Computer Organization and Assembly Language (COAL)

Lecture 6

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Conditional Processing

* Boolean and Comparison Instructions
e Conditional Jumps

e Conditional Loop Instructions

e Conditional Structures

e Application: Finite-State Machines

e Conditional Control Flow Directives

Boolean and Comparison Instructions
I W | NN
« CPU Status Flags
* AND Instruction
* OR Instruction
* XOR Instruction
 NOT Instruction
* Applications
 TEST Instruction
 CMP Instruction

Status Flags - Review

Zero Flag The Zero flag is set when the result of an operation equals zero.
Carry Flag The Carry flag is set when an instruction generates a result thatis too large (or too
small) for the destination operand.

Sign Flag The Sign flag is set if the destination operand is negative, and it is clear if the
destination operand is positive.

Overflow Flag | The Overflow flag is set when an instruction generates a result that is too large (or
too small) for the signed destination operand.

Parity Flag | The Parity flag is set when an instruction generates an even number of 1 bits
in the low byte of the destination operand.

Auxiliary Flag | The Auxiliary Carry flag is set when an operation produces a carry out from bit 3 to
bit 4

What are Boolean Operations?

D I
Operation Description
AND Boolean AND operation between a source operand and a destination operand.
OR Boolean OR operation between a source operand and a destination operand.
XOR Boolean exclusive-OR operation between a source operand and a destination operand.
NOT Boolean NOT operation on a destination operand.
TEST Implied boolean AND operation between a source and destination operand, setting the
CPU flags appropriately.

AND Instruction (1/2)

« Performs a Boolean AND operation between each pair of matching bits in
two operands
* Operands should be of same size

¢ Syntax:
AND destination, source AND
X | vy XAy
0o o 0
00111011 0ol 1 0
AND 00001111 T
cleared 00001011 unchanged ! : :

AND reg, reg
AND reg,mem
(same operand types as MOV) AND reg, imm
AND mem, reg
AND mem, imm

AND Instruction (2/2)

The AND instruction lets you clear 1 or more bits in an operand without
affecting other bits

The technique is called bit masking

AND AL, 111101106b ; clear bits © and 3

The AND instruction always clears the Overflow and Carry flags

It modifies the Sign, Zero, and Parity flags in a way that is consistent with the
value assigned to the destination operand

OR Instruction (1/2)

 Performs a Boolean OR operation between each
pair of matching bits in two operands

* Syntax:

OR destination, source

0 0 0

00111011
OR 00001111 01]

00111111

set

unchanged

OF reg, reg
OFE reg, mem
OR reg, imm
OR mem, reg
OFR. mem, imm

OR Instruction (2/2)

* The OR instruction is particularly useful when you need to set 1 or more bits in an
operand without affecting any other bits

OR AL, 00000106b ; set bit 2

* The OR instruction always clears the Carry and Overflow flags

* |t modifies the Sign, Zero, and Parity flags in a way that is consistent with the value
assigned to the destination operand

e you can OR a number with itself (or zero) to obtain certain information about its value:

oY al,al Zero Flag Sign Flag Value in AL Is ...

Clear Clear Greater than zero

Set Clear Equal to zero

Clear Set Less than zero

XOR Instruction (1/2)

« Performs a Boolean exclusive-OR operation between each pair of
matching bits in two operands

¢ Syntax:

. . XOR
XOR destination, source -
X Y }{'E'}'
]] 0
00111011 0o | 1 |
XOR 00001111 — T
unchanged 00110100 inverted : : 0

« XORis a useful way to toggle (invert) the bits in an operand.
« A bit exclusive-ORed with O retains its value
« A bit exclusive-ORed with 1 is toggled (complemented)

« XOR reverses itself when applied twice to the same operand

XOR Instruction (2/2)

 The XOR instruction always clears the Overflow and Carry flags

« XOR modifies the Sign, Zero, and Parity flags in a way that is consistent
with the value assigned to the destination operand

NOT Instruction

» Performs a Boolean NOT operation on a single destination operand

 Syntax:
y o NOT
NOT destination
X | —x
NOT 00111011 E T
171000100 inverted T -

No flags are affected by the NOT instruction

Applications (10of5)

« Task: Convert the character in AL to upper case.

