
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 7

Dr. Naveed Anwar Bhatti

Advanced Procedures

• Stack Frames
• Recursion
• INVOKE, ADDR, PROC, and PROTO
• Creating Multimodule Programs
• Advanced Use of Parameters (optional)
• Java Bytecodes (optional)

Stack Frames

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

• Stack Parameters

• Local Variables

• ENTER and LEAVE Instructions

• LOCAL Directive

Stack Frame

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

• Also known as an activation record

• Area of the stack set aside for a procedure's

return address, passed parameters,

saved registers, and local variables

• Created by the following steps:

• Calling program pushes arguments on the

stack and calls the procedure.

• The called procedure pushes EBP on the

stack, and sets EBP to ESP.

• If local variables are needed, a constant is

subtracted from ESP to make room on the

stack.

EBP

ESP

Passing Arguments by Value

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

• Push argument values on stack

• (Use only 32-bit values in protected mode to keep the stack aligned)

• Call the called-procedure

• Accept a return value in EAX, if any

• Remove arguments from the stack if the called- procedure did

not remove them

Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

.data

val1

val2

DWORD 5

DWORD 6

.code

push val2

push val1

(val2)

(val1)

6
5 ESP

Stack prior to CALL

Passing by Reference

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

• Push the offsets of arguments on the stack

• Call the procedure

• Accept a return value in EAX, if any

• Remove arguments from the stack if the called

procedure did not remove them

Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

.data

val1 DWORD 5

val2 DWORD 6

.code

push OFFSET val2

push OFFSET val1

(offset val2)

(offset val1)

00000004

00000000 ESP

Stack prior to CALL

Stack after the CALL

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 10

value or addr of val2

value or addr of val1

return address ESP

Passing an Array by Reference (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

• The ArrayFill procedure fills an array with 16-

bit random integers

• The calling program passes the address of the array,

along with a count of the number of array elements:

.data

count = 100

array WORD count DUP(?)

.code

push OFFSET array

push COUNT

call ArrayFill

Passing an Array by Reference (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

ArrayFill PROC

push ebp

mov ebp,esp

pushad

mov esi,[ebp+12]

mov ecx,[ebp+8]

.

.

EBP

[EBP + 12]

[EBP + 8]

offset(array)

count

return address

EBP

ESI points to the beginning of the array, so it's easy to use a loop

to access each array element.

ArrayFill can reference an array without knowing the array's

name:

Accessing Stack Parameters (C/C++)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 13

• C and C++ functions access stack parameters using constant offsets

from EBP1.

• Example: [ebp + 8]

• EBP is called the base pointer or frame pointer because it holds the

base address of the stack frame.

• EBP does not change value during the function.

• EBP must be restored to its original value when a function returns.

1 BP in Real-address mode

RET Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

• Return from subroutine

• Pops stack into the instruction pointer (EIP or IP). Control transfers to
the target address.

• Syntax:

• RET

• RET n

• Optional operand n causes n bytes to be added to the stack pointer after
EIP (or IP) is assigned a value.

Who removes parameters from the stack?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

Caller (C) or Called-procedure (STDCALL):

AddTwo PROC

push val2 push ebp

push val1 mov ebp,esp

call AddTwo mov eax,[ebp+12]

add esp,8 add eax,[ebp+8]

pop
ret

ebp
8

(Covered later: The MODEL directive specifies calling conventions)

Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

• Create a procedure named Difference that subtracts

the first argument from the second one. Following is

a sample call:
push 14 ; first argument

push 30 ; second argument

call Difference ; EAX = 16

Difference PROC

push ebp

; second argument

; first argument

mov ebp,esp

mov eax,[ebp + 8]

sub eax,[ebp + 12]

pop ebp

ret 8

Difference ENDP

Passing 8-bit and 16-bit Arguments

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

• Cannot push 8-bit values on stack

• Pushing 16-bit operand may cause page fault or

ESP alignment problem

• incompatible with Windows API functions

• Expand smaller arguments into 32-bit values, using

MOVZX or MOVSX:
.data

charVal BYTE 'x'

