Computer Organization and Assembly Language (COAL)

Lecture 5

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Procedures

e Stack Operations
e Defining and Using Procedures

Stack Operations
I W | NN
* Runtime Stack
 PUSH Operation
 POP Operation
« PUSH and POP Instructions
« Using PUSH and POP
« Example: Reversing a String
« Related Instructions

Stack and Stack Pointers

* The stack is a section of RAM used by the CPU to store
information temporarily

e This information could be data or an address

* The CPU needs this storage area because there are only a limited
number of registers

* There must be a register inside the CPU to point to stack in the
memory

* The register used to access the stack is called the SP (stack
pointer) register.

Runtime Stack

« Imagine a stack of plates . . .
» plates are only added to the top
 plates are only removed from the top
* LIFO structure

<— top

-
o

=N WHNOIOYN OO

Y Y Y Y Y Y Y Y
\AAAANANA AN

<— bottom

Runtime Stack

« Managed by the CPU, using two registers
« SS (stack segment)
« ESP (stack pointer) *

Offset

00001000 | 00000006 || o rop

00000FFC

00000FF8

00O0O0OOFF4

000O0O0FFO

* SP in Real-address mode

N PUSH Operation (1 of2)

* A 32-bit push operation decrements the stack pointer by 4 and
copies a value into the location pointed to by the stack pointer.

PUSH Operation (2 of2)

« Same stack after pushing two more integers:

Offset
00001000 | 00000006

00000OFFC | 000000A5

0O0O0OOOFF8 | 00000001

00000FF4 | 00000002 || ESP

00000FFO

The stack grows downward. The area below ESP is always available (unless
the stack has overflowed).

N POP Operation

« Copies value at stack[ESP] into a register or variable.

« Adds nto ESP, where n is either 2 or 4.
» value of n depends on the attribute of the operand receiving the data

PUSH and POP Instructions

« PUSH syntax:
« PUSH r/m16
« PUSH r/m32
« PUSH imm32

 POP syntax:

« POPr/im16
e POP r/im32

Using PUSH and POP

« Save and restore registers when they contain important values.
« PUSH and POP instructions occur in the opposite order.

push esi ; push registers

push ecx

push ebx

mov esi,OFFSET dwordVal ; display some memory

mov ecx, LENGTHOF dwordVal
mov ebx,TYPE dwordVal

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

Using PUSH and POP

« Save and restore registers when they contain important values.
« PUSH and POP instructions occur in the opposite order.

push esi ; push registers

push ecx

push ebx

mov esi,OFFSET dwordVal ; display some memory

mov ecx, LENGTHOF dwordVal
mov ebx,TYPE dwordVal

o ebx ; restore registers
Pop g

pop ecx

pop esi

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

Recall Nested Loop Example

Remember the nested loop we created in nested loop lecture?

If you need to code a loop within a loop, you must save the outer loop
counter's ECX value. In the following example, the outer loop executes
100 times, and the inner loop 20 times.

.data
count DWORD ?
.code
mov ecx,100 ; set outer loop count
L1:
mov count,ecx ; save outer loop count
mov ecx,20 ; set inner loop count
L2: .
loop L2 ; repeat the inner loop
mov ecx,count ; restore outer loop count
loop L1 ; repeat the outer loop

Nested Loop with Push/Pop

Remember the nested loop we created in nested loop lecture?

It's easy to push the outer loop counter before entering the inner loop:

mov ecx,100 ; set outer loop count
L1: ; begin the outer loo
[push ecx ; save outer loop countl
" mov ecx, 20 ; set inner loop count N
L2: ; begin the inner loop
_ loop L2 ; repeat the inner loop J
[pop ecx ; restore outer loop count J
loop L1 ; repeat the outer loop

Irvine, Kip R. Assembly Language for Intel- 14
Based Computers, 2003.

Copying a String Example

The following code copy a string from source to target:

.data
source BYTE '"This is the source string",0
target BYTE SIZEOF source DUP(0)

.code
mov si,0 ; index register
mov cx,SIZEOF source ; loop counter

Ll:
mov al,source[si] ; get char from source
mov target[si],al ; store it in the target
inc si ; move to next character

loop L1 ; repeat for entire string

N Example: Reversing a String

* RE-program the code using Push/Pop statements to reverse the string

Solution:
data 1. Use a loop with indexed addressing
source BYTE "This is the source string",0 2. Push each character on the stack
target BYTE SIZEOF source DUP (0) 3. Start at the beginning of the string,
pop the stack in reverse order, insert

-code each character back into the string

mov si,0 ; index regis

mov cx,SIZEOF source ; loop counter
Ll:

mov al,source[si] ; get char from source

mov target[si], al ; store it in the target

inc si ; move to next character

loop L1 ; repeat for entire string

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 16

What's Next

« Stack Operations
Defining and Using Procedures
* Linking to an External Library

Defining and Using Procedures

« Creating Procedures
 Documenting Procedures

« Example: SumOf Procedure
« CALL and RET Instructions
* Nested Procedure Calls

* Local and Global Labels

* Procedure Parameters

* Flowchart Symbols
 USES Operator

Creating Procedures

« Large problems can be divided into smaller tasks
to make them more manageable

* A procedure is the ASM equivalent of a Java or C++
function

« Following is an assembly language procedure named
sample:

sample PROC

ret
sample ENDP

Documenting Procedures

Suggested documentation for each procedure:

A description of all tasks accomplished by the procedure.
= Receives: Alist of input parameters; state their usage and requirements.
» Returns: A description of values returned by the procedure.

