Computer Organization and Assembly Language (COAL)

Lecture 4

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Assembly Language Fundamentals

* Data Transfer Instructions

* Addition and Subtraction

* Data-Related Operators and Directives
* Indirect Addressing

 JMP and LOOP Instructions

* 64-Bit Programming

Data Transfer Instructions

* Instruction Syntax

* QOperand Types
 Instruction Operand Notation
* Direct Memory Operands
MOV Instruction

« Zero & Sign Extension

« XCHG Instruction

* Direct-Offset Instructions

Instructions

An assembly instruction contains four basic parts:
« Label (optional)
 Instruction mnemonic (required)

« QOperand(s) (usually required)
« Comment (optional)

This is how the different parts are arranged:

[label:] mnemonic [operands] [;comment]

Operand Types

 Immediate — a constant integer (8, 16, or 32 bits)
 value is encoded within the instruction

* Register — the name of a register
* register name is encoded within the instruction

 Memory — reference to a location in memory

 memory address is encoded within the instruction, or a register holds the
address of a memory location

Instruction Operand Notation

B = I
Operand Description

reg8 8-bit general-purpose register: AH, AL. BH, BL, CH. CL, DH, DL
regl | 6-bit general-purpose register: AX, BX, CX, DX, S, DI. SF, BP
reg32 32-bit general-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, ESF, EBP
reg Any general-purpose register
sreg | 6-bit segment register: CS, DS, 55, ES, F5, GS
1M 8-, 16-, or 32-bit immediate value
immes 8-bit immediate byte value
imml6 | 6-bit immediate word value
immai2 32-bit immediate doubleword value
reg/mems 8-bit operand, which can be an 8-bit general register or memory byte
reg/meml6 | 6-bit operand, which can be a 16-bit general register or memory word
reg/memi2 32-bit operand, which can be a 32-bit general register or memory doubleword
mem An 8-, 16-, or 32-bit memory operand

Direct Memory Operands

« Adirect memory operand is a named reference to storage in memory

« The named reference (label) is automatically dereferenced by the
assembler

.data

varl BYTE 10h

.code

mov al,varl ; AL = 10h
mov al, [varl] - AL = 10h

|

alternate format

Direct Memory Operands

I B

.data

varl BYTE 10h

.code

mov al,varl ; AL = 10h

mov al, [varl] ; AL = 10h

Type Specifier Bytes addressed
BYTE 1
WORD p
DWORD 4
QWORD 8

TBYTE 10

MOV Instruction

 Move from source to destination
Syntax: MOV destination, source

No more than one memory operand permitted
Segments, Immediate, EIP, and IP registers cannot be the destination
Size of operands should be same

.data

oneByte BYTE 78h
oneWord WORD 1234h
oneDword DWORD 12345678h

.code
mov eax,(+ EAX = 00000000hR

MOV Instruction

.data
count BYTE 10h
wVal WORD 2h

.code

mov bl,count
mov ax,wvVal
mov count,al

mov al,wVal ; error
mov ax,count , error
mov eax,count ; error

Your turn. ..
I W N

Explain why each of the following MOV statements are invalid:

.data
bval BYTE 100
bval2 BYTE ?
wVal WORD 2
dval DWORD 5
.code

mov ds, 45

mov esi,wVal
mov eip,dVal
mov 25,bVal
mov bVal2,bVal

Memory — to — Memory

« Asingle MOV instruction cannot be used to move data directly from one memory
location to another

« Move the source operand’s value to a register before assigning its value to a memory
operand

.data

varl WORD ?
var2 WORD °?
. code

mov ax,varl
mov var2?l, ax

Copying Smaller Values to Larger Operands

e Suppose count (unsigned, 16 bits) must be moved to ECX (32 bits).
We can set ECX to zero and move count to CX:

.data

count WORD 1
.code

mov ecx,
mov CX,count

* What happens if we try the same approach with a signed integer
equal to -167?

.data

signedVal SWORD -16
.code

mov ecx, 0

mov Ccx,signedvVal

Copying Smaller Values to Larger Operands

* If we had filled ECX first with FFFFFFFFh and then copied signedVal to CX,
the final value would have been correct:

mov ecx, OFFFFFFFFh

mov Ccx,slignedvVal + ECX = FFFFFFFOh (-16)

* The effective result of this example was to use the highest bit of the

source operand (1) to fill the upper 16 bits of the destination operand,
ECX

* This technique is called sign extension

Zero Extension - MOVZX

When you copy a smaller value into a larger destination, the MOVZX instruction fills
(extends) the upper half of the destination with zeros.

