Introduction to Computing

Lecture 13

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Memory Address, References and
Pointers

Memory Address

Getting Memory Address

When a variable is created in C++, a memory address is assigned to the variable. And
when we assign a value to the variable, it is stored in this memory address.

To access it, use the & operator, and the result will represent where the variable is
stored:

Example:
int a = 2;

cout << &a; // Outputs Ox6dfed4

Reference Variable

Reference Variable

A reference variable is a "reference" to an existing variable, and it is created with the &
operator:

int a = 2;
int &= a; // reference to a

* The reference variable can only be initialized at the time of its creation

* The reference variable returns the address of the variable preceded by the reference
sign ‘&’

* The reference variable can never be reinitialized again in the program

e The reference variable can never refer to NULL

Pointers

Pointer Variable

A pointer is a variable that stores the memory address as its value.

* A pointer variable points to a data type of the same type
* |tis created with the * operator.

* The address of the variable you're working with is assigned to the pointer

Example:

int *a ;
int b = 2;
a= &b; // a stores the address of b

Pointers

Accessing Memory Address and Value using Pointer Variable

* Pointer variable holds the address of a variable, so its not a problem

* We can also get the value of the variable through pointer, by using the *
operator (the dereference operator).

* We can also change the value of the variable by using the * operator

Example:

int *a ;

int b = 2;

a= &b; // a stores the address of b

cout << *a; // using dereference operator we get value of 'b’
*a = 3; // using dereference operator we set value of 'b'

cout << b; // we get 3

Pointers

Accessing Memory Address and Value using Pointer Variable

Note:

The * sign can be confusing here, as it does two different things in our

code:

 When used in declaration (string™ ptr), it creates a pointer variable.
 When not used in declaration, it act as a dereference operator.

*a = 3; // using dereference operator we set value of 'b'
cout << b; // we get 3

Pointers (Recap)

1. Pointer variables Int *p, *q;

2. Static allocation Int X;

3. Address-of operator p = &X;

4. Memory cell to which P points *p = 6;

5. Pointer operations g=p,

PN
land 2 | 2 ? ? 3 ? ? 417 | 6
p 4 X p 4 X b g X
T
5| 7 | s

“Pass by Value” and “Pass by Reference”

Pass by Value:

* Makes a copy in memory of the actual parameters

* Use pass by value when you are only using the parameter for some computation,
not changing it

Pass by Reference:
* Forwards the actual parameters

e Use pass by reference when you are changing the parameter passed in the program

“Pass by Value” “Pass by Reference”

D |
#include <iostream> #include <iostream>
using namespace std; using namespace std;
int add(int a) int add(int* 2a)

{ {
int b = 0; int b = 0;
a=a+ 1; %3 = *3 4+ 1;
b=2a; b=*2a;
return b; return b;

} }

int main() { int main() {
int x = 0; int x = 0;
int result = add(x); int result = add(&x);
cout << result << endl; cout << result << endl;
cout << X << endl; cout << X << endl;
return 9; return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a) Function Declaration

int b = 0;
a =a+ 1;
b=3;
return b;

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 9;

“Pass by Reference”

##tinclude <iostream>
using namespace std;

int add(int* a) Function Declaration

int b = 0;
*a = *a + 1;
b=*a;
return b;

}

int main() {
int x = 9;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a)
{

int b = 0;

= a + 1; Function Definition
b=3;

return b;

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 9;

}

“Pass by Reference”

##tinclude <iostream>
using namespace std;

int add(int* a)
{

int b = 0;

*a = *a + 1; Function Definition
b=*a;

return b;

int main() {
int x = 9;
int result = add(&x);
cout << result << endl;
cout << X << endl;
return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a)

{
int b = 0;
a =a+ 1;
b=3;
return b;
}

int main() {

N = (]

int result = add(x);

- 1;

cout << x << endl;
return 9;

}

Function Calling

pass bY PO‘“‘W

##tinclude <iostream>
using namespace std;

int add(int* a)

{
int b = 0;
*a = *a + 1;
b=*a;
return b;

}

int main() {

int result = add(&x);

OU oS U 210
cout << X << endl;
return 9;

}

J

Function Calling

Another way for “Pass by Reference”

#tinclude <iostream>

using namespace std; P 4 Reference Variable:
Reference variable is an alias for a variable which is

int add(in : :
(assigned to it.

int b = 9;

T 1; Different from pointer:

’ * The reference variable can only be initialized at the time

return b; of its creation

}

e The reference variable returns the address of the

int main() { variable preceded by the reference sign ‘&

It x =9 * The reference variable can never be reinitialized again in
int result = add(x);

cout << result << endl; the program

cout << X << endl;

return 0; * The reference variable can never refer to NULL

Passing array as argument

Passing array as argument

Two ways:

void function(int a[5]); void function(int a[], int size);

int main() int main()

{ {
int x[5] = { 88, 76, 90, 61, 69 }; int x[5] = { 88, 76, 90, 61, 69 };
function(x); function(x,5);
return 9; return 9;

} }

Sorting

Sorting

Why Study Sorting?

