
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 6

Dr. Naveed Anwar Bhatti

Conditional Processing

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Conditional Control Flow Directives

Boolean and Comparison Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

• CPU Status Flags

• AND Instruction

• OR Instruction

• XOR Instruction

• NOT Instruction

• Applications

• TEST Instruction

• CMP Instruction

Status Flags - Review

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

The Zero flag is set when the result of an operation equals zero.

The Carry flag is set when an instruction generates a result that is too large (or too

small) for the destination operand.

The Sign flag is set if the destination operand is negative, and it is clear if the

destination operand is positive.

The Overflow flag is set when an instruction generates a result that is too large (or

too small) for the signed destination operand.

The Parity flag is set when an instruction generates an even number of 1 bits

in the low byte of the destination operand.

The Auxiliary Carry flag is set when an operation produces a carry out from bit 3 to

bit 4

Zero Flag

Carry Flag

Sign Flag

Overflow Flag

Parity Flag

Auxiliary Flag

What are Boolean Operations?

AND Instruction (1/2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

• Performs a Boolean AND operation between each pair of matching bits in

two operands

• Operands should be of same size

• Syntax:
AND destination, source

(same operand types as MOV)

0 0 1 1 1 0 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

AND

AND Instruction (2/2)

• The AND instruction lets you clear 1 or more bits in an operand without
affecting other bits

• The technique is called bit masking

• The AND instruction always clears the Overflow and Carry flags

• It modifies the Sign, Zero, and Parity flags in a way that is consistent with the
value assigned to the destination operand

AND AL, 11110110b ; clear bits 0 and 3

OR Instruction (1/2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

• Performs a Boolean OR operation between each

pair of matching bits in two operands

• Syntax:
OR destination, source

OR

0 0 1 1 1 0 1 1

0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged

OR Instruction (2/2)

• The OR instruction is particularly useful when you need to set 1 or more bits in an
operand without affecting any other bits

• The OR instruction always clears the Carry and Overflow flags

• It modifies the Sign, Zero, and Parity flags in a way that is consistent with the value
assigned to the destination operand

• you can OR a number with itself (or zero) to obtain certain information about its value:

OR AL, 00000100b ; set bit 2

XOR Instruction (1/2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

10

• Performs a Boolean exclusive-OR operation between each pair of

matching bits in two operands

• Syntax:
XOR destination, source

XOR

0 0 1 1 1 0 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 0

XOR

invertedunchanged

• XOR is a useful way to toggle (invert) the bits in an operand.

• A bit exclusive-ORed with 0 retains its value

• A bit exclusive-ORed with 1 is toggled (complemented)

• XOR reverses itself when applied twice to the same operand

XOR Instruction (2/2)

• The XOR instruction always clears the Overflow and Carry flags

• XOR modifies the Sign, Zero, and Parity flags in a way that is consistent
with the value assigned to the destination operand

NOT Instruction

• Performs a Boolean NOT operation on a single destination operand

• Syntax:
NOT destination

NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

No flags are affected by the NOT instruction

Applications (1 of 5)

13

mov al,'a'

and al,11011111b

; AL = 01100001b

; AL = 01000001b

• Task: Convert the character in AL to upper case.

Hint:
To convert an uppercase letter to lowercase, we note that ASCII codes for the
uppercase letters ‘A’ to ‘Z’ form a sequence from 65 to 90.

The corresponding lowercase letters ‘a‘ to ‘z’ have codes in sequence from 97 to 122.

• Solution: Use the AND instruction to clear bit 5.

Applications (2 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 14

mov al,6

or al,00110000b

; AL = 00000110b

; AL = 00110110b

• Task: Convert a binary decimal byte into its equivalent

ASCII decimal digit.

• Solution: Use the OR instruction to set bits 4 and 5.

The ASCII digit '6' = 00110110b

HINT:

Applications (3 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

mov ax,40h ; BIOS segment

mov ds,ax

mov bx,17h ; keyboard flag byte

or BYTE PTR [bx],01000000b ; CapsLock on

• Task: Turn on the keyboard CapsLock key

• Solution: Use the OR instruction to set bit 6 in the keyboard flag byte at

0040:0017h in the BIOS data area.

This code only runs in Real-address mode, and it does not work under Windows NT, 2000, or XP.

Applications (4 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 16

mov ax,wordVal

and ax,1 ; low bit set?

jz EvenValue ; jump if Zero flag set

• Task: Jump to a label if an integer is even.

• Solution: AND the lowest bit with a 1. If the result is Zero,

the number was even.