Hint:
To convert an uppercase letter to lowercase, we note that ASCII codes for the
uppercase letters ‘A’ to ‘2’ form a sequence from 65 to 90.

The corresponding lowercase letters ‘a‘ to ‘2’ have codes in sequence from 97 to 122.

o Solution: Use the AND instruction to clear bit 5.

mov al,'a' ; AL = 01100001b
and al,11011111b ; AL = 01000001b

Applications (2 of 5)

B = I
_ _ _ _ _ HINT:

» Task: Convert a binary decimal byte into its equivalent

ASCII decimal digit e %60 | 30 | oooooo | Q
. . . . 049 061 31 0011 000
« Solution: Use the OR instruction to set bits 4 and 5. 10001 1
030 062 32 00110010 2
mov al,6 ; AL = 00000110b
or al,00110000b ; AL = 00110110b 051 063 | 33 00110011 3
052 064 34 00110100 4
033 065 35 0011 0101 5
The ASCII digit '6' =00110110b

054 066 36 0011 0110 o)
035 a7 37 0011 0111 7
056 070 38 00111000 8
0ar 071 39 0011 1001 9

Applications (3 0of5)

« Task: Turn on the keyboard CapsLock key

« Solution: Use the OR instruction to set bit 6 in the keyboard flag byte at
0040:0017h in the BIOS data area.

mov ax,40h ; BIOS segment

mov ds,ax

mov bx,17h ; keyboard flag byte
or BYTE PTR [bx],01000000b ; CapsLock on

This code only runs in Real-address mode, and it does not work under Windows NT, 2000, or XP.

Applications (4 of 5)

« Task: Jump to a label if an integer is even.

« Solution: AND the lowest bit with a 1. If the result is Zero,
the number was even.

mov ax,wordVal
and ax,1 ; low bit set?
jz EvenValue ; Jump if Zero flag set

JZ will be covered in next Section

Applications (5 of 5)

« Task: Jump to a label if the value in AL is not zero.

« Solution: OR the byte with itself, then use the JNZ (jump
if not zero) instruction.

or al,al
jnz IsNotZero ; Jump if not zero

ORing any number with itself does not change its value.

TEST Instruction

« Performs a nondestructive AND operation between each pair of matching bits in two
operands

« No operands are modified, but the Zero flag is affected.
« Example: jump to a label if either bit O or bit 1 in AL is set.

test al,00000011b
jnz ValueFound

« Example: jump to a label if neither bit 0 nor bit 1 in AL is set.

test al,00000011b

jz ValueNotFound

CMP Instruction (10f3)

« Compares the destination operand to the source operand

* Nondestructive subtraction of source from destination (destination operand is not changed)
« Syntax: CMP destination, source
« Example: destination == source

mov al,5
cmp al,5 ; Zero flag set

 Example: destination < source

mov al,4
cmp al,5 ; Carry flag set

CMP Instruction (20f3)

« Example: destination > source

mov al, 6
cmp al,5 ; ZF = 0, CF =0

(both the Zero and Carry flags areclear)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

What's Next

* Boolean and Comparison Instructions
Conditional Jumps

« Conditional Loop Instructions

« Conditional Structures

« Application: Finite-State Machines

« Conditional Control Flow Directives

Conditional Jumps

 Jumps Based On . ..
« Specific flags
* Equality
« Unsigned comparisons
« Sighed Comparisons
* Applications
* Encrypting a String
 Bit Test (BT) Instruction

Jcond Instruction

» A conditional jJump instruction branches to a label
when specific register or flag conditions are met

« Specific jumps:
JB, JC - jump to a label if the Carry flag is set
JE, JZ - jump to a label if the Zero flag is set
JS - jump to a label if the Sign flag is set
JNE, JNZ - jump to a label if the Zero flag is clear
JECXZ -jump to alabel if ECX =0