0 10001111 Source

|

00000000 10001111 Destination

mov bl,10001111b

movzx ax,bl ; zero-extension

Zero Extension - MOVZX

=
There are three variants:

MOVZX reg3Z2, reqg/mem8
MOVZX reg3Z,reg/memlé
MOVZX reglé, reg/mem8

* The destination must be a register.
* This instruction is only used with unsigned integers
« Source operand cannot be a constant.

« Source operand needs to be smaller than destination operand

Zero Extension

The following examples use registers for all operands, showing all the size variations:

mowv bx, 0OA69Bh

Mmovzx eax,bx : BAX =
movzx edx,bl : BEDX =
movzx cx,bl : CX =

The following examples use memory operands for the source and produce the same results:

.data
byvtel BYTE 9Bh
wordl WORD 0A69Bh

. code
movzx eax,wordl : BAX =
movzx edx,bytel : BEDX =

movzx c¢x,bytel ; CX =

Sign Extension

The MOVSX instruction fills the upper half of the destination
with a copy of the source operand's sign bit.

10001111 Source

11111111 10001111 Destination

mov bl,10001111b

movsx ax,bl ; sign extension

* The destination must be a register.

« This instruction is only used with signed integers

LAHF and SAHF

 LAHF = Load status Flags into AH

* Copies the low byte of the EFLAGS register into AH.

/7 6 5 4 3 2 1 0
* The following flags are copied: Sign, Zero, Auxiliary selzel o Tael o Teel 1 [cr

Carry and Parity

.data

saveflags BYTE 7

.code

laht : load flag= into AH

mowv saveflags,ah : save them in a wvariable

LAHF and SAHF

 SAHF = Store AH in Status Flags

* Copies AH into the low byte of the EFLAGS (or RFLAGS) register

* You can retrieve the values of flags saved earlier in a variable:

mov ah, saveflags : load saved flags into AH
saht : copy into Flags register

XCHG Instruction

D -
« XCHG exchanges the values of two operands. XCHG reg, reg
« At least one operand must be a register. XCHG reg,mem
 No immediate operands are permitted. XCHG mem, reg
.data

varl WORD 1000h
var2 WORD 2000h

.code

xchg ax,bx ; exchange 16-bit regs
xchg ah,al ; exchange 8-bit regs
xchg varl,hbx ; exchange mem, reg
xchg eax,ebx ; exchange 32-bit regs

xchg varl,var?2 ; error: two memory operands

XCHG Instruction

To exchange two memory operands, use a register as a temporary container and combine MOV
with XCHG:

mov ax,vall
xchg ax,val?
mov vall, ax

Direct-Offset Operands

A constant offset is added to a data label to produce an effective address (EA).
The address is dereferenced to get the value inside its memory location.

.data

arrayB BYTE 10h,20h,30h,40h

.code

mov al,arrayB+1 ; AL = 20h

mov al, [arrayB+1] ; alternative notation

Q: Why doesn't arrayB+1 produce 11h?

Direct-Offset Operands (cont)

A constant offset is added to a data label to produce an effective address (EA).
The address is dereferenced to get the value inside its memory location.

.data
arrayW WORD 1000h,2000h,3000h
arrayD DWORD 1h,2h,3h,4h

.code

mov ax, [arrayW+2] ; AX = 2000h

mov ax, [arrayW+4] ; AX = 3000h

mov eax, [arrayD+4] ; EAX = 00000002h

; Will the following statements assemble?

mov ax, [arrayW-2] ;27 What will happen when they run?
mov eax, [arrayD+16] ; ??

Your turn. ..

Write a program that rearranges the values of three doubleword values in the following array as: 3, 1, 2.

