

One's-complement

- Negative number: Bitwise complement positive number
 - $0011 \equiv 3_{10}$
 - $1100 \equiv -3_{10}$
- Solves the arithmetic problem

Add	Invert, add, add carry	Invert and add
4 0100 + 3 + 0011 = 7 = 0111	4 0100 - 3 + 1100 = 1 1 0000 add carry: +1 = 0001	- 4 1011 + 3 + 0011 = 1 1 110

- Remaining problem: Two representations for zero
 - $0 = 0000$ and also $-0 = 1111$

Two's-complement

- Negative number: Bitwise complement **plus one**
 - $0011 \equiv 3_{10}$
 - $1101 \equiv -3_{10}$
- Only one zero!
- MSB is the sign digit
 - 0 \equiv positive
 - 1 \equiv negative

Add	Invert and add	Invert and add
$\begin{array}{r} 4 \\ + 3 \\ \hline = 7 \end{array} \quad \begin{array}{r} 0100 \\ + 0011 \\ \hline = 0111 \end{array}$	$\begin{array}{r} 4 \\ - 3 \\ \hline = 1 \end{array} \quad \begin{array}{r} 0100 \\ + 1101 \\ \hline 1\ 0001 \end{array}$ <p>drop carry</p>	$\begin{array}{r} - 4 \\ + 3 \\ \hline = 1 \end{array} \quad \begin{array}{r} 1100 \\ + 0011 \\ \hline = 0001 \end{array}$

 Exercise

	6-bit Binary of Magnitude	Sign and Magnitude	One's Complement	Two's Complement
-10	001010	101010	110101	110110
-14	001110	101110	1100001	1100010
-3	000011	100011	111100	111101
-17	010001	110001	101110	101111

Arithmetic's using 1's and 2's complement

Addition of a **positive** number and a **negative** number.

Case I: When the positive number has a greater magnitude

In this case the end-around **carry** will be generated and is **added** into the final result.

	Binary	5-bit Binary	
11	1011	01011	1 1 1
-5	101	00101	01011
			+ 11010 (1's Complement)
			<hr/>
			00101
			+ 1
			<hr/>
			00110

Addition of a **positive** number and a **negative** number

Case II: When the negative number is greater.

When the negative numbers is greater **no end-around carry** will be generated. The result of addition will be negative, and the **final result is obtained by taking 1's complement** of the result.

	Binary	5-bit Binary	
-11	1011	01011	1 10100 (1's Complement)
5	101	00101	+ 00101 ————— 11001 00110 (1's Complement)

When the numbers are **negative**

A end-around **carry will be generated** which will be **added** in sum. 1's complement of the result will give the magnitude.

	Binary	5-bit Binary	
-10	1010	01010	1
-5	101	00101	10101 (1's Complement)
			+ 11010 (1's Complement)
			<hr/>
			01111
			+ 1
			<hr/>
			10000
			01111 (1's Complement)

Two's-complement (Arithmetic)

Addition of a **positive** number and a **negative** number.

Case I: When the positive number has a greater magnitude

In this case the **end-around carry** will be generated and is discarded. The final result is the result of addition.

	Binary	5-bit Binary	
11	1011	01011	1 1 11
-5	101	00101	01011
			+ 11011 (2's Complement)
			<hr/>
			00110

Addition of a **positive** number and a **negative** number

Case I: When the negative number is greater.

When the negative numbers is greater **no end-around carry will be generated**. The result of addition will be negative, and the final **result is obtained by taking 2's complement** of the final sum.

	Binary	5-bit Binary	
-11	1011	01011	1 1 10101 (2's Complement)
5	101	00101	+ 00101 ————— 11010 00110 (2's Complement)

Two's-complement (Arthimetic)


When the numbers are **negative**

A end-around **carry will be generated** which will be discarded. The final result is obtained by taking 2's complement of the sum.

	Binary	6-bit Binary	
-10	1010	01011	1 111 10110 (2's Complement)
-5	101	00101	+ 11011 (2's Complement)
			<hr/> 10001 01111 (2's Complement)

- Can't infer a representation from a number
 - 11001 is 25 (unsigned)
 - 11001 is -9 (sign magnitude)
 - 11001 is -6 (ones complement)
 - 11001 is -7 (twos complement)
- 1's complement **-> Add Carry**
- 2's complement **-> Drop Carry**

Thanks a lot

If you are taking a Nap, **wake up.....Lecture Over**