What's Next

* Boolean and Comparison Instructions
« Conditional Jumps
« Conditional Loop Instructions
« Conditional Structures
Conditional Control Flow Directives

Creating IF Statements

* Runtime Expressions

Relational and Logical Operators
MASM-Generated Code
.REPEAT Directive

WHILE Directive

Runtime Expressions

 |IF, . ELSE, .ELSEIF, and .ENDIF can be used to evaluate
runtime expressions and create block-structured IF

statements.
« Examples:
.IF eax > ebx .IF eax > ebx && eax > ecx
mov edx, 1 mov edx,1
.ELSE .ELSE
mov edx, 2 mov edx, 2
.ENDIF .ENDIF

« MASM generates "hidden" code for you, consisting of
code labels, CMP and conditional jump instructions.

Relational and Logical Operators

Operator

Description

expri == expi2

Returns true when expressionl is equal to expr2.

expri = expr2

Returns true when exprl is not equal to expr2.

expri = expr2

Returns true when exprl is greater than expr2.

expril == expr2

Returns true when expr/ is greater than or equal to expr2.

expril < expr2

Returns true when exprl is less than expr2.

expri <= expr2

Returns true when expr/ is less than or equal to expr2.

Yexpr

Returns true when expr is false.

expri && expr2

Performs logical AND between exprf and expr2.

expri |l expr2

Performs logical OR between expri and expr2.

expri & expr2

Performs bitwise AND between expr! and expir2.

CARRY?

Returns true if the Carry flag is set.

OVERFLOW?

Returns true if the Overflow flag is set.

PARITY? Returns true if the Parity flag is set.
SIGN? Returns true if the Sign flag is set.
ZERO? Returns true if the Zero flag is set.

Signed and Unsigned Comparisons

.data
vall DWORD 5
result DWORD ? Generated code:
.code
mov eax,b6

mov eax,6 cmp eax,vall
.IF eax > vall jbe @C0001

mov result,1 mov result,1
ENDIF @C0001:

MASM automatically generates an unsigned jump (JBE)
because val1 is unsigned.

Signed and Unsigned Comparisons

.data

vall SDWORD 5

result SDWORD °? Generated code:
.code

mov eax,b6

mov eax, 6 cmp eax,vall

.IF eax > vall jle @C0001
mov result,1l mov result,l

MASM automatically generates a signed jump (JLE) because
val1 is signed.

Signed and Unsigned Comparisons

.data
result DWORD ? Generated code:

.code
mov ebx,5

mov ebx,5 mov eax,6

mov eax, b6 cmp eax,ebx
.IF eax > ebx jbe @C0001
mov result,1
mov result,l
@CO0001:

.ENDIF

MASM automatically generates an unsigned jump (JBE) when
both operands are registers . . .

Signed and Unsigned Comparisons

I B

.data
result SDWORD ? Generated code:
-code mov ebx,5
mov ebx,5 mov eax, 6
mov eax, 6 cmp eax,ebx
.IF SDWORD PTR eax > ebx jle @CO0001

mov result,l

mov result,1l
@CO0001:

.ENDIF

. . . unless you prefix one of the register operands with the
SDWORD PTR operator. Then a signed jump is generated.

.REPEAT Directive

Executes the loop body before testing the loop condition
associated with the .UNTIL directive.

Example:

; Display integers 1 - 10:

mov eax,0

.REPEAT
inc eax
call WriteDec
call Crlf
.UNTIL eax == 10

WHILE Directive

Tests the loop condition before executing the loop body The
.ENDW directive marks the end of the loop.

Example:

; Display integers 1 - 10:

mov eax,0

.WHILE eax < 10
inc eax
call WriteDec
call Crlf

. ENDW

Summary

« Bitwise instructions (AND, OR, XOR, NOT, TEST)
* manipulate individual bits in operands
« CMP — compares operands using implied subtraction
» sets condition flags
« Conditional Jumps & Loops
« equality: JE, JNE
« flag values: JC, JZ, JNC, JP, ...
« signed: JG, JL, JNG, ...
« unsigned: JA, JB, JNA, ...
« LOOPZ, LOOPNZ, LOOPE, LOOPNE
* Flowcharts — logic diagramming tool
* Finite-state machine — tracks state changes at runtime

Thanks a lot

Lecture Over

	Slide 59: What's Next
	Slide 60: Creating IF Statements
	Slide 61: Runtime Expressions
	Slide 62: Relational and Logical Operators
	Slide 63: Signed and Unsigned Comparisons
	Slide 64: Signed and Unsigned Comparisons
	Slide 65: Signed and Unsigned Comparisons
	Slide 66: Signed and Unsigned Comparisons
	Slide 67: .REPEAT Directive
	Slide 68: .WHILE Directive
	Slide 69: Summary
	Slide 70: Thanks a lot