.code

movzx eax,charVal

push

call

eax

Uppercase

Passing Multiword Arguments

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

• Push high-order values on the stack first; work backward in

memory

• Results in little-endian ordering of data

• Example:
.data

longVal DQ 1234567800ABCDEFh

.code

push DWORD PTR longVal + 4 ; high doubleword

push DWORD PTR longVal ; low doubleword

call WriteHex64

Local Variables

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

• Only statements within subroutine can view or modify local

variables

• Storage used by local variables is released when subroutine

ends

• Local variable name can have the same name as a local variable

in another function without creating a name clash

• Essential when writing recursive procedures, as well as

procedures executed by multiple execution threads

Creating LOCAL Variables

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Example - create two DWORD local variables:

Say: int x=10, y=20;

ret address
saved ebp

10 (x)
20 (y)

[ebp-4]
[ebp-8]

MySub PROC

push

mov

sub

ebp

ebp,esp

esp,8 ;create 2 DWORD variables

mov DWORD PTR [ebp-4],10 ; initialize x=10

mov DWORD PTR [ebp-8],20 ; initialize y=20

EBP

LEA Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

• LEA returns offsets of direct and indirect operands

• OFFSET operator only returns constant offsets

• LEA required when obtaining offsets of stack

parameters & local variables

• Example

CopyString PROC,

LOCAL temp[20]:BYTE, count:DWORD

mov edi,OFFSET count ; invalid operand

mov esi,OFFSET temp ; invalid operand

lea edi,count ; ok

lea esi,temp ; ok

LEA Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

Suppose you have a Local variable at [ebp-8]

And you need the address of that local variable in ESI

You cannot use this:
mov esi, OFFSET [ebp-8] ; error

Use this instead:
lea esi,[ebp-8]

ENTER Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

• ENTER instruction creates stack frame for a called
procedure

• pushes EBP on the stack

• sets EBP to the base of the stack frame

• reserves space for local variables

• Example:
MySub PROC

enter 8,0

• Equivalent to:
MySub PROC

push ebp

mov ebp,esp

sub esp,8

LEAVE Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

MySub PROC

enter 8,0

...

...

...

leave

ret

MySub ENDP

push ebp

mov ebp,esp

sub esp,8 ; 2 local DWORDs

mov esp,ebp ; free local space

pop ebp

Terminates the stack frame for a procedure.

Equivalent operations

LOCAL Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

• The LOCAL directive declares a list of local variables

• immediately follows the PROC directive

• each variable is assigned a type

• Syntax:
LOCAL varlist

Example:

MySub PROC

LOCAL var1:BYTE, var2:WORD, var3:SDWORD

LOCAL Example (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

mov ebp,esp

sub esp,8

. . .

mov esp,ebp

pop ebp

ret

BubbleSort ENDP

BubbleSort PROC

LOCAL temp:DWORD, SwapFlag:BYTE

. . .

ret

BubbleSort ENDP

MASM generates the following code:

BubbleSort PROC

push ebp

LOCAL Example (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

Diagram of the stack frame for the BubbleSort procedure:

ESP

return address

EBP

temp

SwapFlag

EBP

[EBP - 4]

[EBP - 8]

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

• Stack Frames

• Recursion

• INVOKE, ADDR, PROC, and PROTO

• Creating Multimodule Programs

• Advanced Use of Parameters (optional)

• Java Bytecodes (optional)

Recursion

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

• What is Recursion?

• Recursively Calculating a Sum

• Calculating a Factorial

What is Recursion?

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

• The process created when . . .

• A procedure calls itself

• Procedure A calls procedure B, which in turn calls

procedure A

• Using a graph in which each node is a procedure

and each edge is a procedure call, recursion forms

a cycle:

A

B

D

E

C

Recursively Calculating a Sum

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

; check counter value

; quit if zero

; otherwise, add to sum

; decrement counter

; recursive call

cmp ecx,0

jz L2

add eax,ecx

dec ecx

call CalcSum

L2: ret

CalcSum ENDP

The CalcSum procedure recursively calculates the sum of an array of integers.

