
What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

• Boolean and Comparison Instructions

• Conditional Jumps

• Conditional Loop Instructions

• Conditional Structures

• Conditional Control Flow Directives

Creating IF Statements

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

• Runtime Expressions

• Relational and Logical Operators

• MASM-Generated Code

• .REPEAT Directive

• .WHILE Directive

Runtime Expressions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

• .IF, .ELSE, .ELSEIF, and .ENDIF can be used to evaluate

runtime expressions and create block-structured IF

statements.

• Examples:

• MASM generates "hidden" code for you, consisting of

code labels, CMP and conditional jump instructions.

.IF eax > ebx .IF eax > ebx && eax > ecx

mov edx,1 mov edx,1

.ELSE .ELSE

mov edx,2 mov edx,2

.ENDIF .ENDIF

Relational and Logical Operators

62Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

Signed and Unsigned Comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

.data

val1 DWORD 5

result DWORD ?

.code

mov eax,6

.IF eax > val1

mov result,1

.ENDIF

Generated code:

mov eax,6

cmp eax,val1

jbe @C0001

mov result,1

@C0001:

MASM automatically generates an unsigned jump (JBE)

because val1 is unsigned.

Signed and Unsigned Comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

.data

val1 SDWORD 5

result SDWORD ?

.code

mov eax,6

.IF eax > val1

mov result,1

.ENDIF

Generated code:

mov eax,6

cmp eax,val1

jle @C0001

mov result,1

@C0001:

MASM automatically generates a signed jump (JLE) because

val1 is signed.

Signed and Unsigned Comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

.data

result DWORD ? Generated code:

.code
mov ebx,5

mov eax,6

cmp eax,ebx

jbe @C0001

mov result,1

@C0001:

mov ebx,5

mov eax,6

.IF eax > ebx

mov result,1

.ENDIF

MASM automatically generates an unsigned jump (JBE) when

both operands are registers . . .

Signed and Unsigned Comparisons

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 66

mov ebx,5

mov eax,6

cmp eax,ebx

jle @C0001

mov result,1

@C0001:

.data

result SDWORD ?

.code

mov

mov

ebx,5

eax,6

.IF SDWORD PTR eax > ebx

mov result,1

.ENDIF

Generated code:

. . . unless you prefix one of the register operands with the

SDWORD PTR operator. Then a signed jump is generated.

.REPEAT Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

Executes the loop body before testing the loop condition

associated with the .UNTIL directive.

Example:

; Display integers 1 – 10:

mov eax,0

.REPEAT

inc eax

call WriteDec

call Crlf

.UNTIL eax == 10

.WHILE Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 68

Tests the loop condition before executing the loop body The

.ENDW directive marks the end of the loop.

Example:

; Display integers 1 – 10:

mov eax,0

.WHILE eax < 10

inc eax

call WriteDec

call Crlf

.ENDW

Summary

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 69

• Bitwise instructions (AND, OR, XOR, NOT, TEST)

• manipulate individual bits in operands

• CMP – compares operands using implied subtraction

• sets condition flags

• Conditional Jumps & Loops

• equality: JE, JNE

• flag values: JC, JZ, JNC, JP, ...

• signed: JG, JL, JNG, ...

• unsigned: JA, JB, JNA, ...

• LOOPZ, LOOPNZ, LOOPE, LOOPNE

• Flowcharts – logic diagramming tool

• Finite-state machine – tracks state changes at runtime

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 59: What's Next
	Slide 60: Creating IF Statements
	Slide 61: Runtime Expressions
	Slide 62: Relational and Logical Operators
	Slide 63: Signed and Unsigned Comparisons
	Slide 64: Signed and Unsigned Comparisons
	Slide 65: Signed and Unsigned Comparisons
	Slide 66: Signed and Unsigned Comparisons
	Slide 67: .REPEAT Directive
	Slide 68: .WHILE Directive
	Slide 69: Summary
	Slide 70: Thanks a lot

