
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 8

Dr. Naveed Anwar Bhatti

Locality

Cache I

Principle of Locality:

▪ Programs tend to reuse data and instructions near those used recently, or

that were recently referenced.

▪ Temporal locality: Recently referenced items are likely to be referenced in

the near future.

▪ Spatial locality: Items with nearby addresses tend to be referenced close

together in time.

▪ Programs with good locality run faster than programs with poor locality

▪ At the hardware level, the principle of locality allows computer designers to

speed up main memory accesses by introducing small fast memories known

as cache memories that hold blocks of the most recently referenced

instructions and data items

▪ At the operating system level, the principle of locality allows the system to use

the main memory as a cache of the most recently referenced chunks of the

virtual address space.

Locality

▪ The principle of locality also plays a crucial role in the design of application

programs.

▪ Web browsers exploit temporal locality by caching recently referenced

documents on a local disk.

▪ High-volume Web servers hold recently requested documents in front-end disk

caches that satisfy requests for these documents without requiring any intervention

from the server

Locality Example

Data:

Reference array elements in succession (stride-1): Spatial

Reference sum each iteration: Temporal

Locality Example

Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional

programmer.

Question: Does this function have good locality?

Locality Example

Cache I

Question: Does this function have good locality? How

does it compare to the previous version?

Summary of Locality

Memory Hierarchies

Cache I

Some fundamental and enduring properties of hardware and

software:

Fast storage technologies cost more per byte and have less

capacity.

The gap between CPU and main memory speed is

widening.

Well-written programs tend to exhibit good locality.

These fundamental properties complement each other beautifully.

They suggest an approach for organizing memory and storage

systems known as a memory hierarchy.

Example Memory Hierarchy

Cache I

Cache

Cache I

Cache: A smaller, faster storage device that acts as a staging

area for a subset of the data in a larger, slower device.

The fundamental idea of a memory hierarchy: For each k,

the faster, smaller device at level k serves as a cache for

the larger, slower device at level k+1.

Why Memory Hierarchies?

Cache I

Why do memory hierarchies work?

Programs tend to access the data at level k more often than they access the

data at level k+1.

Thus, the storage at level k+1 can be slower, and thus larger and cheaper

per bit.

Net effect: A large pool of memory that costs as much as the cheap storage

near the bottom, but that serves data to programs at the rate of the fast storage

near the top.

We use a combination of small fast memory and big slow memory to give

the illusion of big fast memory.

Caching in a Memory Hierarchy

Cache I

4 9 10 3

vel k+1:

10

0 1 2 3

4 5 6
7

8 9 10 11

12 13 14 15

Level k:

Le

Smaller, faster, more

expensive device at

level k caches a subset

of the blocks from level

k+1.

Data is copied

between levels in

block-sized transfer

units.

Larger, slower, cheaper

storage device at level

k+1 is partitioned into

blocks.

General Caching Concepts

Cache I

1 2

0 1 2 3

12 9 14 3

1 2

vel k+1:

Request 12

0 1 2 3

4* 5 6 7

8 9 10 11

1 2 13 14 15

Level k:

Le

Request 12

Program needs object d, stored in

some block b.
Cache hit: program finds b in

the level k cache, e.g., block 14.

Cache miss: b is not at level k, so

must fetch it from level k+1, e.g.,

block 12.

If level k cache is full, then some

current block must be replaced

(evicted). Which one is the

“victim”?

Placement policy: where can the

new block go? E.g., b mod 4.

Replacement policy: Which block

should be evicted? E.g., LRU.

General Caching Concepts

Cache I

Types of cache misses:

Cold (compulsary) miss: the cache is empty.

Conflict miss: all available positions at level k are occupied.

Most caches limit blocks at level k+1 to a small

subset (sometimes only one) of the block positions

at level k.

E.g., Block i at level k+1 must be placed in block (i mod

4) at level k+1.

Conflict misses occur when multiple data objects all map

to the same level k block. Note: there still may be empty

slots in the cache.

Capacity miss: the set of active cache blocks (working set)

is larger than the cache.

Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

The End

Dr. Naveed Anwar Bhatti

Khatam, Tata, Bye-bye

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2: Locality
	Slide 3: Locality
	Slide 4
	Slide 5
	Slide 6: Locality Example
	Slide 7
	Slide 8: Memory Hierarchies
	Slide 9
	Slide 10: Cache
	Slide 11: Why Memory Hierarchies?
	Slide 12: Caching in a Memory Hierarchy
	Slide 13: General Caching Concepts
	Slide 14: General Caching Concepts
	Slide 15
	Slide 16: Thanks a lot

