Computer Organization and Assembly Language (COAL)

Lecture 7

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Advanced Procedures

e Stack Frames

* Recursion

 INVOKE, ADDR, PROC, and PROTO

* Creating Multimodule Programs

* Advanced Use of Parameters (optional)
* Java Bytecodes (optional)

Stack Frames

Stack Parameters

Local Variables

ENTER and LEAVE Instructions
LOCAL Directive

Stack Frame

Also known as an activation record

Area of the stack set aside for a procedure's
return address, passed parameters,
saved registers, and local variables

Created by the following steps:

« Calling program pushes arguments on the
stack and calls the procedure.

 The called procedure pushes EBP on the
stack, and sets EBP to ESP.

 If local variables are needed, a constant is
subtracted from ESP to make room on the
stack.

EBP—

ESP—

Param eters T
A Stack
Frame
Saved
E.egisters
attd L ocal
Variables l
Tempotaty
Storace

(Varies dunng execution)

Passing Arguments by Value

Push argument values on stack

« (Use only 32-bit values in protected mode to keep the stack aligned)

Call the called-procedure

Accept a return value in EAX, if any

Remove arguments from the stack if the called- procedure did
not remove them

Example

.data
vall DWORD 5 (val2) 6
val2 DWORD 6 (val1) 5 «—ESP

.code
push val2
push vall

Stack prior to CALL

Passing by Reference

* Push the offsets of arguments on the stack
« Call the procedure
* Accept a return value in EAX, if any

 Remove arguments from the stack if the called
procedure did not remove them

Example

-data (offset val2) | 00000004

vall DWORD 5
val?2 DWORD 6 (offsetval1) | 00000000 «— ESP

.code
push OFFSET wval2

push OFFSET vall Stack prior to CALL

Stack after the CALL

value or addr of val2

value or addr of vall

return address «~— ESP

Passing an Array by Reference (1 of 2)

« The ArrayFill procedure fills an array with 16-
bit random integers

« The calling program passes the address of the array,
along with a count of the number of array elements:

.data
count = 100
array WORD count DUP(?)
.code
push OFFSET array
push COUNT
call ArrayFill

Passing an Array by Reference (2 of 2)

ArrayFill can reference an array without knowing the array's
name:

ArrayFill PROC

push ebp offset(array) || 1Egp +12]
mov ebp,esp

pushad count [EBP + 8]

mov esi, [ebp+12] return address

mov ecx, [ebp+8] EBP <« EBP

ESI points to the beginning of the array, so it's easy to use a loop
to access each array element.

Accessing Stack Parameters (C/C++)

« C and C++ functions access stack parameters using constant offsets
from EBP1.

 Example: [ebp + 8]
 EBP is called the base pointer or frame pointer because it holds the
base address of the stack frame.

« EBP does not change value during the function.
« EBP must be restored to its original value when a function returns.

TBP in Real-address mode

RET Instruction

 Return from subroutine

* Pops stack into the instruction pointer (EIP or IP). Control transfers to
the target address.

* Syntax:
RET
RET n

« Optional operand n causes n bytes to be added to the stack pointer after
EIP (or IP) is assigned a value.

Who removes parameters from the stack?

I W | NN
Caller (C) ... or ... Called-procedure (STDCALL):
AddTwo PROC

push val2 push ebp
push val1 mov ebp,esp
call AddTwo mov eax,[ebp+12]
add esp,8 add eax,[ebp+8]

pop ebp

ret 8

(Covered later: The MODEL directive specifies calling conventions)

Your turn. ..

« Create a procedure named Difference that subtracts
the first argument from the second one. Following is

a sample call:
push 14 ; first argument
push 30 ; second argument
call Difference ; EAX = 16

Difference PROC
push ebp
mov ebp,esp
mov eax, [ebp + 8] ; second argument
sub eax,[ebp + 12] ; first argument
pop ebp
ret 8

Difference ENDP

Passing 8-bit and 16-bit Arguments

« (Cannot push 8-bit values on stack

« Pushing 16-bit operand may cause page fault or
ESP alignment problem

« incompatible with Windows API functions

« Expand smaller arguments into 32-bit values, using
MOVZX or MOVSX:
.data
charVal BYTE 'x'
.code
movzx eax,charVal
push eax

call Uppercase

Passing Multiword Arguments

* Push high-order values on the stack first; work backward in
memory

* Results in little-endian ordering of data

 Example:
.data
longVal DQ 1234567800ABCDEFh
.code
push DWORD PTR longVal + 4 ; high doubleword
push DWORD PTR longVal ; low doubleword
call WriteHex64