Jcond Ranges

* Prior to the 386:

* jump must be within —128 to +127 bytes from current
location counter

* X86 processors:
« 32-bit offset permits jump anywhere in memory

Jumps Based on Specific Flags

D I
Mnemonic Description Flags
JZ Jump if zero F=1
INZ Jump if not zero ZFE=10
JC Jump if carry CF=1
JNC Jump if not carry CF=0
JO Jump if overflow OF = 1
JNO Jump if not overflow OF =10
IS Jump if signed SF=1
JNS Jump if not signed SF=0
JP Jump if parity {even) PF =1
JNFP Jump if not parity (odd) PF=0

Jumps Based on Equality

Mnemonic Description

JE Jump if equal (leftOp = rightOp)
INE Jump if not equal (lefiOp 2 righiCOp)
JCXZ Jump if CX =0

JECXZ Jump if ECX =0

Jumps Based on Unsigned Comparisons

D I
Mnemonic Description
JA Jump if above (if lefiOp = rightCp)
INBE Jump 1if not below or equal (same as JA)
JAE Jump if above or equal (if lefiOp == rightOp)
INB Jump if not below (same as JAE)
1B Jump if below (if leftOp < rightOp)
INAE Jump 1f not above or equal (same as IB}
IBE Jump if below or equal (if lefiOp <= righiOp)
JNA Jump if not above (same as JBE)

Jumps Based on Signed Comparisons

D I
Mnemonic Description
JG Jump if greater (if leftOp = rightOp)
JINLE Jump if not less than or equal (same as JG)
JGE Jump it greater than or equal (if left0p == rightOp)
JNL Jump if not less (same as JGE)
JL Jump if less (it lefiOp < rightOp)
INGE Jump it not greater than or equal (same as JL)
JLE Jump if less than or equal (if lefiOp <= right Op)
ING Jump if not greater (same as JLE)

Applications (10of5)

« Task: Jump to a label if unsigned EAX is greater than

E BX Mnemonic Description
JA Jump if above (if leftOp = rightOp)
° Solution. Use CMP followed by JA INBE Jump if not below or equal (same as JA)
" ’ . .

JAE Jump if above or equal (if feftOp >= rightOp)
JNB Jump if not below (same as JAE)

cmP eax 14 ebx IB Jump if below (if leftOp < rightOp)

j a Larger INAE Jump if not above or equal (same as IB)
IBE Jump if below or equal (if {efiOp <= rightOp)
JNA Jump if not above (same as JBE)

« Task: Jump to a label if signed EAX is greater than EBX

« Solution: Use CMP, followed by JG T— Deseription

G Jump if greater (it leftOp = rightOp)

cmp eax ebx JNLE Jump if not less than or equal (same as JG)

4
. IGE Jump if greater than or equal (if leftOp >= rightOp)

J g Greater IJNL Jump if not less (same as JGE)
JL Jump if less (if lefiOp < rightOp)
INGE Jump if not greater than or equal (same as JL)
JLE Jump if less than or equal (if lefi Op <= rightOp)
ING Jump if not greater (same as JLE)

Applications (2 of 5)

« Jump to label L1 if unsigned EAX is less than or equal to Val1

Mnemonic Description
JA Jump if above (if leftOp = rightOp)
cmp eax 4 Val 1 INBE Jump if not below or equal (same as JA)

jbe L1 ; below or equal AR

Jump if above or equal (if feftOp >= rightOp)

JNB Jump if not below (same as JAE)

IB Jump if below (if leftOp < rightOp)

INAE Jump if not above or equal (same as IB)

IBE Jump if below or equal (if {efiOp <= rightOp)

