Introduction to Computing

Lecture 10

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Arrays

Arrays

Definition:

An array is a collection of variables of the same type that are referred to by
a common name.

Arrays offer a convenient means of grouping together several related
variables, in one dimension (or more dimensions).

Arrays

Types of arrays:

* One-dimensional array
e Two-dimensional array
 Multi-dimensional array

One-Dimensional Arrays

Definition:

A one-dimensional array is a single list of related variables.

The general form of a one-dimensional array declaration is:

type variable name[size]

* type: base type of the array, determines the data type of each
element in the array

e size: how many elements the array will hold
 variliable name: the name of the array

One-Dimensional Arrays
I W ~

Examples:

int sample[10];
float float numbers[100];
char last name[40];

One-Dimensional Arrays — Initialization

The general form of array initialization is similar to that of other
variables:

type variable name[size] = { list-of-values };

The list-of-values has to be a comma-separated list of constants that
are type-compatible with the base type of the array.

In the following example, a 10-element int array is initialized with
the numbers 1 through 10:

int i[1e] = {1,2,3,4,5,6,7,8,9,10};

One-Dimensional Arrays — Initialization

Some more examples:
float i[10] = {1.1, 2, 3.5, 4, 5, 6, 7, 8, 9.1, 10};

int quiz marks[5] = {10, 5, 2, O, 7};

One-Dimensional Arrays — Accessing Array Elements
I W ~

 Anindividual element within an array is accessed by use of an index.
* Anindex describes the position of an element within an array.

Note: In C++ the first element has the index zero!

array-namelindex] ;

e In C++, any array is mapped to a contiguous memory location.
* All memory elements reside next to each other.

* The lowest address corresponds to the first element, and the highest address
to the last element.

One-Dimensional Arrays — Memory Mapping

For Example:

int a[10] = { 1,2,3,4,5,6,7,8,9,10 };

a[o]
a[1]
al2]
al3]
al[4]
al5]
a[6]
a[7]
a[8]
a[9]

Ol | I N[| B [WIN| K

[N
o

One-Dimensional Arrays — Accessing Array Elements

Accessing Array Elements: #include <iostream>
using namespace std;

int main()

{
int a[l@] = { 1_’2_,3)4)5)6)7)8)9)1@ }.;

cout << a[@] << endl;
cout << a[l] << endl;
cout << a[2] << endl;
cout << a[3] << endl;
cout << a[4] << endl;
cout << a[5] << endl;
cout << a[6] << endl;
cout << a[7] << endl;
cout << a[8] << endl;
cout << a[9] << endl;

return 9;

One-Dimensional Arrays — Accessing Array Elements

Accessing Array Elements: #include <iostream>
using namespace std;

int main()

{
int a[l@] = { 1)2)3)4)5)6)7)819)1@ };

for (int 1 = 0; 1 < 10; i++)

{

cout << a[i] << endl;
}
return 9;

One-Dimensional Arrays — Accessing Array Elements

Exercise: Find the Maximum #include <iostream>
using namespace std;

int main()

{
int a[l@] - { 1,1@)3)7)5)6)2111J4)@ };

One-Dimensional Arrays — Accessing Array Elements

Exercise: Find the Maximum #include <iostream>
using namespace std;

int main()

{
int a[l@] - { 1,1@)3)7)5)6)2111J4)@ };

int max=0;
for (int 1 = 0; 1 < 10; i++)
{

if(max < a[i])

max= a[i] ;

¥

cout << max << endl;

return 9;

N One-Dimensional Arrays — Accessing Array Elements

Example: Initialize the array sample with the numbers 0% through 92

One-Dimensional Arrays — Accessing Array Elements

Example: Initialize the array sample with the numbers 0% through 92

int main()

{
int sample[10];
int t;

for (int t = 0; t < 10; t++)

{

sample[t] = t * t;
}
for (int t = 0; t < 10; t++)
{

cout << sample[t] << endl;
}
return(0);

One-Dimensional Arrays
I W ~

No Array-to-Array Assignments

* You cannot assign one array to another in C++.
 The following is illegal:

int a[l10], b[1l0];

// do something

// assign all elements of array b to array a
a =>b; // error -- illegal

* Instead, you have to do the assignments for each element:

int i;
// assign all elements of array b to array a
for (i = 0; 1 < 10; i++)

{
¥

a[i] = b[i];

One-Dimensional Arrays

No Bounds Checking

e C++ performs no bounds checking on arrays.

* Nothing will stop you from overrunning the end of an array:

— You will assign values to some other variables” data!!!
— You might even write into a piece of the program code!!!