JZ will be covered in next Section

Applications (5 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

or al,al

jnz IsNotZero ; jump if not zero

• Task: Jump to a label if the value in AL is not zero.

• Solution: OR the byte with itself, then use the JNZ (jump

if not zero) instruction.

ORing any number with itself does not change its value.

TEST Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

• Performs a nondestructive AND operation between each pair of matching bits in two

operands

• No operands are modified, but the Zero flag is affected.

• Example: jump to a label if either bit 0 or bit 1 in AL is set.

test al,00000011b

jnz ValueFound

• Example: jump to a label if neither bit 0 nor bit 1 in AL isset.

test al,00000011b

jz ValueNotFound

CMP Instruction (1 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 19

• Compares the destination operand to the source operand

• Nondestructive subtraction of source from destination (destination operand is not changed)

• Syntax: CMP destination, source

• Example: destination == source

mov al,5

cmp al,5 ; Zero flag set

• Example: destination < source

mov al,4

cmp al,5 ; Carry flag set

• Example: destination > source

mov al,6

cmp al,5 ; ZF = 0, CF = 0

(both the Zero and Carry flags are clear)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

CMP Instruction (2 of 3)

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

• Boolean and Comparison Instructions

• Conditional Jumps

• Conditional Loop Instructions

• Conditional Structures

• Application: Finite-State Machines

• Conditional Control Flow Directives

Conditional Jumps

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

• Jumps Based On . . .

• Specific flags

• Equality

• Unsigned comparisons

• Signed Comparisons

• Applications

• Encrypting a String

• Bit Test (BT) Instruction

Jcond Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

• A conditional jump instruction branches to a label

when specific register or flag conditions are met

• Specific jumps:

JB, JC - jump to a label if the Carry flag is set

JE, JZ - jump to a label if the Zero flag is set

JS - jump to a label if the Sign flag is set

JNE, JNZ - jump to a label if the Zero flag is clear

JECXZ - jump to a label if ECX = 0

Jcond Ranges

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

• Prior to the 386:

• jump must be within –128 to +127 bytes from current

location counter

• x86 processors:

• 32-bit offset permits jump anywhere in memory

Jumps Based on Specific Flags

26Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

Jumps Based on Equality

27Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

Jumps Based on Unsigned Comparisons

28Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

Jumps Based on Signed Comparisons

29Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

Applications (1 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

• Task: Jump to a label if unsigned EAX is greater than

EBX

• Solution: Use CMP, followed by JA

cmp eax,ebx

ja Larger

• Task: Jump to a label if signed EAX is greater than EBX

• Solution: Use CMP, followed by JG

cmp eax,ebx

jg Greater

Applications (2 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

cmp eax,Val1

jbe L1 ; below or equal

• Jump to label L1 if unsigned EAX is less than or equal to Val1

cmp eax,Val1

jle L1

• Jump to label L1 if signed EAX is less than or equal to Val1

Applications (3 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

• Compare unsigned AX to BX, and copy the larger of the two

into a variable named Large

mov Large,bx

cmp ax,bx

jna Next

mov Large,ax

Next:

• Compare signed AX to BX, and copy the smaller of the two

into a variable named Small

mov Small,ax

cmp bx,ax

jnl Next

mov Small,bx

Next:

Applications (4 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

• Jump to label L1 if the memory word pointed to by ESI

equals Zero

cmp WORD PTR [esi],0

je L1

• Jump to label L2 if the doubleword in memory pointed to

by EDI is even

test DWORD PTR [edi],1

jz L2

Applications (5 of 5)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

and al,00001011b ; clear unwanted bits

cmp al,00001011b ; check remaining bits

je L1 ; all set? jump to L1

• Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set.

• Solution: Clear all bits except bits 0, 1,and 3. Then

compare the result with 00001011 binary.

Home Task . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

• Write code that jumps to label L1 if either bit 4, 5, or 6 is set in the BL

register.

• Write code that jumps to label L1 if bits 4, 5, and 6 are all set in the

BL register.

• Write code that jumps to label L2 if AL has even parity.

• Write code that jumps to label L3 if EAX is negative.

• Write code that jumps to label L4 if the expression (EBX – ECX) is

greater than zero.

Encrypting a String

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

KEY = 239

BUFMAX = 128

.data

buffer BYTE BUFMAX+1

bufSize DWORD BUFMAX

;

DUP(0)

can be any byte value

.code

mov ecx,bufSize ; loop counter

mov esi,0 ; index 0 in buffer

L1:

xor buffer[esi],KEY ; translate a byte

inc esi ; point to next byte

loop L1

The following loop uses the XOR instruction to transform every

character in a string into a new value.