« Jump to label L1 if signed EAX is less than or equal to Val1 ™ Jump 1 not above (ame o 1P

cmp eax,Vall

j 1e Ll Mnemonic Description
G Jump if greater (it leftOp = rightOp)
JNLE Jump if not less than or equal (same as JG)
IGE Jump if greater than or equal (if lefiOp >= rightOp)
IJNL Jump if not less (same as JGE)
JL Jump if less (if lefiOp < rightOp)
INGE Jump if not greater than or equal (same as JL)
JLE Jump if less than or equal (if lefi Op <= rightOp)
ING Jump if not greater (same as JLE)

Applications (3 0of5)

« Compare unsigned AX to BX, and copy the larger of the two

into a variable named Large Lozl 2eonlilis
JA Jump if above (if lefiOp = rightOp)
mov Large ’ bx INBE Jump if not below or equal (same as JA)
Cmp ax ’ bx JAE Jump if above or equal (if lefiOp == rightOp)
jna Next INB Jump if not below (same as JAE)
mov Large ;ax 1B Jump if below (if leftOp < rightOp)
Next: INAE Jump if not above or equal (same as IB)
IBE Jump if below or equal (if leftOp <= rightOp)
INA Jump if not above (same as JBE)

« Compare signed AX to BX, and copy the smaller of the two

into a variable named Small Mnemonic Description

IG Jump if greater (if leftOp = rightOp)

mov Small, ax "
JNLE Jump if not less than or equal (same as JG)

cmp bx,ax - — .
IGE Jump if greater than or equal (if fefiOp == rightOp)

nl Next

J IJNL Jump if not less (same as JGE)

mov Small,bx —— .
JL Jump if less (if lefiOp < rightOp)

Next:
e t INGE Jump if not greater than or equal (same as JL)

JLE Jump if less than or equal (if lefiOp <= rightOp)
ING Jump if not greater (same as JLE)

Applications (4 of 5)

« Jump to label L1 if the memory word pointed to by ESI
equals Zero

cmp WORD PTR [esi],O
je L1l

« Jump to label L2 if the doubleword in memory pointed to
by EDI is even

test DWORD PTR [edi],1
jz L2

Applications (5 of 5)

« Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set.

« Solution: Clear all bits except bits 0, 1,and 3. Then
compare the result with 00001011 binary.

and al,00001011b ; clear unwanted bits
cmp al,00001011b ; check remaining bits
je L1 ; all set? jump to L1

Home Task. ..

« Write code that jumps to label L1 if either bit 4, 5, or 6 is set in the BL
register.

« Write code that jumps to label L1 if bits 4, 5, and 6 are all set in the
BL register.

* Write code that jumps to label L2 if AL has even parity.
« Write code that jumps to label L3 if EAX is negative.

« Write code that jumps to label L4 if the expression (EBX — ECX) is
greater than zero.

Encrypting a String

The following loop uses the XOR instruction to transform every
character in a string into a new value.

KEY = 239 ; can be any byte wvalue
BUFMAX = 128

.data

buffer BYTE BUFMAX+1l DUP(0)

bufSize DWORD BUFMAX

.code
mov ecx,bufSize ; loop counter
mov esi,O ; index 0 in buffer
Ll:
xor buffer[esi] ,KEY ; translate a byte
inc esi ; point to next byte

loop L1

String Encryption Program

« Tasks:
* Input a message (string) from the user
* Encrypt the message
* Display the encrypted message
* Decrypt the message
» Display the decrypted message

Sample output:

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Aid-A¢-iAyii-Gs

Decrypted: Attack at dawn.

BT (Bit Test) Instruction

« Copies bit n from an operand into the Carry flag
« Syntax: BT bitBase, n
bitBase may be r/m16 or r/m32

n may be r16, r32, or imm8

« Example: jump to label L1 if bit 9 is set in the AX
register:

bt AX,9 ; CF = bit 9
jc L1 ; Jump if Carry

What's Next

* Boolean and Comparison Instructions
« Conditional Jumps
Conditional Loop Instructions
« Conditional Structures
« Application: Finite-State Machines
« Conditional Control Flow Directives

Conditional Loop Instructions

« LOOPZ and LOOPE
« LOOPNZ and LOOPNE

LOOPZ and LOOPE

* Syntax:
LOOPE destination
LOOPZ destination
* Logic:
« ECX < ECX-1
« if ECX >0 and ZF=1, jump to destination

« Useful when scanning an array for the first element
that does not match a given value.