Receives: ECX = count. Returns: EAX = sum

CalcSum PROC

Stack frame: View the complete

program

Calculating a Factorial (1 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

int function factorial(int n)

{

if(n == 0)

return 1;

else

return n * factorial(n-1);

}

5! = 5 * 4!

4! = 4 * 3!

3! = 3 * 2!

2! = 2 * 1!

1! = 1 * 0!

0! = 1

(base case)

1 * 1 = 1

2 * 1 = 2

3 * 2 = 6

4 * 6 = 24

5 * 24 = 120

1 = 1

recursive calls backing up

This function calculates the factorial of integer n. A new value

of n is saved in each stack frame:

As each call instance returns, the

product it returns is multiplied by the

previous value of n.

Calculating a Factorial (2 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Factorial PROC
push ebp
mov ebp,esp

; get n
; n < 0?
; yes: continue
; no: return 1

mov eax,[ebp+8]
cmp eax,0
ja L1
mov eax,1
jmp L2

L1: dec eax

push eax ; Factorial(n-1)
call Factorial

; Instructions from this point on execute when each

; recursive call returns.

ReturnFact:
mov ebx,[ebp+8]
mul

L2: pop

ebx

ebp
ret 4

; get n

; eax = eax * ebx

; return EAX

; clean up stack
Factorial ENDP

Calculating a Factorial (3 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

n

n-1

n-2

n-3

12

ReturnMain

ebp0

11

ReturnFact

ebp1

10

ReturnFact

ebp2

9

ReturnFact

ebp3

(etc...)

Suppose we want to

calculate 12!

This diagram shows the

first few stack frames

created by recursive calls

to Factorial

Each recursive call uses

12 bytes of stack space.

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

• Stack Frames

• Recursion

• INVOKE, ADDR, PROC, and PROTO

• Creating Multimodule Programs

• Java Bytecodes

INVOKE, ADDR, PROC, and PROTO

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

• INVOKE Directive

• ADDR Operator

• PROC Directive

• PROTO Directive

• Parameter Classifications

• Example: Exchaning Two Integers

• Debugging Tips

INVOKE Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

• In 32-bit mode, the INVOKE directive is a powerful replacement for
Intel’s CALL instruction that lets you pass multiple arguments

• Syntax:
INVOKE procedureName [, argumentList]

• ArgumentList is an optional comma-delimited list of procedure
arguments

• Arguments can be:

• immediate values and integer expressions

• variable names

• address and ADDR expressions

• register names

Not in 64-bit mode!

INVOKE Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

.data

byteVal BYTE 10

wordVal WORD 1000h

.code

; direct operands:

INVOKE Sub1,byteVal,wordVal

; address of variable:

INVOKE Sub2,ADDR byteVal

; register name, integer expression:

INVOKE Sub3,eax,(10 * 20)

; address expression (indirect operand):

INVOKE Sub4,[ebx]

ADDR Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

• Returns pointer to a variable

• Simple example:

.data

myWord WORD ?

.code

INVOKE mySub,ADDR myWord

Not in 64-bit mode!

PROC Directive (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

• The PROC directive declares a procedure with an optional list of
named parameters.

• Syntax:

label PROC paramList

• paramList is a list of parameters separated by commas. Each
parameter has the following syntax:

paramName : type

type must either be one of the standard ASM types (BYTE, SBYTE,
WORD, etc.), or it can be a pointer to one of these types.

Not in 64-bit mode!

PROC Directive (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

• Alternate format permits parameter list to be on one or

more separate lines:

label PROC,

paramList

• The parameters can be on the same line . . .

param-1:type-1, param-2:type-2, . . ., param-n:type-n

• Or they can be on separate lines:

param-1:type-1,

param-2:type-2,

. . .,

param-n:type-n

comma required

AddTwo Procedure (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

• The AddTwo procedure receives two integers and

returns their sum in EAX.

AddTwo PROC,

val1:DWORD, val2:DWORD

mov eax,val1

add eax,val2

ret

AddTwo ENDP

PROC Examples (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

FillArray receives a pointer to an array of bytes, a single byte

fill value that will be copied to each element of the array, and

the size of the array.