* Requires: Optional list of requirements called preconditions that must be satisfied before the
procedure is called.

If a procedure is called without its preconditions satisfied, it will probably not
produce the expected output.

Example: SumOf Procedure

SumOf PROC

; Calculates and returns the sum of three 32-bit
integers.

; Receives: EAX, EBX, ECX, the three integers. May be
; signed or unsigned.

; Returns: EAX = sum, and the status flags (Carry,

; Overflow, etc.) are changed.

; Requires: nothing

add eax,ebx
add eax,ecx
ret

SumOf ENDP

CALL and RET Instructions

 The CALL instruction calls a procedure
« pushes offset of next instruction on the stack
« copies the address of the called procedure into EIP

 The RET instruction returns from a procedure
» pops top of stack into EIP

CALL-RET Example (1 of2)

T 00
main PROC
. 00000020 call MySub
0000025 is the offset of the 00000025 mov eax,ebx

instruction immediately
following the CALL

Instruction main ENDP
MySub PROC
00000040 is the offset of 00000040 mov eax,edx
the first instruction inside .
MySub
ret
MySub ENDP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

N CALL-RET Example (2 of2)

The CALL instruction

pushes 00000025 onto
the stack, and loads
00000040 into EIP

The RET instruction
pops 00000025 from the

stack into EIP

(stack shown before RET executes)

N Nested Procedure Calls

By the time Sub3 is called, the
stack contains all three return
addresses:

Local and Global Labels

A local label is visible only to statements inside the same
procedure. A global label is visible everywhere.

main PROC
jmp L2 ; error

Ll:: ; global label
exit

main ENDP

sub2 PROC

L2: ; local label
jmp L1 ; ok
ret

sub2 ENDP

Procedure Parameters (1 of3)

« A good procedure might be usable in many different
programs

« but not if it refers to specific variable names

« Parameters help to make procedures flexible because parameter
values can change at runtime

Procedure Parameters (2/3)

; Testing the ArraySum procedure (TestArraySum.asm)

-.3B6

.model flat, stdcall

.2tack 4096

ExitProcess PROTO, dwExitCode:DWORD

data
array DWORD 10000h,20000h,30000h,40000h, 500000
theSum DWORD ?

. code

main PROC
mov esi,0FFSET array
mov ecx, LENGTHOF array ECX = array count
call ArraySum calculate the sum
mowv theSum,eax ; returned in ERX

ESI points to array

e wmE

L 1]

INWVOKE ExitProcess,0
main ENDP

-

ArraySum

Calculates the sum of an array of 32-bit integers.
Receives: ESI = the array offset

ECX = number of elements in the array

Feturns: EAX = sum of the array elements

E ME WE WE WE WE

Arraysum PROC
push esi ; save ES5I, ECX
push ecx
mowv eax, ;: set the sum to zero

Procedure Parameters (3/3)

D . __
Ll:

add eax, [esi) ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

pop ecx ; restore ECX, ESI

pop esi

ret : sum is in EAX

ArraySum EMNDP

END main

USES Operator

 Lists the registers that will be preserved

ArraySum PROC USES esi ecx
mov eax,0 ; set the sum to zero
etc.

MASM generates the code shown in gold:

ArraySum PROC
push esi
push ecx

pop ecx
pop esi
ret

ArraySum ENDP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

When not to push a register

The sum of the three registers is stored in EAX on line (3), but
the POP instruction replaces it with the starting value of EAX on

line (4):
SumOf PROC ; sum of three integers
push eax ;1
add eax,ebx 2
add eax,ecx ;3
pop eax 4
ret

SumOf ENDP

Summary

 Procedure — named block of executable code

 Runtime stack — LIFO structure

* holds return addresses, parameters, local variables
« PUSH - add value to stack
 POP - remove value from stack

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Stack Operations
	Slide 4: Stack and Stack Pointers
	Slide 5: Runtime Stack
	Slide 6: Runtime Stack
	Slide 7: PUSH Operation (1 of 2)
	Slide 8: PUSH Operation (2 of 2)
	Slide 9: POP Operation
	Slide 10: PUSH and POP Instructions
	Slide 11: Using PUSH and POP
	Slide 12: Using PUSH and POP
	Slide 13: Recall Nested Loop Example
	Slide 14: Nested Loop with Push/Pop
	Slide 15: Copying a String Example
	Slide 16: Example: Reversing a String
	Slide 17: What's Next
	Slide 18: Defining and Using Procedures
	Slide 19: Creating Procedures
	Slide 20: Documenting Procedures
	Slide 21: Example: SumOf Procedure
	Slide 22: CALL and RET Instructions
	Slide 23: CALL-RET Example (1 of 2)
	Slide 24: CALL-RET Example (2 of 2)
	Slide 25: Nested Procedure Calls
	Slide 26: Local and Global Labels
	Slide 27: Procedure Parameters (1 of 3)
	Slide 28: Procedure Parameters (2/3)
	Slide 29: Procedure Parameters (3/3)
	Slide 30: USES Operator
	Slide 31: When not to push a register
	Slide 32: Summary
	Slide 33: Thanks a lot

