Computer Organization and Assembly Language (COAL)

Lecture 8

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Locality

Principle of Locality:

» Programs tend to reuse data and instructions near those used recently, or
that were recently referenced.

= Temporal locality: Recently referenced items are likely to be referenced in
the near future.

= Spatial locality: ltems with nearby addresses tend to be referenced close
together in time.

= Programs with good locality run faster than programs with poor locality

= At the hardware level, the principle of locality allows computer designers to
speed up main memory accesses by introducing small fast memories known
as cache memories that hold blocks of the most recently referenced
Instructions and data items

= At the operating system level, the principle of locality allows the system to use
the main memory as a cache of the most recently referenced chunks of the
virtual address space.

Locality

= The principle of locality also plays a crucial role in the design of application
programs.

 Web browsers exploit temporal locality by caching recently referenced
documents on a local disk.

 High-volume Web servers hold recently requested documents in front-end disk
caches that satisfy requests for these documents without requiring any intervention
from the server

Locality Example

i int sumvec(int v[N])

{
int i, aum = 0O;: Address 0 4 8 12 16 20 24 28
Contents p 1 Ot W3 Uy Vs v M
for (L = 0; 1 < N; i++)
sum += v[i]; Accessorder 1 2 3 4 5 6 7 8
return sum;
g8}
(a) (b)
Data:

Reference array elements in succession (stride-1): Spatial
Reference sum each iteration: Temporal

Locality Example

Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

Question: Does this function have good locality?

int sumarrayrows(int a[M] [N])

{
int i, j, sum = 0O; Address 0 4 & 12 16 20
Contents tdgy dyy dgy dyg dyy dys
for (i = 0; i < M; i++) 2
for- {4 = Gy §-< Ne-dnd) Access order 1 2 3 4 5 ¥
sum += a[i] [j];
return sum;
}

Locality Example

Question: Does this function have good locality? How
does it compare to the previous version?

| int sumarraycols(int a[M] [N])

{
int 1, j, sum = 0; Address 1] 4 8 12 16 20
4 Contents dgg gy Qg dyg Gy dpa
for (j = 0; j < N; j++)
for L= 07 4 < My ied) Access order 1 3 5 2 4 6
aum += al[il [j];
8 return sum;
3 }

(a) (b)

N Summary of Locality

* Programs that repeatedly reference the same varnables enjoy good temporal
locality.

* For programs with stride-k reference patterns, the smaller the stride the better
the spatial locahty. Programs with stride-1 reference patterns have good spa-
hial locality. Programs that hop around memory with large strides have poor
spatial locahty.

* Loops have good temporal and spatial locality with respect to instruction
fetches. The smaller the loop body and the greater the number of loop it-
erations, the better the locality.

Memory Hierarchies

Some fundamental and enduring properties of hardware and
software:
Fast storage technologies cost more per byte and have less
capacity.
The gap between CPU and main memory speed is
widening.
Well-written programs tend to exhibit good locality.

These fundamental properties complement each other beautifully.

They suggest an approach for organizing memory and storage
systems known as a memory hierarchy.

-) CPU registers hold words retrieved
egisters from L1 cache
L1: L1 cache
Smaller, (SRAM) L1 cache holds cache lines retrieved
from L2 cache
faster,
; L2:
costlier e
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Lareer Main memory
| Ber [DRAM) Main memory holds disk blocks
BN, retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
L5 Remote secondary storage

(tapes, distributed file systems, Web servers)

Cache

Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

The fundamental idea of a memory hierarchy: For each Kk,
the faster, smaller device at level k serves as a cache for
the larger, slower device at level k+1.

Why Memory Hierarchies?

Why do memory hierarchies work?

Programs tend to access the data at level k more often than they access the
data at level k+1.

Thus, the storage at level k+1 can be slower, and thus larger and cheaper
per bit.

Net effect: A large pool of memory that costs as much as the cheap storage
near the bottom, but that serves data to programs at the rate of the fast storage
near the top.

We use a combination of small fast memory and big slow memory to give
the illusion of big fast memory.

Caching in a Memory Hierarchy

Level k:

Smaller, faster, more

expensive device at

A level k caches a subset
of the blocks from level

10 k+1.

Level ki1: Data is copied

Y between levels in

block-sized transfer

units.

Larger, slower, cheaper
$97 Mol storage device at !evel
k+1 is partitioned into
12 13 |14 1P blocks.

409 10 3

A |
U1

\®]
[§8]

4—5 6 7

General Caching Concepts

B = I
Program needs object d, stored in

some block b.
Cache hit: program finds b in

Request 12 the level k cache, e.g., block 14.

12

Level k: Cache miss: b is not at level k, so
f2; L must fetch it from level k+1, e.g.,
block 12.

Request 12 If level k cache is full, then some
current block must be replaced

e el (evicted). Which one is the

“victim”™?

L Placement policy: where can the

- new block go? E.g., b mod 4.

o Wl Replacement policy: Which block
131 o 15 should be evicted? E.g., LRU.

A

General Caching Concepts

Types of cache misses:
Cold (compulsary) miss: the cache is empty.

Conflict miss: all available positions at level k are occupied.
Most caches limit blocks at level k+1 to a small
subset (sometimes only one) of the block positions
at level k.

E.g., Block i at level k+1 must be placed in block (i mod
4) at level k+1.

Conflict misses occur when multiple data objects all map
to the same level k block. Note: there still may be empty
slots in the cache.

Capacity miss: the set of active cache blocks (working set)
Is larger than the cache.

Computer Organization and Assembly Language (COAL)

The End

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Thanks a lot

Lecture Over

	Slide 1
	Slide 2: Locality
	Slide 3: Locality
	Slide 4
	Slide 5
	Slide 6: Locality Example
	Slide 7
	Slide 8: Memory Hierarchies
	Slide 9
	Slide 10: Cache
	Slide 11: Why Memory Hierarchies?
	Slide 12: Caching in a Memory Hierarchy
	Slide 13: General Caching Concepts
	Slide 14: General Caching Concepts
	Slide 15
	Slide 16: Thanks a lot