FillArray PROC,

pArray:PTR BYTE, fillVal:BYTE

arraySize:DWORD

mov ecx,arraySize

mov esi,pArray

mov al,fillVal

L1: mov [esi],al

inc esi

loop L1

ret

FillArray ENDP

PROTO Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

• Creates a procedure prototype

• Syntax:

• label PROTO paramList

• Parameter list not permitted in 64-bit mode

• Every procedure called by the INVOKE directive must

have a prototype

• A complete procedure definition can also serve as its

own prototype

PROTO Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

• Standard configuration: PROTO appears at top of the program

listing, INVOKE appears in the code segment, and the procedure

implementation occurs later in the program:

MySub PROTO ; procedure prototype

.code

INVOKE MySub ; procedure call

MySub PROC ; procedure implementation

.

.

MySub ENDP

PROTO Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

• Prototype for the ArraySum procedure, showing its

parameter list:

ArraySum PROTO,

ptrArray:PTR DWORD,

szArray:DWORD

; points to the array

; array size

Parameters are not permitted in 64-bit mode.

Parameter Classifications

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

• An input parameter is data passed by a calling program to a procedure.

• The called procedure is not expected to modify the corresponding parameter

variable, and even if it does, the modification is confined to the procedure itself.

• An output parameter is created by passing a pointer to a variable when a procedure is

called.

• The procedure does not use any existing data from the variable, but it fills in a new

value before it returns.

• An input-output parameter is a pointer to a variable containing input that will be both used

and modified by the procedure.

• The variable passed by the calling program is modified.

Trouble-Shooting Tips

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

• Save and restore registers when they are modified by a procedure.

• Except a register that returns a function result

• When using INVOKE, be careful to pass a pointer to the correct data type.

• For example, MASM cannot distinguish between a DWORD argument and a

PTR BYTE argument.

• Do not pass an immediate value to a procedure that expects a reference
parameter.

• Dereferencing its address will likely cause a general- protection fault.

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

• Stack Frames

• Recursion

• INVOKE, ADDR, PROC, and PROTO

• Creating Multimodule Programs

• Java Bytecodes (optional)

Multimodule Programs

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

• A multimodule program is a program whose source code has

been divided up into separate ASM files.

• Each ASM file (module) is assembled into a separate OBJ file.

• All OBJ files belonging to the same program are linked using

the link utility into a single EXE file.

• This process is called static linking

Advantages

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

• Large programs are easier to write, maintain, and debug when

divided into separate source code modules.

• When changing a line of code, only its enclosing module needs to be
assembled again. Linking assembled modules requires little time.

• A module can be a container for logically related code and data

(think object-oriented here...)

• encapsulation: procedures and variables are automatically hidden in a

module unless you declare them public

Creating a Multimodule Program

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

• Here are some basic steps to follow when creating a multimodule

program:

• Create the main module

• Create a separate source code module for each procedure or set of related

procedures

• Create an include file that contains procedure prototypes for external

procedures (ones that are called between modules)

• Use the INCLUDE directive to make your procedure prototypes available to

each module

INCLUDE File

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

ptrPrompt:PTR BYTE, ; prompt string

ptrArray:PTR DWORD, ; points to the array

arraySize:DWORD ; size of the array

ArraySum PROTO,

ptrArray:PTR DWORD,

count:DWORD

;

;

points to the array

size of the array

DisplaySum PROTO,

ptrPrompt:PTR BYTE, ; prompt string

theSum:DWORD ; sum of the array

The sum.inc file contains prototypes for external functions :

PromptForIntegers PROTO,

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

• Stack Frames

• Recursion

• INVOKE, ADDR, PROC, and PROTO

• Creating Multimodule Programs

• Java Bytecodes (optional)

Java Bytecodes

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

• Stack-oriented instruction format

• operands are on the stack

• instructions pop the operands, process,

and push result back on stack

• Each operation is atomic

• Might be be translated into native code by a

just in time compiler

Java Virual Machine (JVM)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

• Essential part of the Java Platform

• Executes compiled bytecodes

• machine language of compiled Java programs

Java Methods

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

• Each method has its own stack frame

• Areas of the stack frame:

• local variables

• operands

• execution environment

Bytecode Instruction Format

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

• 1-byte opcode

• iload, istore, imul, goto, etc.

