
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 5

Dr. Naveed Anwar Bhatti

Procedures

• Stack Operations
• Defining and Using Procedures

Stack Operations

3

• Runtime Stack

• PUSH Operation

• POP Operation

• PUSH and POP Instructions

• Using PUSH and POP

• Example: Reversing a String

• Related Instructions

Stack and Stack Pointers

• The stack is a section of RAM used by the CPU to store
information temporarily
• This information could be data or an address

• The CPU needs this storage area because there are only a limited
number of registers

• There must be a register inside the CPU to point to stack in the
memory

• The register used to access the stack is called the SP (stack
pointer) register.

Runtime Stack

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

• Imagine a stack of plates . . .

• plates are only added to the top

• plates are only removed from the top

• LIFO structure

10
9
8
7
6
5
4
3
2

1

top

bottom

Runtime Stack

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 6

* SP in Real-address mode

00000006
ESP

00001000

• Managed by the CPU, using two registers

• SS (stack segment)

• ESP (stack pointer) *

Offset

00000FFC

00000FF8

00000FF4

00000FF0

PUSH Operation (1 of2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

• A 32-bit push operation decrements the stack pointer by 4 and

copies a value into the location pointed to by the stack pointer.

00000006

ESP

00000FF8

00000FF4

00000FF0

ESP00001000

BEFORE

00000FFC

00000FF8

00000FF4

00000FF0

AFTER

00001000 00000006

00000FFC 000000A5

PUSH Operation (2 of2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

• Same stack after pushing two more integers:

00000006

Offset

00001000

00000FFC

00000FF8

00000FF4

00000FF0

000000A5

00000001

00000002 ESP

The stack grows downward. The area below ESP is always available (unless

the stack has overflowed).

POP Operation

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

• Copies value at stack[ESP] into a register or variable.

• Adds n to ESP, where n is either 2 or 4.

• value of n depends on the attribute of the operand receiving the data

BEFORE AFTER

ESP

ESP

00001000 00000006

00000FFC 000000A5

00000FF8 00000001

00000FF4 00000002

00000FF0

00001000 00000006

00000FFC 000000A5

00000FF8 00000001

00000FF4

00000FF0

PUSH and POP Instructions

• PUSH syntax:

• PUSH r/m16

• PUSH r/m32

• PUSH imm32

• POP syntax:

• POP r/m16

• POP r/m32

Using PUSH and POP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

push

push

push

mov

esi

ecx

ebx

esi,OFFSET dwordVal

;

;

push registers

display some memory

mov

mov

……

ecx,LENGTHOF dwordVal

ebx,TYPE dwordVal

• Save and restore registers when they contain important values.

• PUSH and POP instructions occur in the opposite order.

Using PUSH and POP

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

push

push

push

mov

esi

ecx

ebx

esi,OFFSET dwordVal

;

;

push registers

display some memory

mov

mov

……

ecx,LENGTHOF dwordVal

ebx,TYPE dwordVal

pop

pop

pop

ebx

ecx

esi

; restore registers

• Save and restore registers when they contain important values.

• PUSH and POP instructions occur in the opposite order.

Recall Nested Loop Example

Remember the nested loop we created in nested loop lecture?

If you need to code a loop within a loop, you must save the outer loop

counter's ECX value. In the following example, the outer loop executes

100 times, and the inner loop 20 times.

.data

count DWORD ?

.code

mov ecx,100 ; set outer loop count

L1:

mov count,ecx ; save outer loop count

mov ecx,20 ; set inner loop count

L2: .

.

loop L2 ; repeat the inner loop

mov ecx,count ; restore outer loop count

loop L1 ; repeat the outer loop

Irvine, Kip R. Assembly Language for Intel-

Based Computers, 2003. 14

Nested Loop with Push/Pop

mov ecx,100 ; set outer loop count

L1: ; begin the outer loop

push ecx ; save outer loop count

mov ecx,20 ; set inner loop count

L2: ; begin the inner loop

;

;

loop L2 ; repeat the inner loop

pop ecx ; restore outer loop count

loop L1 ; repeat the outer loop

Remember the nested loop we created in nested loop lecture?

It's easy to push the outer loop counter before entering the inner loop:

Copying a String Example

.data

source BYTE "This is the source string",0

target BYTE SIZEOF source DUP(0)

.code

mov si,0 ; index register

mov cx,SIZEOF source ; loop counter

L1:

mov al,source[si] ; get char from source

mov target[si],al ; store it in the target

inc si ; move to next character

loop L1 ; repeat for entire string

The following code copy a string from source to target:

Example: Reversing a String

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 16

• RE-program the code using Push/Pop statements to reverse the string

.data

source BYTE "This is the source string",0

target BYTE SIZEOF source DUP(0)

.code

mov si,0 ; index register

mov cx,SIZEOF source ; loop counter

L1:

mov al,source[si] ; get char from source

mov target[si],al ; store it in the target

inc si ; move to next character

loop L1 ; repeat for entire string

Solution:
1. Use a loop with indexed addressing
2. Push each character on the stack
3. Start at the beginning of the string,
pop the stack in reverse order, insert
each character back into the string

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 17

• Stack Operations

• Defining and Using Procedures

• Linking to an External Library

Defining and Using Procedures

• Creating Procedures

• Documenting Procedures

• Example: SumOf Procedure

• CALL and RET Instructions

• Nested Procedure Calls

• Local and Global Labels

• Procedure Parameters

• Flowchart Symbols

• USES Operator

Creating Procedures

• Large problems can be divided into smaller tasks
to make them more manageable

• A procedure is the ASM equivalent of a Java or C++
function

• Following is an assembly language procedure named
sample:

sample PROC

.

