Introduction to Computing

Lecture 13

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Memory Address, References and
Pointers

Memory Address

Getting Memory Address

When a variable is created in C++, a memory address is assigned to the variable. And
when we assign a value to the variable, it is stored in this memory address.

To access it, use the & operator, and the result will represent where the variable is
stored:

Example:
int a = 2;

cout << &a; // Outputs Ox6dfed4

Reference Variable

Reference Variable

A reference variable is a "reference" to an existing variable, and it is created with the &
operator:

int a = 2;
int &= a; // reference to a

* The reference variable can only be initialized at the time of its creation

* The reference variable returns the address of the variable preceded by the reference
sign ‘&’

* The reference variable can never be reinitialized again in the program

e The reference variable can never refer to NULL

Pointers

Pointer Variable

A pointer is a variable that stores the memory address as its value.

* A pointer variable points to a data type of the same type
* |tis created with the * operator.

* The address of the variable you're working with is assigned to the pointer

Example:

int *a ;
int b = 2;
a= &b; // a stores the address of b

Pointers

Accessing Memory Address and Value using Pointer Variable

* Pointer variable holds the address of a variable, so its not a problem

* We can also get the value of the variable through pointer, by using the *
operator (the dereference operator).

* We can also change the value of the variable by using the * operator

Example:

int *a ;

int b = 2;

a= &b; // a stores the address of b

cout << *a; // using dereference operator we get value of 'b’
*a = 3; // using dereference operator we set value of 'b'

cout << b; // we get 3

Pointers

Accessing Memory Address and Value using Pointer Variable

Note:

The * sign can be confusing here, as it does two different things in our

code:

 When used in declaration (string™ ptr), it creates a pointer variable.
 When not used in declaration, it act as a dereference operator.

*a = 3; // using dereference operator we set value of 'b'
cout << b; // we get 3

Pointers (Recap)

1. Pointer variables Int *p, *q;

2. Static allocation Int X;

3. Address-of operator p = &X;

4. Memory cell to which P points *p = 6;

5. Pointer operations g=p,

PN
land 2 | 2 ? ? 3 ? ? 417 | 6
p 4 X p 4 X b g X
T
5| 7 | s

“Pass by Value” and “Pass by Reference”

Pass by Value:

* Makes a copy in memory of the actual parameters

* Use pass by value when you are only using the parameter for some computation,
not changing it

Pass by Reference:
* Forwards the actual parameters

e Use pass by reference when you are changing the parameter passed in the program

“Pass by Value” “Pass by Reference”

D |
#include <iostream> #include <iostream>
using namespace std; using namespace std;
int add(int a) int add(int* 2a)

{ {
int b = 0; int b = 0;
a=a+ 1; %3 = *3 4+ 1;
b=2a; b=*2a;
return b; return b;

} }

int main() { int main() {
int x = 0; int x = 0;
int result = add(x); int result = add(&x);
cout << result << endl; cout << result << endl;
cout << X << endl; cout << X << endl;
return 9; return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a) Function Declaration

int b = 0;
a =a+ 1;
b=3;
return b;

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 9;

“Pass by Reference”

##tinclude <iostream>
using namespace std;

int add(int* a) Function Declaration

int b = 0;
*a = *a + 1;
b=*a;
return b;

}

int main() {
int x = 9;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a)
{

int b = 0;

= a + 1; Function Definition
b=3;

return b;

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 9;

}

“Pass by Reference”

##tinclude <iostream>
using namespace std;

int add(int* a)
{

int b = 0;

*a = *a + 1; Function Definition
b=*a;

return b;

int main() {
int x = 9;
int result = add(&x);
cout << result << endl;
cout << X << endl;
return 9;

“Pass by Value”

#include <iostream>
using namespace std;

int add(int a)

{
int b = 0;
a =a+ 1;
b=3;
return b;
}

int main() {

N = (]

int result = add(x);

- 1;

cout << x << endl;
return 9;

}

Function Calling

pass bY PO‘“‘W

##tinclude <iostream>
using namespace std;

int add(int* a)

{
int b = 0;
*a = *a + 1;
b=*a;
return b;

}

int main() {

int result = add(&x);

OU oS U 210
cout << X << endl;
return 9;

}

J

Function Calling

Another way for “Pass by Reference”

#tinclude <iostream>

using namespace std; P 4 Reference Variable:
Reference variable is an alias for a variable which is

int add(in : :
(assigned to it.

int b = 9;

T 1; Different from pointer:

’ * The reference variable can only be initialized at the time

return b; of its creation

}

e The reference variable returns the address of the

int main() { variable preceded by the reference sign ‘&

It x =9 * The reference variable can never be reinitialized again in
int result = add(x);

cout << result << endl; the program

cout << X << endl;

return 0; * The reference variable can never refer to NULL