In 32-bit mode, ECX is the loop counter register. In 16-bit real-
address mode, CX is the counter, and in 64-bit mode, RCX is the
counter.

LOOPNZ and LOOPNE

LOOPNZ (LOOPNE) is a conditional loop instruction
Syntax:
LOOPNZ destination
LOOPNE destination
Logic:
« ECX <« ECX-1;
« if ECX >0 and ZF=0, jump to destination

Useful when scanning an array for the first element
that matches a given value.

LOOPNZ Example

The following code finds the first positive value in an array:

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code
mov esi,OFFSET array
mov ecx,LENGTHOF array

next:
test WORD PTR [esi] ,8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loopnz next ; continue loop
jnz quit ; none found
sub esi,TYPE array ; ESI points to wvalue

quit:

Your turn. ..

Locate the first nonzero value in the array.

.data
array SWORD 50 DUP(?)
.code
mov esi,OFFSET array
mov ecx,LENGTHOF array
Ll: cmp WORDPTR [esi],O
; check for zero

(fi1ill in your code here)

quit:

... (solution)

B I
.data
array SWORD 50 DUP(?)
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array
L1: cmp WORDPTR [esi],O
; check for zero

pushfd ; push flags on stack
add esi,TYPE array

popfd ; pop flags from stack
loope L1 ; continue loop

jz quit ; none found

sub esi,TYPE array ; ESTI points to wvalue

quit:

What's Next

 Boolean and Comparison Instructions

« Conditional Jumps

« Conditional Loop Instructions
Conditional Structures

« Application: Finite-State Machines

« Conditional Control Flow Directives

Conditional Structures

» Block-Structured IF Statements
 Compound Expressions with AND
« Compound Expressions with OR
 WHILE Loops

 Table-Driven Selection

Block-Structured IF Statements

Assembly language programmers can easily translate logical statements written in
C++/Java into assembly language. For example:

mov eax,opl

if(opl == op2)
cmp eax,op2

X =1;

jne L1
else_ 5. mov X,1
X =2; jmp L2

Ll: mov X,62
L2:

Your turn. ..
I W N

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx

ja next

mov eax,5

mov edx, 6
next:

if(ebx <= ecx)

{

eax =
edx =

i n
o U

(There are multiple correct solutions to this problem.)

Your turn. ..

Implement the following pseudocode in assembly
language. All values are 32-bit signed integers:

if(varl <= var2) mov eax,varl
var3 = 10:; cmp eax,var2
else jle L1

mov var3,6
mov var4d,’7
jmp L2

Ll: mov wvar3,10

{
var3 = 6;
vari

I
<

(There are multiple correct solutions to this problem.)

Compound Expression with AND (1 of 3)

 When implementing the logical AND operator, consider that HLLs
use short-circuit evaluation

* In the following example, if the first expression is false, the second
expression is skipped:

if (al > bl) AND (bl > cl)
X =1;

Compound Expression with AND (2 of 3)

if (al > bl) AND (bl > cl)
X =1;

This is one possible implementation . . .

cmp al,bl ; first expression...
ja Ll
jmp next
Ll:
cmp bl,cl ; second expression..
ja L2
jmp next
L2: ; both are true
mov X,1 ; set X to 1

next:

Compound Expression with AND (3 of 3)

if (al > bl) AND (bl > cl)
X =1;

But the following implementation uses 29% less code by
reversing the first relational operator. We allow the program to
"fall through" to the second expression:

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression...
jbe next ; quit if false
mov X,1 ; both are true

next:

Your turn. ..

Implement the following pseudocode in assembly
language. All values are unsigned:

if(ebx <= ecx cmp ebx,ecx

&& ecx > edx) Ja next
(cmp ecx,edx
jbe next
eax = 5;
mov eax,5
edx = 6; mov edx, 6
} next:

(There are multiple correct solutions to this problem.)