String Encryption Program

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

• Tasks:

• Input a message (string) from the user

• Encrypt the message

• Display the encrypted message

• Decrypt the message

• Display the decrypted message

Sample output:

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs

Decrypted: Attack at dawn.

BT (Bit Test) Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

• Copies bit n from an operand into the Carry flag

• Syntax: BT bitBase, n

• bitBase may be r/m16 or r/m32

• n may be r16, r32, or imm8

• Example: jump to label L1 if bit 9 is set in the AX

register:

bt AX,9

jc L1

; CF = bit 9

; jump if Carry

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

• Boolean and Comparison Instructions

• Conditional Jumps

• Conditional Loop Instructions

• Conditional Structures

• Application: Finite-State Machines

• Conditional Control Flow Directives

Conditional Loop Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

• LOOPZ and LOOPE

• LOOPNZ and LOOPNE

LOOPZ and LOOPE

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

• Syntax:

LOOPE destination

LOOPZ destination

• Logic:

• ECX  ECX – 1

• if ECX > 0 and ZF=1, jump to destination

• Useful when scanning an array for the first element
that does not match a given value.

In 32-bit mode, ECX is the loop counter register. In 16-bit real-

address mode, CX is the counter, and in 64-bit mode, RCX is the

counter.

LOOPNZ and LOOPNE

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

• LOOPNZ (LOOPNE) is a conditional loop instruction

• Syntax:

LOOPNZ destination

LOOPNE destination

• Logic:

• ECX  ECX – 1;

• if ECX > 0 and ZF=0, jump to destination

• Useful when scanning an array for the first element
that matches a given value.

LOOPNZ Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

; test sign bit

; push flags on stack

; pop flags from stack

; continue loop

; none found

; ESI points to value

test WORD PTR [esi],8000h

pushfd

add esi,TYPE array

popfd

loopnz next

jnz quit

sub esi,TYPE array

quit:

The following code finds the first positive value in an array:

.data

array SWORD -3,-6,-1,-10,10,30,40,4

sentinel SWORD 0

.code

mov esi,OFFSET array

mov ecx,LENGTHOF array

next:

Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

.data

array SWORD 50 DUP(?)

.code

mov esi,OFFSET array

mov ecx,LENGTHOF array

L1: cmp WORDPTR [esi],0

; check for zero

(fill in your code here)

quit:

Locate the first nonzero value in the array.

. . . (solution)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

.data

array SWORD 50 DUP(?)

.code

mov esi,OFFSET array

mov ecx,LENGTHOF array

L1: cmp WORDPTR [esi],0

; check for zero

pushfd ; push flags on stack

add esi,TYPE array

popfd ; pop flags from stack

loope L1 ; continue loop

jz quit ; none found

sub esi,TYPE array ; ESI points to value

quit:

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

• Boolean and Comparison Instructions

• Conditional Jumps

• Conditional Loop Instructions

• Conditional Structures

• Application: Finite-State Machines

• Conditional Control Flow Directives

Conditional Structures

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

• Block-Structured IF Statements

• Compound Expressions with AND

• Compound Expressions with OR

• WHILE Loops

• Table-Driven Selection

Block-Structured IF Statements

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

Assembly language programmers can easily translate logical statements written in

C++/Java into assembly language. For example:

mov eax,op1

cmp eax,op2

jne L1

mov X,1

jmp L2

L1: mov X,2

L2:

if(op1 == op2)

X = 1;

else

X = 2;

Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

Implement the following pseudocode in assembly

language. All values are unsigned:

cmp ebx,ecx

ja next

mov eax,5

mov edx,6

next:

if(ebx <= ecx)

{

eax = 5;

edx = 6;

}

(There are multiple correct solutions to this problem.)

Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

Implement the following pseudocode in assembly

language. All values are 32-bit signed integers:

mov eax,var1

cmp eax,var2

jle L1

mov var3,6

mov var4,7

jmp L2

L1:mov var3,10

L2:

if(var1 <= var2)

var3 = 10;

else

{

var3 = 6;

var4 = 7;

}

(There are multiple correct solutions to this problem.)