Local Variables

« Only statements within subroutine can view or modify local
variables

« Storage used by local variables is released when subroutine
ends

 Local variable name can have the same name as a local variable
In another function without creating a name clash

* Essential when writing recursive procedures, as well as
procedures executed by multiple execution threads

Creating LOCAL Variables

Example - create two DWORD local variables:
Say: int x=10, y=20;

ret address
saved ebp [«— EBP

10 (x) [ebp-4]
20 (y) [ebp-8]
MySub PROC
push ebp
mov ebp,esp
sub esp, 8 ;create 2 DWORD variables

mov DWORD PTR [ebp-4],10 ; initialize x=10
mov DWORD PTR [ebp-8],20 ; initialize y=20

LEA Instruction

* LEA returns offsets of direct and indirect operands
 OFFSET operator only returns constant offsets

« LEArequired when obtaining offsets of stack
parameters & local variables

« Example

CopyString PROC,
LOCAL temp[20] :BYTE, count:DWORD

mov edi,OFFSET count ; invalid operand
mov esi,OFFSET temp invalid operand
lea edi,count ; ok
lea esi,temp ; ok

Ne

LEA Example

Suppose you have a Local variable at [ebp-8]

And you need the address of that local variable in ESI

You cannot use this:
mov esi, OFFSET [ebp-8] ; error

Use this instead:
lea esi, [ebp-8]

ENTER Instruction

« ENTER instruction creates stack frame for a called
procedure

« pushes EBP on the stack
« sets EBP to the base of the stack frame
» reserves space for local variables

« Example:
MySub PROC
enter 8,0

* Equivalent to:
MySub PROC
push ebp
mov ebp,esp
sub esp,8

LEAVE Instruction

Terminates the stack frame for a procedure.

Equivalent operations

MySub PROC push ebp

enter 8,0 mov ebp,esp
sub esp,8 ;2local DWORDs

iéave mov esp,ebp ; free local space
ret pop ebp
MySub ENDP

LOCAL Directive

 The LOCAL directive declares a list of local variables
« immediately follows the PROC directive
* each variable is assigned a type

¢ Syntax:

LOCAL varlist

Example:

MySub PROC
LOCAL varl:BYTE, var2:WORD, wvar3:SDWORD

LOCAL Example (1 of 2)

BubbleSort PROC
LOCAL temp:DWORD, SwapFlag:BYTE

ret
BubbleSort ENDP

MASM generates the following code:

BubbleSort PROC
push ebp
mov ebp,esp
sub esp,8

mov esp,ebp

pop ebp

ret
BubbleSort ENDP

LOCAL Example (2 of 2)

Diagram of the stack frame for the BubbleSort procedure:

return address
EBP <« EBP
temp [EBP - 4]
ESP —» SwapFlag [EBP - 8]

What's Next

e Stack Frames

Recursion
 INVOKE, ADDR, PROC, and PROTO
* Creating Multimodule Programs
 Advanced Use of Parameters (optional)
* Java Bytecodes (optional)

Recursion

 What is Recursion?
* Recursively Calculating a Sum
« Calculating a Factorial

What is Recursion?

 The process created when . . .
« A procedure calls itself

* Procedure A calls procedure B, which in turn calls
procedure A

« Using a graph in which each node is a procedure
and each edge is a procedure call, recursion forms

a cycle:
(»)

Recursively Calculating a Sum

The CalcSum procedure recursively calculates the sum of an array of integers.
Receives: ECX = count. Returns: EAX = sum

CalcSum PROC

cmp ecx,0 ; check counter value
jz L2 ; quit if zero

add eax,ecx ; otherwise, add to sum
dec ecx ; decrement counter

call CalcSum
L2: ret
CalcSum ENDP

; recursive call

Pushed On
Stack ECX EAX

LI 3 0

View the complete
program

L2 4 5

L2 3 0

L2 2 12

L2 | 14

L2 0 15

Calculating a Factorial (1 of 3)

This function calculates the factorial of integer n. A new value

of n is saved in each stack frame:

int function factorial (int n)

{

if(n == 0)
return 1;
else

return n * factorial (n-1);

As each call instance returns, the
product it returns is multiplied by the
previous value of n.

recursive calls backing up
5!=5*4! 5*24 =120
1 1
4! =4 * 3! 4*6=24
3 1
31=3*2! 3*2=6
4 1
21=2*1! 2*1=2
1 1
11=1*0! 1*1=1
3 1
0!'=1 1=1

(base case)

Calculating a Factorial (2 of 3)

Factorial PROC
push ebp
mov ebp,esp
mov eax, [ebp+8] ; get n
cmp eax,0 ; n < 07?
ja L1l ; yes: continue
mov eax,1l ; no: return 1
jmp L2

Ll: dec eax

push eax ; Factorial (n-1)
call Factorial

; Instructions from this point on execute when each
; recursive call returns.