Compound Expression with OR (1 of 2)

* When implementing the logical OR operator, consider
that HLLs use short-circuit evaluation

* In the following example, if the first expression is true,
the second expression is skipped:

if (al > bl) OR (bl > cl)
X =1;

Compound Expression with OR (2 of 2)

if (al > bl) OR (bl > cl)
X =1;

We can use "fall-through” logic to keep the code as short as

possible:
cmp al,bl ; is AL > BL?
ja Ll ; yes
cmp bl,cl ; no: is BL > CL?
jbe next ; no: skip next statement

Ll:mov X,1 set X to 1

next:

WHILE Loops

A WHILE loop is really an IF statement followed by the body
of the loop, followed by an unconditional jump to the top of
the loop. Consider the following example:

while(eax < ebx)
eax = eax + 1;

This is a possible implementation:

top:cmp eax,ebx check loop condition

jae next ; false? exit loop
inc eax ; body of loop
Jjmp top ; repeat the loop

next:

Your turn. ..

Implement the following loop, using unsigned 32-bit integers:

while(ebx <= wvall)
{
ebx = ebx + 5;
vall = vall - 1

top:cmp ebx,vall ; check loop condition
ja next ; false? exit loop
add ebx,5 ; body of loop
dec vall
jmp top ; repeat the loop

next:

	Slide 1
	Slide 2
	Slide 3: Boolean and Comparison Instructions
	Slide 4: Status Flags - Review
	Slide 5: What are Boolean Operations?
	Slide 6: AND Instruction (1/2)
	Slide 7: AND Instruction (2/2)
	Slide 8: OR Instruction (1/2)
	Slide 9: OR Instruction (2/2)
	Slide 10: XOR Instruction (1/2)
	Slide 11: XOR Instruction (2/2)
	Slide 12: NOT Instruction
	Slide 13: Applications (1 of 5)
	Slide 14: Applications (2 of 5)
	Slide 15: Applications (3 of 5)
	Slide 16: Applications (4 of 5)
	Slide 17: Applications (5 of 5)
	Slide 18: TEST Instruction
	Slide 19: CMP Instruction (1 of 3)
	Slide 20: (both the Zero and Carry flags are clear)
	Slide 22: What's Next
	Slide 23: Conditional Jumps
	Slide 24: Jcond Instruction
	Slide 25: Jcond Ranges
	Slide 26: Jumps Based on Specific Flags
	Slide 27: Jumps Based on Equality
	Slide 28: Jumps Based on Unsigned Comparisons
	Slide 29: Jumps Based on Signed Comparisons
	Slide 30: Applications (1 of 5)
	Slide 31: Applications (2 of 5)
	Slide 32: Applications (3 of 5)
	Slide 33: Applications (4 of 5)
	Slide 34: Applications (5 of 5)
	Slide 35: Home Task . . .
	Slide 36: Encrypting a String
	Slide 37: String Encryption Program
	Slide 38: BT (Bit Test) Instruction
	Slide 39: What's Next
	Slide 40: Conditional Loop Instructions
	Slide 41: LOOPZ and LOOPE
	Slide 42: LOOPNZ and LOOPNE
	Slide 43: LOOPNZ Example
	Slide 44: Your turn . . .
	Slide 45: . . . (solution)
	Slide 46: What's Next
	Slide 47: Conditional Structures
	Slide 48: Block-Structured IF Statements
	Slide 49: Your turn . . .
	Slide 50: Your turn . . .
	Slide 51: Compound Expression with AND (1 of 3)
	Slide 52: Compound Expression with AND (2 of 3)
	Slide 53: Compound Expression with AND (3 of 3)
	Slide 54: Your turn . . .
	Slide 55: Compound Expression with OR (1 of 2)
	Slide 56: Compound Expression with OR (2 of 2)
	Slide 57: WHILE Loops
	Slide 58: Your turn . . .