.

ret

sample ENDP

Documenting Procedures

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 20

Suggested documentation for each procedure:

A description of all tasks accomplished by the procedure.

▪ Receives: A list of input parameters; state their usage and requirements.

▪ Returns: A description of values returned by the procedure.

▪ Requires: Optional list of requirements called preconditions that must be satisfied before the

procedure is called.

If a procedure is called without its preconditions satisfied, it will probably not

produce the expected output.

Example: SumOf Procedure

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 21

;

SumOf PROC

;

; Calculates and returns the sum of three 32-bit

integers.

; Receives: EAX, EBX, ECX, the three integers. May be

; signed or unsigned.

; Returns: EAX = sum, and the status flags (Carry,

; Overflow, etc.) are changed.

; Requires: nothing

;

add eax,ebx

add eax,ecx

ret

SumOf ENDP

CALL and RET Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 22

• The CALL instruction calls a procedure

• pushes offset of next instruction on the stack

• copies the address of the called procedure into EIP

• The RET instruction returns from a procedure

• pops top of stack into EIP

CALL-RET Example (1 of2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

main PROC

00000020 call MySub

00000025 mov eax,ebx

.

.

main ENDP

MySub PROC

00000040 mov eax,edx

.

.

ret

MySub ENDP

0000025 is the offset of the

instruction immediately

following the CALL

instruction

00000040 is the offset of

the first instruction inside

MySub

CALL-RET Example (2 of2)

00000025 ESP

EIP

00000040
The CALL instruction

pushes 00000025 onto

the stack, and loads

00000040 into EIP

00000025 ESP

EIP

00000025The RET instruction

pops 00000025 from the

stack into EIP

(stack shown before RET executes)

Nested Procedure Calls

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

main PROC

.

.

call Sub1

exit

main ENDP

Sub1 PROC

.

.

call Sub2

ret

Sub1 ENDP

Sub2 PROC

.

.

call Sub3

ret

Sub2 ENDP

Sub3 PROC

.

.

ret

Sub3 ENDP

(ret to main)

(ret to Sub1)

(ret to Sub2)
ESP

By the time Sub3 is called, the

stack contains all three return

addresses:

Local and Global Labels

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

main PROC

jmp L2 ; error

L1:: ; global label

exit

main ENDP

; local label

; ok

sub2 PROC

L2:

jmp L1

ret

sub2 ENDP

A local label is visible only to statements inside the same

procedure. A global label is visible everywhere.

Procedure Parameters (1 of3)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

• A good procedure might be usable in many different

programs

• but not if it refers to specific variable names

• Parameters help to make procedures flexible because parameter

values can change at runtime

Procedure Parameters (2/3)

Procedure Parameters (3/3)

USES Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

• Lists the registers that will be preserved

; set the sum to zero

ArraySum PROC USES esi ecx

mov eax,0

etc.

MASM generates the code shown in gold:

ArraySum PROC

push esi

push ecx

.

.

pop ecx

pop esi

ret

ArraySum ENDP

When not to push a register

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

SumOf PROC ; sum of three integers

push eax ; 1

add eax,ebx ; 2

add eax,ecx ; 3

pop eax ; 4

ret

SumOf ENDP

The sum of the three registers is stored in EAX on line (3), but

the POP instruction replaces it with the starting value of EAX on

line (4):

Summary

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

• Procedure – named block of executable code

• Runtime stack – LIFO structure

• holds return addresses, parameters, local variables

• PUSH – add value to stack

• POP – remove value from stack

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Stack Operations
	Slide 4: Stack and Stack Pointers
	Slide 5: Runtime Stack
	Slide 6: Runtime Stack
	Slide 7: PUSH Operation (1 of 2)
	Slide 8: PUSH Operation (2 of 2)
	Slide 9: POP Operation
	Slide 10: PUSH and POP Instructions
	Slide 11: Using PUSH and POP
	Slide 12: Using PUSH and POP
	Slide 13: Recall Nested Loop Example
	Slide 14: Nested Loop with Push/Pop
	Slide 15: Copying a String Example
	Slide 16: Example: Reversing a String
	Slide 17: What's Next
	Slide 18: Defining and Using Procedures
	Slide 19: Creating Procedures
	Slide 20: Documenting Procedures
	Slide 21: Example: SumOf Procedure
	Slide 22: CALL and RET Instructions
	Slide 23: CALL-RET Example (1 of 2)
	Slide 24: CALL-RET Example (2 of 2)
	Slide 25: Nested Procedure Calls
	Slide 26: Local and Global Labels
	Slide 27: Procedure Parameters (1 of 3)
	Slide 28: Procedure Parameters (2/3)
	Slide 29: Procedure Parameters (3/3)
	Slide 30: USES Operator
	Slide 31: When not to push a register
	Slide 32: Summary
	Slide 33: Thanks a lot

