
Introduction to Computing

Webpage: naveedanwarbhatti.github.io

Lecture 13

Dr. Naveed Anwar Bhatti

Memory Address, References and
Pointers

Memory Address

When a variable is created in C++, a memory address is assigned to the variable. And
when we assign a value to the variable, it is stored in this memory address.

Getting Memory Address

To access it, use the & operator, and the result will represent where the variable is
stored:

Example:

int a = 2;

cout << &a; // Outputs 0x6dfed4

Reference Variable

A reference variable is a "reference" to an existing variable, and it is created with the &
operator:

Reference Variable

int a = 2;
int &b= a; // reference to a

• The reference variable can only be initialized at the time of its creation

• The reference variable returns the address of the variable preceded by the reference
sign ‘&’

• The reference variable can never be reinitialized again in the program

• The reference variable can never refer to NULL

Pointers

A pointer is a variable that stores the memory address as its value.

• A pointer variable points to a data type of the same type
• It is created with the * operator.
• The address of the variable you're working with is assigned to the pointer

Pointer Variable

int *a ;
int b = 2;
a= &b; // a stores the address of b

Example:

Pointers

• Pointer variable holds the address of a variable, so its not a problem
• We can also get the value of the variable through pointer, by using the *

operator (the dereference operator).
• We can also change the value of the variable by using the * operator

Accessing Memory Address and Value using Pointer Variable

Example:

int *a ;
int b = 2;
a= &b; // a stores the address of b
cout << *a; // using dereference operator we get value of 'b'
*a = 3; // using dereference operator we set value of 'b'
cout << b; // we get 3

Pointers

• Pointer variable holds the address of a variable, so its not a problem
• We can also get the value of the variable through pointer, by using the *

operator (the dereference operator).
• We can also change the value of the variable by using the * operator

Accessing Memory Address and Value using Pointer Variable

Example:

int *a ;
int b = 2;
a= &b; // a stores the address of b
cout << *a; // using dereference operator we get value of 'b'
*a = 3; // using dereference operator we set value of 'b'
cout << b; // we get 3

Note:

The * sign can be confusing here, as it does two different things in our
code:

• When used in declaration (string* ptr), it creates a pointer variable.
• When not used in declaration, it act as a dereference operator.

Pointers (Recap)

1. Pointer variables int *p, *q;

2. Static allocation int x;

3. Address-of operator p = &x;

4. Memory cell to which P points *p = 6;

5. Pointer operations q = p;

? ? ?

p q x

? ?

p q x

? 6

p q x

1 and 2 3 4

6

p q x

5

“Pass by Value” and “Pass by Reference”

Pass by Value:
• Makes a copy in memory of the actual parameters

• Use pass by value when you are only using the parameter for some computation,
not changing it

Pass by Reference:
• Forwards the actual parameters

• Use pass by reference when you are changing the parameter passed in the program

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

“Pass by Value” “Pass by Reference”

“Pass by Value” “Pass by Reference”

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Function Declaration Function Declaration

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;

return 0;
}

Function Definition Function Definition

“Pass by Value” “Pass by Reference”

#include <iostream>
using namespace std;

int add(int* a)
{
int b = 0;
*a = *a + 1;
b=*a;

return b;
}

int main() {
int x = 0;
int result = add(&x);
cout << result << endl;
cout << x << endl;
return 0;

}

#include <iostream>
using namespace std;

int add(int a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Function Calling Function Calling

“Pass by Value” “Pass by Reference”

Another way for “Pass by Reference”

#include <iostream>
using namespace std;

int add(int &a)
{
int b = 0;
a = a + 1;
b=a;

return b;
}

int main() {
int x = 0;
int result = add(x);
cout << result << endl;
cout << x << endl;
return 0;

}

Reference Variable:
Reference variable is an alias for a variable which is
assigned to it.

Different from pointer:
• The reference variable can only be initialized at the time

of its creation

• The reference variable returns the address of the
variable preceded by the reference sign ‘&’

• The reference variable can never be reinitialized again in
the program

• The reference variable can never refer to NULL