Compound Expression with AND (1 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

• When implementing the logical AND operator, consider that HLLs

use short-circuit evaluation

• In the following example, if the first expression is false, the second

expression is skipped:

if (al > bl) AND (bl > cl)

X = 1;

Compound Expression with AND (2 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

L2: ; both are true

; set X to 1mov X,1

next:

if (al > bl) AND (bl > cl)

X = 1;

This is one possible implementation . . .

cmp al,bl ; first expression...

ja L1

jmp next

L1:

cmp bl,cl ; second expression...

ja L2

jmp next

Compound Expression with AND (3 of 3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

cmp al,bl ; first expression...

jbe next ; quit if false

cmp bl,cl ; second expression...

jbe next ; quit if false

mov X,1 ; both are true

next:

if (al > bl) AND (bl > cl)

X = 1;

But the following implementation uses 29% less code by

reversing the first relational operator. We allow the program to

"fall through" to the second expression:

Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

Implement the following pseudocode in assembly

language. All values are unsigned:

cmp ebx,ecx

ja next

cmp ecx,edx

jbe next

mov eax,5

mov edx,6

next:

if(ebx <= ecx

&& ecx > edx)

{

eax = 5;

edx = 6;

}

(There are multiple correct solutions to this problem.)

Compound Expression with OR (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 55

• When implementing the logical OR operator, consider

that HLLs use short-circuit evaluation

• In the following example, if the first expression is true,

the second expression is skipped:

if (al > bl) OR (bl > cl)

X = 1;

Compound Expression with OR (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

cmp

ja

al,bl

L1

;

;

is AL > BL?

yes

cmp bl,cl ; no: is BL > CL?

jbe next ; no: skip next statement

L1:mov X,1 ; set X to 1

next:

if (al > bl) OR (bl > cl)

X = 1;

We can use "fall-through" logic to keep the code as short as

possible:

WHILE Loops

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

top:cmp eax,ebx ; check loop condition

jae next ; false? exit loop

inc eax ; body of loop

jmp top ; repeat the loop

next:

A WHILE loop is really an IF statement followed by the body

of the loop, followed by an unconditional jump to the top of

the loop. Consider the following example:

while(eax < ebx)

eax = eax + 1;

This is a possible implementation:

Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

top:cmp ebx,val1 ; check loop condition

ja next ; false? exit loop

add ebx,5 ; body of loop

dec val1

jmp top ; repeat the loop

next:

Implement the following loop, using unsigned 32-bit integers:

while(ebx <= val1)

{

ebx = ebx + 5;

val1 = val1 - 1

}

	Slide 1
	Slide 2
	Slide 3: Boolean and Comparison Instructions
	Slide 4: Status Flags - Review
	Slide 5: What are Boolean Operations?
	Slide 6: AND Instruction (1/2)
	Slide 7: AND Instruction (2/2)
	Slide 8: OR Instruction (1/2)
	Slide 9: OR Instruction (2/2)
	Slide 10: XOR Instruction (1/2)
	Slide 11: XOR Instruction (2/2)
	Slide 12: NOT Instruction
	Slide 13: Applications (1 of 5)
	Slide 14: Applications (2 of 5)
	Slide 15: Applications (3 of 5)
	Slide 16: Applications (4 of 5)
	Slide 17: Applications (5 of 5)
	Slide 18: TEST Instruction
	Slide 19: CMP Instruction (1 of 3)
	Slide 20: (both the Zero and Carry flags are clear)
	Slide 22: What's Next
	Slide 23: Conditional Jumps
	Slide 24: Jcond Instruction
	Slide 25: Jcond Ranges
	Slide 26: Jumps Based on Specific Flags
	Slide 27: Jumps Based on Equality
	Slide 28: Jumps Based on Unsigned Comparisons
	Slide 29: Jumps Based on Signed Comparisons
	Slide 30: Applications (1 of 5)
	Slide 31: Applications (2 of 5)
	Slide 32: Applications (3 of 5)
	Slide 33: Applications (4 of 5)
	Slide 34: Applications (5 of 5)
	Slide 35: Home Task . . .
	Slide 36: Encrypting a String
	Slide 37: String Encryption Program
	Slide 38: BT (Bit Test) Instruction
	Slide 39: What's Next
	Slide 40: Conditional Loop Instructions
	Slide 41: LOOPZ and LOOPE
	Slide 42: LOOPNZ and LOOPNE
	Slide 43: LOOPNZ Example
	Slide 44: Your turn . . .
	Slide 45: . . . (solution)
	Slide 46: What's Next
	Slide 47: Conditional Structures
	Slide 48: Block-Structured IF Statements
	Slide 49: Your turn . . .
	Slide 50: Your turn . . .
	Slide 51: Compound Expression with AND (1 of 3)
	Slide 52: Compound Expression with AND (2 of 3)
	Slide 53: Compound Expression with AND (3 of 3)
	Slide 54: Your turn . . .
	Slide 55: Compound Expression with OR (1 of 2)
	Slide 56: Compound Expression with OR (2 of 2)
	Slide 57: WHILE Loops
	Slide 58: Your turn . . .

