
Introduction to Computing

Webpage: naveedanwarbhatti.github.io

Lecture 13

Dr. Naveed Anwar Bhatti

Memory Address, References and
Pointers

Memory Address

When a variable is created in C++, a memory address is assigned to the variable. And
when we assign a value to the variable, it is stored in this memory address.

Getting Memory Address

To access it, use the & operator, and the result will represent where the variable is
stored:

Example:

int a = 2;

cout << &a; // Outputs 0x6dfed4

Reference Variable

A reference variable is a "reference" to an existing variable, and it is created with the &
operator:

Reference Variable

int a = 2;
int &b= a; // reference to a

• The reference variable can only be initialized at the time of its creation

• The reference variable returns the address of the variable preceded by the reference
sign ‘&’

• The reference variable can never be reinitialized again in the program

• The reference variable can never refer to NULL

Pointers

A pointer is a variable that stores the memory address as its value.

• A pointer variable points to a data type of the same type
• It is created with the * operator.
• The address of the variable you're working with is assigned to the pointer

Pointer Variable

int *a ;
int b = 2;
a= &b; // a stores the address of b

Example:

Pointers

• Pointer variable holds the address of a variable, so its not a problem
• We can also get the value of the variable through pointer, by using the *

operator (the dereference operator).
• We can also change the value of the variable by using the * operator

Accessing Memory Address and Value using Pointer Variable

Example:

int *a ;
int b = 2;
a= &b; // a stores the address of b
cout << *a; // using dereference operator we get value of 'b'
*a = 3; // using dereference operator we set value of 'b'
cout << b; // we get 3

Pointers

• Pointer variable holds the address of a variable, so its not a problem
• We can also get the value of the variable through pointer, by using the *

operator (the dereference operator).
• We can also change the value of the variable by using the * operator

Accessing Memory Address and Value using Pointer Variable

Example:

int *a ;
int b = 2;
a= &b; // a stores the address of b
cout << *a; // using dereference operator we get value of 'b'
*a = 3; // using dereference operator we set value of 'b'
cout << b; // we get 3

Note:

The * sign can be confusing here, as it does two different things in our
code:

• When used in declaration (string* ptr), it creates a pointer variable.
• When not used in declaration, it act as a dereference operator.

Pointers (Recap)

1. Pointer variables int *p, *q;

2. Static allocation int x;

3. Address-of operator p = &x;

4. Memory cell to which P points *p = 6;

5. Pointer operations q = p;

? ? ?

p q x

? ?

p q x

? 6

p q x

1 and 2 3 4

6

p q x

5

“Pass by Value” and “Pass by Reference”

Pass by Value:
• Makes a copy in memory of the actual parameters

• Use pass by value when you are only using the parameter for some computation,
not changing it

Pass by Reference:
• Forwards the actual parameters

• Use pass by reference when you are changing the parameter passed in the program

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

“Pass by Value” “Pass by Reference”

“Pass by Value” “Pass by Reference”

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Function Declaration Function Declaration

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;

return 0;
}

Function Definition Function Definition

“Pass by Value” “Pass by Reference”

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Function Calling Function Calling

“Pass by Value” “Pass by Reference”

Another way for “Pass by Reference”

#include <iostream>
using namespace std;

int add(int &a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Reference Variable:
Reference variable is an alias for a variable which is
assigned to it.

Different from pointer:
• The reference variable can only be initialized at the time

of its creation

• The reference variable returns the address of the
variable preceded by the reference sign ‘&’

• The reference variable can never be reinitialized again in
the program

• The reference variable can never refer to NULL

Passing array as argument

Passing array as argument

void function(int a[5]);
int main()
{

int x[5] = { 88, 76, 90, 61, 69 };

function(x);

return 0;
}

void function(int a[], int size);
int main()
{

int x[5] = { 88, 76, 90, 61, 69 };

function(x,5);

return 0;
}

Two ways:

Sorting

Sorting

Why Study Sorting?

• When an input is sorted, many problems become easy (e.g.
searching, min, max)

Sorting algorithms

• Bubble Sort
• Selection Sort
• Insertion Sort
• Merge Sort

Bubble Sort: Idea

Given an array of n items

1. Compare pair of adjacent items
2. Swap if the items are out of order
3. Repeat until the end of array

• The largest item will be at the last position
4. Reduce n by 1 and go to Step 1

Analogy

• Large item is like “bubble” that floats to the end of the array

Bubble Sort: Idea

Illustration:

Bubble Sort: Code

void bubbleSort(int a[], int n)
{

for (int i = n - 1; i >= 1; i--)
{

for (int j = 1; j <= i; j++)
{

if (a[j - 1] > a[j])
{

int temp = a[j];
a[j] = a[j - 1];
a[j - 1] = temp;

}
}

}
}

int main()
{

int a[5] = { 7,3,6,4,1 };
bubbleSort(a,5);

for (int i = 0; i < 5; i++)
{

cout << a[i];
}

return 0;
}

2D arrays and Beyond (again)

Multi-dimensional Arrays

• An array is a contiguous block of memory.

• A 2D array of size m by n is defined as:

int A[m][n];

rows columns

What is the number of bytes necessary to hold int A[2][2] ?

Multi-dimensional Arrays

• It can be initialized as:

A[2][3]={{1,2,3},{4,5,6}};

Row 1 Row 2

• How a 2D array is stored?

A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2]

1 2 3

4 5 6

[0]

[1]

[0] [1] [2]

Multi-dimensional Arrays

• Accessing 1D arrays using Pointers:

int A[n];
name of the array is pointer

cout<<A[1];

cout<<*(A+1);

• How does 2D arrays and pointers relate:

A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2]

A[0] A[1]

Multi-dimensional Arrays

• Now… If I want access A[1][2] via pointer, what will I write?

• You can view 3D or nD array the same way, i.e., int A[2][2][2]

*(A[1] + 2)

((A+1) + 2)

First Solution

Second Solution

A[0][0][0] A[0][0][1] A[0][1][0] A[0][1][1] A[1][0][0] A[1][0][1] A[1][1][0] A[1][1][1]

Row 1 Row 2

Column 1 Column 2

Typecasting (Type conversion)

• The process of converting one predefined type into another is
called as type conversion

• C++ facilitates the type conversion into the following two
forms :

 Implicit Type Conversion
 Explicit Type Conversion

Implicit Type Conversion

• Conversion performed by the compiler without programmer's
intervention whenever differing data types are intermixed in
an expression

• The value of the right side (expression side) of the assignment
is converted to the type of the left side (target variable)

• Example:

Implicit Type Conversion

• x was having value 1417 (whose binary equivalent is
0000010110001001)

• ch will have lower 8-bits i.e., 10001001 resulting in loss of
information.

137

Implicit Type Conversion

• Another example

Explicit Type Conversion

• User-defined conversion that forces an expression to be of
specific type

Output= 1.5 Output= 1

Memory Allocation

• Dynamic memory allocation is necessary because, during
compile time, we may not know the exact memory needs
to run the program.

• C++ also does not have automatic garbage collection.
Therefore a programmer must manage all dynamic memory
used during the program execution

new malloc()

delete[] free()

Memory Allocation

new / delete[] malloc() / free()

return void *Return same pointer
type

Is a operator

stdlib function

Allocate memory and
calls constructor
for initialization

Allocate memory and
Does not calls constructor

/ realloc()

Memory Allocation (2D array)

new / delete[] malloc() / free()

YOUR TURN

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

