce control and
repeatability into our experiments.

A future direction for extending this work can be the implementa-
tion of proposed MOPTIC-SM for a larger input dataset with increased
number of appreciable changes. This will assist in development and
enhancement of the hashtag table for memoization under a repetitive
input. Consequently, this will lead to considerably less computations in
case of any unprecedented input change.
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