ReturnFact:

mov ebx, [ebp+8] ; get n

mul ebx ; eax = eax * ebx
L2: pop ebp ; return EAX

ret 4 ; clean up stack

Factorial ENDP

Calculating a Factorial (3 of 3)

D I
12 n
ReturnMain
ebp,
Suppose we want to T
n-1
calculate 12!
ReturnFact
This diagram shows the ebp;
first few stack frames 10 5
created b_y recursive calls ReturnFact
to Factorial ebp,
Each recursive call uses 9 s
12 bytes of stack space. ReturnFact
ebp,
(etc...)

What's Next

« Stack Frames
* Recursion
INVOKE, ADDR, PROC, and PROTO
* Creating Multimodule Programs
- Java Bytecodes

INVOKE, ADDR, PROC, and PROTO

« INVOKE Directive

 ADDR Operator

« PROC Directive

« PROTO Directive

« Parameter Classifications
 Example: Exchaning Two Integers
* Debugging Tips

INVOKE Directive | Notin 64-bit mode!

* In 32-bit mode, the INVOKE directive is a powerful replacement for
Intel's CALL instruction that lets you pass multiple arguments

* Syntax:

INVOKE procedureName [, argumentList]

 ArgumentListis an optional comma-delimited list of procedure
arguments

* Arguments can be:
* Immediate values and integer expressions
« variable names
« address and ADDR expressions
e register names

INVOKE Examples

.data
byteval BYTE 10
wordVal WORD 1000h
.code
; direct operands:
INVOKE Subl, byteVal,wordvVal

; address of variable:

4

INVOKE Sub2,ADDR byteVal

; register name, integer expression:
INVOKE Sub3,eax, (10 * 20)

; address expression (indirect operand) :
INVOKE Sub4, [ebx]

ADDR Operator |Notin 64-bit mode!

* Returns pointer to a variable

« Simple example:

.data

myWord WORD °?

.code

INVOKE mySub,ADDR myWord

PROC Directive (1 of 2) | Not in 64-bit mode!

 The PROC directive declares a procedure with an optional list of
named parameters.

« Syntax:
label PROC paramList

« paramList is a list of parameters separated by commas. Each
parameter has the following syntax:

paramName : type

type must either be one of the standard ASM types (BYTE, SBYTE,
WORD, etc.), or it can be a pointer to one of these types.

PROC Directive (2 of 2)

 Alternate format permits parameter list to be on one or
more separate lines:
label PROC, -~ comma required
paramList

 The parameters can be on the same line . ..
param-1:type-1, param-2:type-2, . . ., param-n:type-n
» Or they can be on separate lines:
param-1:type-1,
param-2:type-2,

= uy

param-n:type-n

AddTwo Procedure (1 of 2)

 The AddTwo procedure receives two integers and
returns their sum in EAX.

AddTwo PROC,
vall :DWORD, wval2:DWORD

mov eax,vall
add eax,val2

ret
AddTwo ENDP

PROC Examples (2 of 2)

FillArray receives a pointer to an array of bytes, a single byte
fill value that will be copied to each element of the array, and
the size of the array.

FillArray PROC,
pArray:PTR BYTE, fillVal:BYTE
arraySize :DWORD

mov ecx,arraySize

mov esi,pArray

mov al,fillval
Ll: mov [esi],al

inc esi
loop L1
ret

FillArray ENDP

PROTO Directive

« Creates a procedure prototype
¢ Syntax:
label PROTO paramList
« Parameter list not permitted in 64-bit mode

« Every procedure called by the INVOKE directive must
have a prototype

« A complete procedure definition can also serve as its
own prototype

PROTO Directive

« Standard configuration: PROTO appears at top of the program
listing, INVOKE appears in the code segment, and the procedure
implementation occurs later in the program:

MySub PROTO ; procedure prototype
.code

INVOKE MySub ; procedure call

MySub PROC ; procedure implementation

MySub ENDP

PROTO Example

* Prototype for the ArraySum procedure, showing its
parameter list:

ArraySum PROTO,
ptrArray: PTR DWORD, ; points to the array
szArray : DWORD ; array size

Parameters are not permitted in 64-bit mode.

