


Introduction to Computing

Lecture 2

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

- Weblink is working now
-

-
- Google Classroom Coming Soon

Before moving to C++ Programming

Number System

(Different Ways To Say How Many)

The “WHY” slide

- Binary numbers
 - All computers work with 0's and 1's... so it is like learning alphabets before learning English
- Number systems
 - There are more than one way to express a number in binary. So 1010 could be -2, -5 or -6 and need to know which one.
- Base conversion
 - For convenience, people use other bases (like decimal, hexdecimal) and we need to know how to convert from one to another.

*“ A **Number System** is a writing-system for expressing numbers, a mathematical notation for representing numbers of a given set, using symbols in a consistent manner ”*

- Ideally, a number system will:
 - Represent a useful **set of numbers** (integers, or rational numbers)
 - Give every number a **unique representation** (or a standard representation)
 - Reflect the **algebraic** and **arithmetic structure** of the numbers

“ The number of distinct symbols that can be used to represent numbers in that system ”

- For example, the base for the **decimal number system** is **10**, as we use the ten symbols **0,1,2,3,4,5,6,7,8,9** to represent numbers in this system.

Numbering Systems		
System	Base	Digits
Binary	2	0 1
Octal	8	0 1 2 3 4 5 6 7
Decimal	10	0 1 2 3 4 5 6 7 8 9
Hexadecimal	16	0 1 2 3 4 5 6 7 8 9 A B C D E F

Base/Radix of Number System

“ The number of distinct symbols that can be used to represent numbers in that system ”

- For example, the base for the decimal number system is **10**, as we can use the ten symbols 0,1,2,...,9 to represent numbers in this system.

Numbering Systems		
System	Base	Digits
Binary	2	0 1
Octal	8	0 1 2 3 4 5 6 7
Decimal	10	0 1 2 3 4 5 6 7 8 9
Hexadecimal	16	0 1 2 3 4 5 6 7 8 9 A B C D E F

Same number will have different representations in different systems.

- ‘101’ means a hundred and one **in decimal**
- ‘101’ means five, **in binary**

Decimal Number System

- The decimal numeral system has **ten** as its base. It is the number system most widely used by modern civilizations.
- This system uses the **10** symbols: **{0,1,2,3,4,5,6,7,8,9}**

10^2 10^1 10^0

179

hundreds tens ones

1×100 7×10 9×1

$100 + 70 + 9 = 179$

Binary Number System

- The binary numeral system has **two** as its base.
- It is the numerical base used by computers where numbers stored using the on/off logic. The ON and OFF conveniently translate into 1 and 0.
- This system uses the **2** symbols: **{0,1}**

2^2 2^1 2^0

101

four's two's ones

1×4 0×2 1×1

$4 + 0 + 1 = 5$

5_{10}

Octal Number System

- The octal numeral system (**base eight**) has eight as its base.
- This system uses the **8** symbols: **{0,1,2,3,4,5,6,7,8}**

8^2 8^1 8^0

765

Sixty-fours eights ones

7×64 6×8 5×1

$$448 + 48 + 5 = 501$$

501_{10}

Hexadecimal Number System

- The hexadecimal numeral system (**base 16**) has sixteen as its base
- This system uses the **16** symbols: **{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}**
- The main advantage of using this numeral system is that it keeps the **representations short**, and hence manageable

16^2 16^1 16^0

F6C

Two-fifty-sixes sixteens ones

15×256 6×16 12×1

$$3840 + 96 + 12 = 3948 \quad 3948_{10}$$

Conversion to Decimal

Binary -> Decimal

101

$2^2 \ 2^1 \ 2^0$

$1x2^2 \ 0x2^1 \ 1x2^0$

$4 \ + \ 0 \ + \ 1 = 5$

Octal -> Decimal

765

$8^2 \ 8^1 \ 8^0$

$7x8^2 \ 6x8^1 \ 5x8^0$

$448 \ + \ 48 \ + \ 5 = 501$

Hexa -> Decimal

F6C

$16^2 \ 16^1 \ 16^0$

$15x16^2 \ 6x16^1 \ 12x16^0$

$3840 \ + \ 96 \ + \ 12 = 3948$

- Convert following into decimal

- Binary: 1101110_2 110_{10}

- Octal: 4675_8 2493_{10}

- Hexadecimal: $FF4_{16}$ 4084_{10}