
Strings

The most common use for one-dimensional arrays is to store strings of
characters.

In C++, a string is defined as a character array terminated by a null symbol
(‘\0’).

To declare an array str that could hold a 10-character string, one would write:

char str[11];

Specifying the size as 11 makes room for the null at the end of the string.

Strings

Character Array Initialization:

Character arrays that will hold strings allow a shorthand initialization
that takes this form:

char array-name[size] = “string”;

For example, the following code fragment initializes str to the phrase
“hello”:

char str[6] = "hello";

This is the same as writing

char str[6] = { 'h', 'e', 'l', 'l', 'o', '\0' };

Remember that one has to
make sure to make the array

long enough to include the null
terminator.

Strings

Why NULL character (‘\0’) is important?

This is how the compiler and (other libraries) knows where the string ends

Strings

Example: #include <iostream>
using namespace std;

int main()
{

char sample[10] = {'a','a','a','a','a','a','a','a','a','\0'};

cout << sample << endl;

sample[0] = 'H';
sample[1] = 'e';
sample[2] = 'l';
sample[3] = 'l';
sample[4] = 'o';
sample[5] = '\0';

cout << sample << endl;

return(0);
}

aaaaaaaaa
Hello

Strings

Example: #include <iostream>
using namespace std;

int main()
{

char sample[10] = {'a','a','a','a','a','a','a','a','a','\0'};

cout << sample << endl;

sample[0] = 'H';
sample[1] = 'e';
sample[2] = 'l';
sample[3] = 'l';
sample[4] = 'o';

cout << sample << endl;

return(0);
}

aaaaaaaaa
Helloaaaa

Strings

Reading a String from the Keyboard

• Make an array, that will receive the string
• The following program reads (part of) a string entered by the user:

#include <iostream>
using namespace std;

int main()
{

char str[80];
cout << "Enter a string : ";
cin >> str; // read string from keyboard
cout << "Here is your string : ";
cout << str;
return(0);

}

Strings

Problem: Entering the string “This is a test”, the
above program only returns “This”, not the entire
sentence.

Strings

Reason: The C++ input/output system stops reading
a string when the first whitespace character is
encountered.

Strings

Solution: Use another C++ library function, gets_s().

#include <iostream>
#include <stdio.h>
using namespace std;

int main()
{

char str[80]; // long enough for user input?
cout << "Enter a string : ";
gets_s(str); // read a string from the keyboard
cout << "Here is your string : ";
cout << str << endl;
return(0);

}

Syntax: gets_s(char* destination)

Some C++ Library Functions for Strings

C++ supports a range of string-manipulation functions.
The most common are:

• strcpy_s() : copy characters from one string to another
• strcat_s() : concatenation of strings
• strlen() : length of a string
• strcmp() : comparison of strings

Some C++ Library Functions for Strings

Example of strcpy_s():

#include <iostream>
#include <stdio.h>
using namespace std;

int main()
{

char a[10];
strcpy_s(a, "hello");
cout << a;
return(0);

}

Syntax: strcpy_s(char* destination, char* source)

Some C++ Library Functions for Strings

Example of strcpy_s():

#include <iostream>
#include <stdio.h>
using namespace std;

int main()
{

char a[10]="Hi";
char b[10] = "Hello";
strcpy_s(a, b);
cout << a;
return(0);

}

Some C++ Library Functions for Strings

Example of strlen():

#include <iostream>
#include <stdio.h>
using namespace std;

int main()
{

char str[80];
cout << "Enter a string : ";
gets_s(str);
cout << "Length is : " << strlen(str);
return(0);

}

Syntax: strlen(char* source)

Some C++ Library Functions for Strings

Example of strcats_s():

#include <iostream>
#include <stdio.h>
using namespace std;

int main()
{

char a[20]="Hi";
char b[15] = " and Hello";
strcat_s(a, b);
cout << a;
return(0);

}

Syntax: strcpy_s(char* string1, char* string2)

Some C++ Library Functions for Strings

Example of strcats_s():

‘H’ ‘i’ ‘\0’ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

‘ ’ ‘a’ ‘n’ ‘d’ ‘ ‘ ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’ ? ? ? ? ? ? ? ? ?

Note: The first string array has to be large enough to hold both strings:

char a[20] = “Hi”;

char b[15] = “ and Hello”;

strcat_s(a, b);

‘H’ ‘i’ ‘ ’ ‘a’ ‘n’ ‘d’ ‘ ‘ ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’ ? ? ? ? ? ? ?

Some C++ Library Functions for Strings

Example of strcats_s():

To be on the safe side:

Size of first string >= strlen(s1) + strlen(s2) + 1

Some C++ Library Functions for Strings

Example of strcmp():

The strcmp(a, b) function compares two strings and returns the following result:

• str_1 == str_2 : 0
• str_1 > str_2 : positive number
• str_1 < str_2 : negative number

Syntax: strcmp(char * string1, char* string2)

Some C++ Library Functions for Strings

Example of strcpy_s(): #include <iostream>
#include <stdio.h>
using namespace std;

int main()
{

char str[80];
cout << "Enter password : ";
gets_s(str);
if (strcmp(str, "password") == 0)
{

cout << " Logged on.\n";
}
else
{

cout << "Invalid password.\n";
}
return(0);

}

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