Parameter Classifications

* An input parameter is data passed by a calling program toa procedure.

« The called procedure is not expected to modify the corresponding parameter
variable, and even if it does, the modification is confined to the procedure itself.

* An output parameter is created by passing a pointer to a variable when a procedure is
called.

« The procedure does not use any existing data from the variable, but it fills in a new
value before it returns.

« An input-output parameter is a pointer to a variable containing input that will be both used
and modified by the procedure.

« The variable passed by the calling program is modified.

Trouble-Shooting Tips

« Save and restore registers when they are modified by a procedure.
« Except a register that returns a function result

 When using INVOKE, be careful to pass a pointer to the correct data type.
* For example, MASM cannot distinguish between a DWORD argument and a
PTR BYTE argument.

* Do not pass an immediate value to a procedure that expectsa reference
parameter.

» Dereferencing its address will likely cause a general- protection fault.

What's Next

e Stack Frames

* Recursion

 INVOKE, ADDR, PROC, and PROTO
Creating Multimodule Programs

* Java Bytecodes (optional)

Multimodule Programs

A multimodule program is a program whose source code has
been divided up into separate ASM files.

« Each ASM file (module) is assembled into a separate OBJ file.

« All OBJ files belonging to the same program are linked using
the link utility into a single EXE file.

* This process is called static linking

Advantages

« Large programs are easier to write, maintain, and debug when
divided into separate source code modules.

« When changing a line of code, only its enclosing module needs to be
assembled again. Linking assembled modules requires little time.

A module can be a container for logically related code and data
(think object-oriented here...)

encapsulation: procedures and variables are automatically hidden in a
module unless you declare them public

Creating a Multimodule Program

« Here are some basic steps to follow when creating a multimodule
program:
* Create the main module

» Create a separate source code module for each procedure or set of related
procedures

« Create an include file that contains procedure prototypes for external
procedures (ones that are called between modules)

« Use the INCLUDE directive to make your procedure prototypes available to
each module

INCLUDE File

The sum.inc file contains prototypes for external functions :

PromptForIntegers PROTO,

ptrPrompt: PTR BYTE, ; prompt string
ptrArray: PTR DWORD, ; points to the array
arraySize:DWORD ; size of the array

ArraySum PROTO,

ptrArray: PTR DWORD, ; points to the array
count : DWORD ; size of the array

DisplaySum PROTO,

ptrPrompt: PTR BYTE, ; prompt string
theSum: DWORD ; sum of the array

What's Next

« Stack Frames

« Recursion

« INVOKE, ADDR, PROC, and PROTO

* Creating Multimodule Programs
Java Bytecodes (optional)

Java Bytecodes

« Stack-oriented instruction format
 operands are on the stack Swoecode | javatile
* Instructions pop the operands, process,

and push result back on stack C)
Compiler

« Each operation is atomic

* Might be be translated into native code by a
justin time compiler

betasnds .class file

- ® o

Machine code Machine code Machine code

Java Virual Machine (JVM)

« Essential part of the Java Platform

» Executes compiled bytecodes
* machine language of compiled Java programs

Java Methods

« Each method has its own stack frame

* Areas of the stack frame:
 |ocal variables
e operands
e execution environment

Bytecode Instruction Format

* 1-byte opcode
* iload, istore, imul, goto, etc.
e Zero or more operands

« Disassembling Bytecodes
* use javap.exe, in the Java Development Kit (JDK)

Primitive Data Types

« Signed integers are in twos complement format,
stored in big-endian order

Data Type Bytes Format
char 2 Unicode character
hyte 1 signed integer
short 2 signed integer
it 4 signed integer
long 8 signed integer
float 4 IEEE single-precision real
double 8 IEEE double-precision real

JVM Instruction Set

« Comparison Instructions pop two operands off the
stack, compare them, and push the result of the
comparison back on the stack

 Examples: fcmp and dcmp

Results of Comparing Value Pushed on the
op1 and op2 Operand Stack

opl = op2 I

opl = op2 0

opl < op2 —1

JVM Instruction Set

« Conditional Branching
* jump to label if st(0) <=0
ifle label
« Unconditional Branching

