

Introduction to Computing

Lecture 4

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Variables, Data types and User Input

“ Variables are containers for storing data values ”

- Common data types
 - **int** - integer numbers
 - **char** - characters
 - **float** - floating point numbers
- Declare variables with name and data type before use

```
int integer1;  
int integer2;  
int sum;
```
- Can declare several variables of same type in one declaration
 - Comma-separated list

```
int integer1, integer2, sum;
```

We will talk about
this in detail

- Can declare and assign it a value in one instruction

```
int integer1 = 1;
```

C++ Variables – Example Code

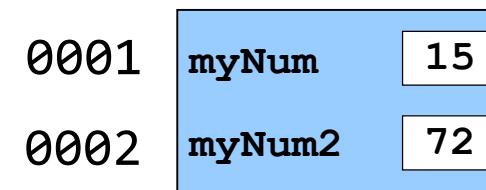
Declare and assign value to a variable

```
#include <iostream>
using namespace std;

int main()
{
    int myNum = 15;
    cout << myNum;
    return 0;
}
```

Declare a variable without assigning the value, and assign the value later

```
#include <iostream>
using namespace std;

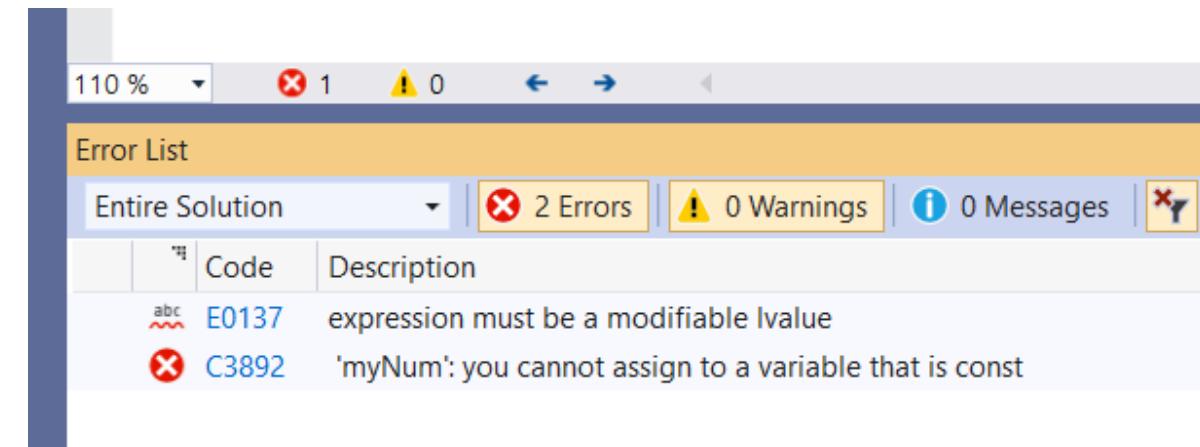

int main()
{
    int myNum;
    myNum = 15;
    cout << myNum;
    return 0;
}
```

- Variable names (**Identifier**)
 - Correspond to actual locations in computer's memory
 - Every variable has ***name***, ***type***, ***size*** and ***value***
 - When new value placed into variable, overwrites previous value

```
int myNum = 15;
```



```
int myNum2 = 72;
```



Constant Variables

- Add **const** keyword if you don't want others (or yourself) to change values
- This will declare the variable as "constant", which means unchangeable and read-only

Example:

```
#include <iostream>
using namespace std;

int main()
{
    const int myNum = 15;
    myNum = 10;
    cout << myNum;
    return 0;
}
```


The data type specifies the size and type of information the variable will store:

Data Type	Size	Description
<code>int</code>	4 bytes	Stores whole numbers, without decimals
<code>float</code>	4 bytes	Stores fractional numbers, containing one or more decimals. Sufficient for storing 7 decimal digits
<code>double</code>	8 bytes	Stores fractional numbers, containing one or more decimals. Sufficient for storing 15 decimal digits
<code>boolean</code>	1 byte	Stores true or false values
<code>char</code>	1 byte	Stores a single character

C++ Variables – Example Code

```
#include <iostream>
using namespace std;

int main()
{
    int myNum = 5;                      // Integer (whole number)
    float myFloatNum = 5.99;            // Floating point number
    double myDoubleNum = 9.98;          // Floating point number
    char myLetter = 'D';                // Character
    bool myBoolean = true;              // Boolean

    cout << myNum << "\n";
    cout << myFloatNum << "\n";
    cout << myDoubleNum << "\n";
    cout << myLetter << "\n";
    cout << myBoolean << "\n";

    return 0;
}
```

The **precision** of a floating point value indicates how many digits the value can have after the decimal point. The precision of `float` is only six or seven decimal digits, while `double` variables have a precision of about 15 digits. Therefore it is safer to use `double` for most calculations.