* When an input is sorted, many problems become easy (e.g.
searching, min, max)

Sorting algorithms

* Bubble Sort

e Selection Sort
* [nsertion Sort
* Merge Sort

Bubble Sort: Idea

Given an array of n items

1. Compare pair of adjacent items
2. Swap if the items are out of order
3. Repeat until the end of array
 The largest item will be at the last position
4. Reduce nby1andgotoStep1l

Analogy

e Large item is like “bubble” that floats to the end of the array

Bubble Sort: Idea

lllustration:
(@) Pass 1 (b) Pass 2
29 [10] 1437 [13 110 |14 29[13]37
10]29]14]37 13 10 [14]29]13] 37
1014 [29[37] 13 10 (14|29 {13 37
10[14[29[37]13] 10 [14]13]29]37]

At the end of Pass 2, the second
10114 | 29 113 . largest item 29 is at the second
last position.

At the end of Pass 1, the largest
item 37 is at the last position.

Bubble Sort: Code

void bubbleSort(int a[], int n)
{

int main()

{

for (int i =n - 1; 1 >=1; i--)

{ . . .)] int a[5] = { 7,3,6,4,1 };
for (int j = 1; j <= 1; j++) bubbleSort(a,5);
{ J)
zf (a[j - 11 > a[j]) for (int i = @; i < 5; i++)
° : {
1nF temp = aljl; cout << al[i];
al3] = alj - 1]; }
alj - 1] = temp;
} return 0;
} }
}

2D arrays and Beyond (again)

Multi-dimensional Arrays

 An array is a contiguous block of memory.

A 2D array of size m by n is defined as:

int Alm][n];

N

rows columns

What is the number of bytes necessary to hold int A[2][2] ?

Multi-dimensional Arrays

It can be initialized as:

Al2][3]=11,2,3},14,5,6}};
1]

0]
[1]

0]

2]

1

2

3

4

5

6

How a 2D array is stored?

A[0][0]

A[0][1]

A[0][2]

A[1][0]

Al1][1]

Al1][2]

Row 1

Row 2

Multi-dimensional Arrays

* Accessing 1D arrays using Pointers:

/\ cout<<A[1];

int Aln}; name of the array is pointer
cout<<*(A+1);

* How does 2D arrays and pointers relate:

A[0O] Al1]

A[o][o] | A[o][1] | A[Ol[2] | AI[1][0] | A[1][1] | AI[1][2]

Multi-dimensional Arrays

* Now... If | want access A[1][2] via pointer, what will | write?

First Solution

Second Solution

*(A[T] + 2)

((A+1) + 2)

* You can view 3D or nD array the same way, i.e., int A[2][2][2]

Column 1

I

Column 2

l

A[o][o][o]

A[0][0][1]

A[0][1][0]

A[0][1][1]

Al1][o0][o]

Al1][0][1]

Al1][1][0]

Al1][1][1]

Row 1

Row 2

Typecasting (Type conversion)

 The process of converting one predefined type into another is
called as type conversion

e C++ facilitates the type conversion into the following two
forms :

 Implicit Type Conversion
 Explicit Type Conversion

Implicit Type Conversion

 Conversion performed by the compiler without programmer's
intervention whenever differing data types are intermixed in
an expression

 The value of the right side (expression side) of the assignment
is converted to the type of the left side (target variable)

int main()
e Example:
short int x = 1417;
char ch;
ch = x; /f where ch is char (1 byte) and x is int (2 bytes)
return @;

Implicit Type Conversion

e X was having value 1417 (whose binary equivalent is

0000010110001001)
137

el

* ch will have lower 8-bits i.e., 10001001 resulting in loss of
information.

Implicit Type Conversion

* Another example

int main()

i

fleoat v = 4.1;

1P = 11

Output = " << x + y << endl;

oy,

cout <<

cout << "Type = " << typeid(x + y).name() << endl;

B Microsoft Visual Studio Debug Console — 4 >

utput = 14.1
ype = float

:\E_drive\Air University\DS & 00P\Codes\typecasting\ConsoleApplicationi\Debug\ConsoleApplicationl.exe (process 15948) e
tited with code 8.

o automat lose the console when debugging stops, enable Tools->0Options-»Debugging->Automatically close the conso

e when de ops.

close this window .

Explicit Type Conversion

 User-defined conversion that forces an expression to be of

specific type
int main() int main()
i i
int y = 3; int y = 3;
cout << (float)(y) / 2; cout << (y) / 2;
} }

Output= 1.5 Output= 1

Memory Allocation
I W ~

* Dynamic memory allocation is necessary because, during
compile time, we may not know the exact memory needs

to run the program.

hew malloc()

e (C++ also does not have automatic garbage collection.
Therefore a programmer must manage all dynamic memory
used during the program execution

delete[] free()

Memory Allocation

new / delete[]

int main() Return same pointer
1 type

int £y
X =ir1t[11]j.
Is a operator

fgr (int 1 = 8; 1 <= 18; 1++)
x[1] = @.1%1;

delete[] x;
}

Allocate memory and
calls constructor
for initialization

int main()

i

malloc() / free() / realloc()

return void *

int *x;
x = (int*) 11 * sizeof(int));
for (int i A B3 \L <= 18; i++)

x[1] o @.1%1i;

stdlib function

free(x);

v

Allocate memory and
Does not calls constructor

Memory Allocation (2D array)

new / delete[] malloc() / free()

int main()

i
int rowCount = 18;
int colCount = 18;
int** a = new int*[rowCount]; YOUR TURN

for (int i = @; 1 < rowCount; ++1)
a[i] = new int[colCount];

for (int i = 8; 1 < rowCount; +4+1)
delete[] a[i];
delete[] aj;

Thanks a lot

If you are taking a Nap, wake up........ Lecture Over