« call subroutine
jsr label

Java Disassembly Examples

« Adding Two Integers

iconst 3
istore_0
iconst_2
istore_1
iconst 0O
istore 2
iload 0
iload 1
iadd
istore_2

int A = 3;
int B = 2;
int sum = 0;
sum = A + B;

W 0o =] O N s W) O

Java Disassembly Examples

« Adding Two Doubles
double A =

3.
double B = 2;
double sum = A + B;

1;

ldea_w #20; // double 3.1d
dstore 0

ldea _w #22; // double 2.0d
dstore 2

dload 0

dload 2

dadd

destore 4

w00 -] e W o

= O e

Java Disassembly Examples

« Conditional Branch
double A = 3.0;
boolean result = false;
if(A > 2.0)
result = false;

else
result = true;

0: 1ldec2_w #26; /f double 3.04
3: dstore_ 0 // pop into A
4: iconst_0 // false = 0
51 istore 2 // store in result
6 dload 0
7 1lde2_w #22; ff double 2.04
10: dempl
11: ifle 19 J/if B == 2.0, goto 19
14: Hdconst 0O /Y false
15: istore 2 // result = false
l6: goto 21 // 2kip next two statements
19: diconst_1 // true

20: istore 2 // result = true

Summary

« Stack parameters
* more convenient than register parameters
« passed by value or reference
« ENTER and LEAVE instructions

* Local variables
« created on the stack below stack pointer
 LOCAL directive

» Recursive procedure calls itself
« (Calling conventions (C, stdcall)

« MASM procedure-related directives
* INVOKE, PROC, PROTO

« Java Bytecodes — another approch to programming

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Stack Frames
	Slide 4: Stack Frame
	Slide 6: Passing Arguments by Value
	Slide 7: Example
	Slide 8: Passing by Reference
	Slide 9: Example
	Slide 10: Stack after the CALL
	Slide 11: Passing an Array by Reference (1 of 2)
	Slide 12: Passing an Array by Reference (2 of 2)
	Slide 13: Accessing Stack Parameters (C/C++)
	Slide 14: RET Instruction
	Slide 15: Who removes parameters from the stack?
	Slide 16: Your turn . . .
	Slide 17: Passing 8-bit and 16-bit Arguments
	Slide 18: Passing Multiword Arguments
	Slide 19: Local Variables
	Slide 20: Creating LOCAL Variables
	Slide 21: LEA Instruction
	Slide 22: LEA Example
	Slide 23: ENTER Instruction
	Slide 24: LEAVE Instruction
	Slide 25: LOCAL Directive
	Slide 26: LOCAL Example (1 of 2)
	Slide 27: LOCAL Example (2 of 2)
	Slide 28: What's Next
	Slide 29: Recursion
	Slide 30: What is Recursion?
	Slide 31: Recursively Calculating a Sum
	Slide 32: Calculating a Factorial (1 of 3)
	Slide 33: Calculating a Factorial (2 of 3)
	Slide 34: Calculating a Factorial (3 of 3)
	Slide 35: What's Next
	Slide 36: INVOKE, ADDR, PROC, and PROTO
	Slide 37: INVOKE Directive
	Slide 38: INVOKE Examples
	Slide 39: ADDR Operator
	Slide 40: PROC Directive (1 of 2)
	Slide 41: PROC Directive (2 of 2)
	Slide 42: AddTwo Procedure (1 of 2)
	Slide 43: PROC Examples (2 of 2)
	Slide 44: PROTO Directive
	Slide 45: PROTO Directive
	Slide 46: PROTO Example
	Slide 47: Parameter Classifications
	Slide 48: Trouble-Shooting Tips
	Slide 49: What's Next
	Slide 50: Multimodule Programs
	Slide 51: Advantages
	Slide 52: Creating a Multimodule Program
	Slide 53: INCLUDE File
	Slide 54: What's Next
	Slide 55: Java Bytecodes
	Slide 56: Java Virual Machine (JVM)
	Slide 57: Java Methods
	Slide 58: Bytecode Instruction Format
	Slide 59: Primitive Data Types
	Slide 60: JVM Instruction Set
	Slide 61: JVM Instruction Set
	Slide 62: Java Disassembly Examples
	Slide 63: Java Disassembly Examples
	Slide 64: Java Disassembly Examples
	Slide 65: Summary
	Slide 66: Thanks a lot