• zero or more operands

• Disassembling Bytecodes

• use javap.exe, in the Java Development Kit (JDK)

Primitive Data Types

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

• Signed integers are in twos complement format,

stored in big-endian order

JVM Instruction Set

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

• Comparison Instructions pop two operands off the

stack, compare them, and push the result of the

comparison back on the stack

• Examples: fcmp and dcmp

JVM Instruction Set

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

• Conditional Branching

• jump to label if st(0) <= 0
ifle label

• Unconditional Branching

• call subroutine
jsr label

Java Disassembly Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

• Adding Two Integers

int A = 3;

int B = 2;

int sum = 0;

sum = A + B;

Java Disassembly Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

• Adding Two Doubles

double A = 3.1;

double B = 2;

double sum = A + B;

Java Disassembly Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

• Conditional Branch
double A = 3.0;

boolean result = false;

if(A > 2.0)

result = false;

else

result = true;

Summary

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

• Stack parameters

• more convenient than register parameters

• passed by value or reference

• ENTER and LEAVE instructions

• Local variables

• created on the stack below stack pointer

• LOCAL directive

• Recursive procedure calls itself

• Calling conventions (C, stdcall)

• MASM procedure-related directives

• INVOKE, PROC, PROTO

• Java Bytecodes – another approch to programming

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Stack Frames
	Slide 4: Stack Frame
	Slide 6: Passing Arguments by Value
	Slide 7: Example
	Slide 8: Passing by Reference
	Slide 9: Example
	Slide 10: Stack after the CALL
	Slide 11: Passing an Array by Reference (1 of 2)
	Slide 12: Passing an Array by Reference (2 of 2)
	Slide 13: Accessing Stack Parameters (C/C++)
	Slide 14: RET Instruction
	Slide 15: Who removes parameters from the stack?
	Slide 16: Your turn . . .
	Slide 17: Passing 8-bit and 16-bit Arguments
	Slide 18: Passing Multiword Arguments
	Slide 19: Local Variables
	Slide 20: Creating LOCAL Variables
	Slide 21: LEA Instruction
	Slide 22: LEA Example
	Slide 23: ENTER Instruction
	Slide 24: LEAVE Instruction
	Slide 25: LOCAL Directive
	Slide 26: LOCAL Example (1 of 2)
	Slide 27: LOCAL Example (2 of 2)
	Slide 28: What's Next
	Slide 29: Recursion
	Slide 30: What is Recursion?
	Slide 31: Recursively Calculating a Sum
	Slide 32: Calculating a Factorial (1 of 3)
	Slide 33: Calculating a Factorial (2 of 3)
	Slide 34: Calculating a Factorial (3 of 3)
	Slide 35: What's Next
	Slide 36: INVOKE, ADDR, PROC, and PROTO
	Slide 37: INVOKE Directive
	Slide 38: INVOKE Examples
	Slide 39: ADDR Operator
	Slide 40: PROC Directive (1 of 2)
	Slide 41: PROC Directive (2 of 2)
	Slide 42: AddTwo Procedure (1 of 2)
	Slide 43: PROC Examples (2 of 2)
	Slide 44: PROTO Directive
	Slide 45: PROTO Directive
	Slide 46: PROTO Example
	Slide 47: Parameter Classifications
	Slide 48: Trouble-Shooting Tips
	Slide 49: What's Next
	Slide 50: Multimodule Programs
	Slide 51: Advantages
	Slide 52: Creating a Multimodule Program
	Slide 53: INCLUDE File
	Slide 54: What's Next
	Slide 55: Java Bytecodes
	Slide 56: Java Virual Machine (JVM)
	Slide 57: Java Methods
	Slide 58: Bytecode Instruction Format
	Slide 59: Primitive Data Types
	Slide 60: JVM Instruction Set
	Slide 61: JVM Instruction Set
	Slide 62: Java Disassembly Examples
	Slide 63: Java Disassembly Examples
	Slide 64: Java Disassembly Examples
	Slide 65: Summary
	Slide 66: Thanks a lot

