
Introduction to Computing

Webpage: naveedanwarbhatti.github.io

Lecture 10

Dr. Naveed Anwar Bhatti

Arrays

Arrays

An array is a collection of variables of the same type that are referred to by
a common name.

Arrays offer a convenient means of grouping together several related
variables, in one dimension (or more dimensions).

Definition:

Arrays

• One-dimensional array
• Two-dimensional array
• Multi-dimensional array

Types of arrays:

One-Dimensional Arrays

• A one-dimensional array is a single list of related variables.

Definition:

type variable_name[size]

• type: base type of the array, determines the data type of each
element in the array

• size: how many elements the array will hold
• variable_name: the name of the array

• The general form of a one-dimensional array declaration is:

One-Dimensional Arrays

Examples:

int sample[10];
float float_numbers[100];
char last_name[40];

One-Dimensional Arrays – Initialization

The general form of array initialization is similar to that of other
variables:

type variable_name[size] = { list-of-values };

The list-of-values has to be a comma-separated list of constants that
are type-compatible with the base type of the array.

In the following example, a 10-element int array is initialized with
the numbers 1 through 10:

int i[10] = {1,2,3,4,5,6,7,8,9,10};

One-Dimensional Arrays – Initialization

float i[10] = {1.1, 2, 3.5, 4, 5, 6, 7, 8, 9.1, 10};

Some more examples:

int quiz_marks[5] = {10, 5, 2, 0, 7};

One-Dimensional Arrays – Accessing Array Elements

• An individual element within an array is accessed by use of an index.
• An index describes the position of an element within an array.

Note: In C++ the first element has the index zero!

• In C++, any array is mapped to a contiguous memory location.

• All memory elements reside next to each other.

• The lowest address corresponds to the first element, and the highest address
to the last element.

array-name[index] ;

One-Dimensional Arrays – Memory Mapping

For Example:

int a[10] = { 1,2,3,4,5,6,7,8,9,10 };

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[9]

1

2

3

4

5

6

7

8

9

10

One-Dimensional Arrays – Accessing Array Elements

Accessing Array Elements: #include <iostream>
using namespace std;

int main()
{

int a[10] = { 1,2,3,4,5,6,7,8,9,10 };

cout << a[0] << endl;
cout << a[1] << endl;
cout << a[2] << endl;
cout << a[3] << endl;
cout << a[4] << endl;
cout << a[5] << endl;
cout << a[6] << endl;
cout << a[7] << endl;
cout << a[8] << endl;
cout << a[9] << endl;

return 0;
}

One-Dimensional Arrays – Accessing Array Elements

Accessing Array Elements: #include <iostream>
using namespace std;

int main()
{

int a[10] = { 1,2,3,4,5,6,7,8,9,10 };

for (int i = 0; i < 10; i++)
{

cout << a[i] << endl;
}

return 0;
}

One-Dimensional Arrays – Accessing Array Elements

Exercise: Find the Maximum #include <iostream>
using namespace std;

int main()
{

int a[10] = { 1,10,3,7,5,6,2,11,4,0 };

int max=0;

for (int i = 0; i < 10; i++)
{

if(max < a[i])
max= a[i] ;

}

cout << max << endl;

return 0;
}

One-Dimensional Arrays – Accessing Array Elements

Exercise: Find the Maximum #include <iostream>
using namespace std;

int main()
{

int a[10] = { 1,10,3,7,5,6,2,11,4,0 };

int max=0;

for (int i = 0; i < 10; i++)
{

if(max < a[i])
max= a[i] ;

}

cout << max << endl;

return 0;
}

One-Dimensional Arrays – Accessing Array Elements

Example: Initialize the array sample with the numbers 02 through 92

0 1 4 9 16 25 36 49 64 81

One-Dimensional Arrays – Accessing Array Elements

Example: Initialize the array sample with the numbers 02 through 92

int main()
{

int sample[10];
int t;

for (int t = 0; t < 10; t++)
{

sample[t] = t * t;
}

for (int t = 0; t < 10; t++)
{

cout << sample[t] << endl;
}

return(0);
}

One-Dimensional Arrays

• You cannot assign one array to another in C++.
• The following is illegal:

No Array-to-Array Assignments

int a[10], b[10];
// do something
// assign all elements of array b to array a
a = b; // error -- illegal

• Instead, you have to do the assignments for each element:

int i;
// assign all elements of array b to array a
for (i = 0; i < 10; i++)
{

a[i] = b[i];
}

One-Dimensional Arrays

• C++ performs no bounds checking on arrays.

• Nothing will stop you from overrunning the end of an array:

➞ You will assign values to some other variables´ data!!!
➞ You might even write into a piece of the program code!!!

No Bounds Checking

