

- Convert following into decimal

- Binary: 1101110_2 110_{10}
- Octal: 4675_8 2493_{10}
- Hexadecimal: $FF4_{16}$ 4084_{10}

Conversion from Decimal

Decimal -> Binary

567

1000110111₂

2	567	Remainder	
2	283.5	$0.5 \times 2 = 1$	
2	283		
2	141.5	$0.5 \times 2 = 1$	
2	141		
2	70.5	$0.5 \times 2 = 1$	
2	70		
2	35	$0 \times 2 = 0$	
2	17.5	$0.5 \times 2 = 1$	
2	17		
2	8.5	$0.5 \times 2 = 1$	
2	8		
2	4	$0 \times 2 = 0$	
2	2	$0 \times 2 = 0$	
	1	$0 \times 2 = 0$	

Conversion from Decimal

Decimal -> Octal

567

1067₈

8	567	Remainder	
8	70.875	$0.875 \times 8 = 7$	
8	70		
8	8.75	$0.75 \times 8 = 6$	
	1	$0 \times 8 = 0$	

Decimal -> Hexadecimal

567

237₁₆

16	567	Remainder	
16	35.4375 35	$0.4375 \times 16 = 7$	
	2.1875 2	$0.1875 \times 16 = 3$	

- Convert following decimal number into:

- Binary: 56_{10} 111000_2
- Octal: 56_{10} 70_8
- Hexadecimal: 56_{10} 38_{16}

- The length of a representation grows, from right to left, like:

3rd 2nd 1st 0th

7

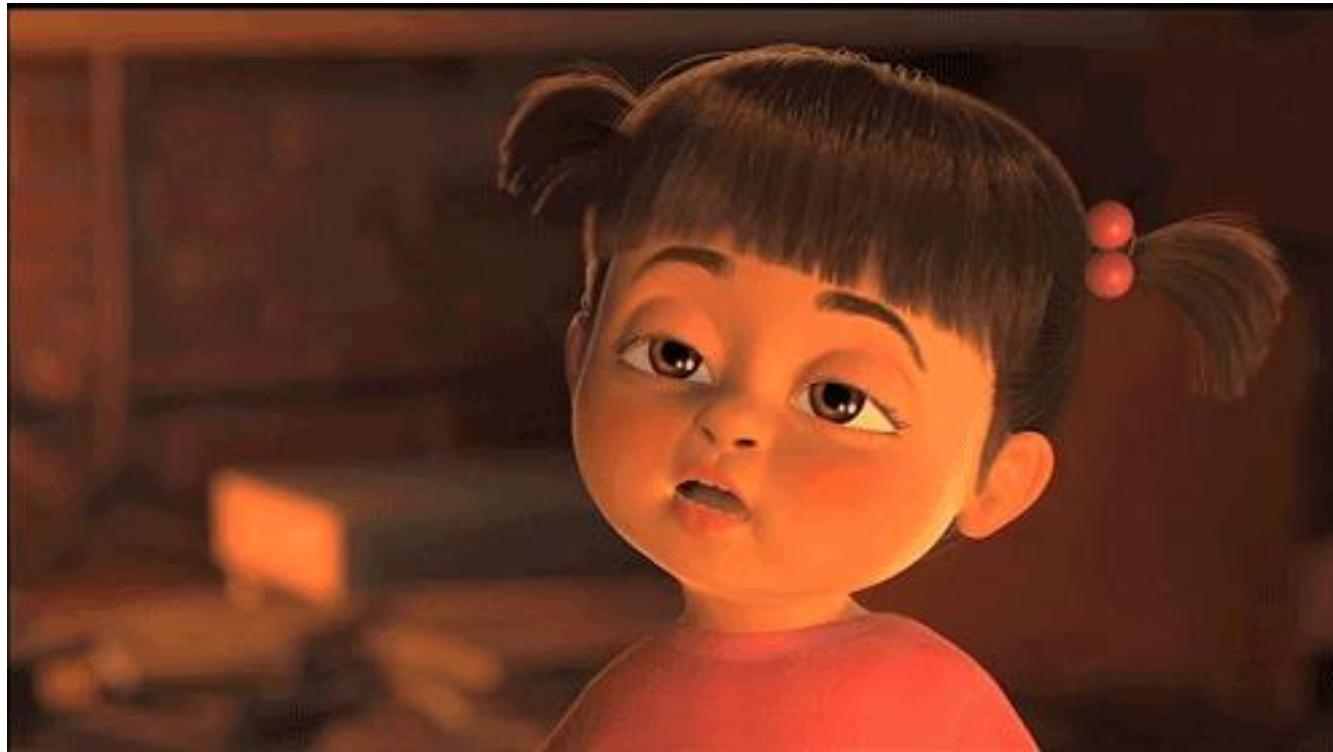
17

217

5217

- In general, a number x may be represented with a representation of length n in the following manner (here d_p means the digit at position p).

d_{n-1}	...	d_3	d_2	d_1	d_0
-----------	-----	-------	-------	-------	-------


- So for the number 199834, in decimal, $d_0=4$, $d_1=3$, $d_2=8$, $d_3=9$, $d_4=9$ and $d_5=1$.
- In general, We call the **rightmost digit, d_0** , the **least significant digit (LSD)** and the **leftmost digit d_{n-1}** , the **most significant digit (MSD)**.

- A digit in the **binary number system** is more commonly called a **bit**
- When a binary number is represented using 8 bits, the resulting representation, composed of $d_0, d_1, d_2 \dots d_7$, is called a **byte**
- Similarly:
 - binary representation composed of 16 bits is called a **word (2 bytes)**
 - binary representation composed of 32 bits is called a **double word (4 bytes)**
 - binary representation composed of 64 bits is called a **quadruple word (8 bytes)**

- A less common, 4-bit representation of numbers is called **nibble**.
- The concept of a byte is fundamental in computer science because a byte is the **smallest addressable** unit of memory in a modern computer; furthermore, data is quantified in terms of byte!
- A byte is therefore a unit for measuring data in computers.

- The following quantifiers are important:
 - KILO
 - $1K = 2^{10} = 1024$ So how many bytes in 37KB?
 - MEGA
 - $1M = 2^{20} = 1,048,576$ So how many Kilo bytes in 137MB?
 - GIGA
 - $1G = 2^{30} = 1,073,741,824$ So how many Mega bytes in 562GB?
 - TERA
 - $1T = 2^{40} = 1,099,511,627,776$ So how Giga bytes in 307TB?

Thanks a lot

If you are taking a Nap, **wake up.....Lecture Over**