C++ User Input (cin)

cin is a predefined variable that reads data from the keyboard with the extraction operator (**>>**)

Remember “<<” is called
insertion operator

Example:

```
#include <iostream>
using namespace std;

int main()
{
    int x;
    cout << "Type a number: " // Type a number
        and press enter
    cin >> x; // Get user input from the
        keyboard
    cout << "Your number is: " << x;
    return 0;
}
```

Write a C++ program to print

*

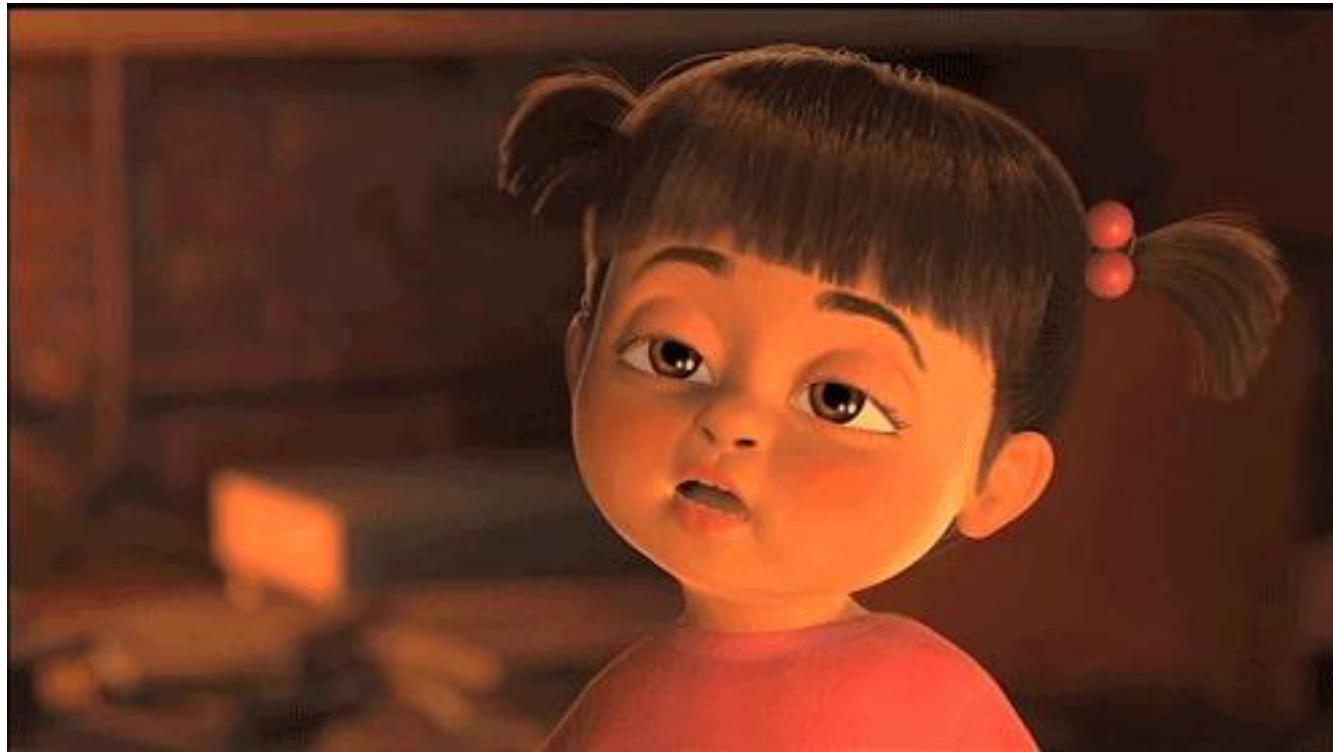
**

on screen.

Write a C++ program which asks the user for their age, and then displays this back to them

Hello. How old are you? <age>

You are <age> years old


Exercise

```
#include <iostream>
using namespace std;

int main()
{
    int age;

    cout << "Hello. How old are you?";
    cin >> age;
    cout << "You are "<< age << " years old"
    << "\n";
    return 0;
}
```

Thanks a lot

If you are taking a Nap, **wake up.....Lecture Over**