.data
arrayD DWORD 1,2,3

» Step1: copy the first value into EAX and exchange it with the value in the second position.

mov eax,arrayD
xchg eax, [arrayD+4]

« Step 2: Exchange EAX with the third array value and copy the
value in EAX to the first array position.

xchg eax, [arrayD+8]
mov arrayD,eax

What's Next

e Data Transfer Instructions
Addition and Subtraction
* Data-Related Operators and Directives
* Indirect Addressing
 JMP and LOOP Instructions
* 64-Bit Programming

Addition and Subtraction

« INC and DEC Instructions

« ADD and SUB Instructions

 NEG Instruction

* Implementing Arithmetic Expressions
* Flags Affected by Arithmetic

INC and DEC Instructions

Add 1, subtract 1 from destination operand
« operand may be register or memory
INC destination
» Logic: destination <— destination + 1

DEC destination
« Logic: destination <— destination — 1

Flags Affected by INC and DEC
Instructions

« Zero
¢ Sign
* Overflow
* Auxiliary

INC and DEC Examples

.data

myWord WORD 1000h
myDword DWORD 10000000h
.code

inc myWord
dec myWord
inc myDword

mov ax,00FFh
inc ax
mov ax,00FFh
inc al

ADD and SUB Instructions

« ADD destination, source
» Logic: destination <— destination + source

« SUB destination, source
» Logic: destination <— destination — source
« Same operand rules as for the MOV instruction

 The Carry, Zero, Sign, Overflow, and Auxiliary Carry are changed
according to the value that is placed in the destination operand

ADD and SUB Examples

.data
varl DWORD 10000h
var2 DWORD 20000h
.code
mov eax,varl
add eax,var2
add ax,FFFFh
add eax,1
sub ax,1

; —---EAX---

Evaluate this. ..

« We want to write a program that adds the following three bytes:
.data
myBytes BYTE 80h,66h,A5h

« What is your evaluation of the following code?
mov al,myBytes
add al, [myBytes+1]
add al, [myBytes+2]

« What is your evaluation of the following code?
mov ax, myBytes
add ax, [myBytes+1]
add ax, [myBytes+2]

Evaluate this. . . (cont)

D I
.data
myBytes BYTE 80h,66h,A5h

* How about the following code?

movzx ax,myBytes

mov bl, [myBytes+1]
add ax,bx
mov bl, [myBytes+2]
add ax,bx

; AX sum

Move zero’s to BX after the MOVZX instruction.

NEG (negate) Instruction

Reverses the sign of an operand. Operand can be a register or
memory operand.

.data
valB BYTE -1
valW WORD +32767
.code
mov al,valB
neg al
neg valw

Suppose AX contains —32,768 and we apply NEG to it. Will
the result be valid?

NEG Instruction and the Flags

The processor implements NEG using the following internal
operation:

SUB 0, operand

Implementing Arithmetic Expressions

HLL compilers translate mathematical expressions into assembly language. You can do
it also. For example:

Rval = -Xval + (Yval - Zval)

Rval DWORD °?

Xval DWORD 26
Yval DWORD 30
Zval DWORD 40

.code
mov eax,Xval
neg eax ; EAX = -26
mov ebx,Yval
sub ebx,Zval ; EBX = -10
add eax,ebx
mov Rval, eax ; —36

Your turn...

Translate the following expression into assembly language.
Do not permit Xval, Yval, or Zval to be modified:

Rval = Xval - (-Yval + Zval)

Assume that all values are signed doublewords.

mov ebx,Yval
neg ebx

add ebx,Zval
mov eax,Xval
sub eax,ebx
mov Rval, eax

Flags Affected by Arithmetic

 The ALU has a number of status flags that reflect the outcome of arithmetic
(and bitwise) operations

» based on the contents of the destination operand
« Essential flags:
» Zero flag — set when destination equals zero
« Sign flag — set when destination is negative
« Carry flag — set when unsigned value is out of range
« Overflow flag — set when signed value is out of range

« The MOV instruction never affects the flags.

Concept Map

CPU

part of executes

executes ALU
conditional jumps

arithmetic & bitwise

operations used by provide

affect
status flags

branching logic

You can use diagrams such as these to express the relationships between assembly language concepts.

Zero Flag (ZF)

The Zero flag is set when the result of an operation produces
zero in the destination operand.

mov cx,1

sub cx,1

mov ax, OFFFFh
inc ax

inc ax

Remember...

« Aflag is set when it equals 1.
« Aflag is clear when it equals 0.

Sign Flag (SF)

The Sign flag is set when the destination operand is negative.
The flag is clear when the destination is positive.

mov c¢cx,0
sub cx,1
add cx,2

The sign flag is a copy of the destination's highest bit:

mov al,0
sub al,1l
add al,2

Signed and Unsigned Integers: A Hardware Viewpoint

« All CPU instructions operate exactly the same on signed and
unsigned integers

« The CPU cannot distinguish between signed and unsigned
iIntegers

* YOU, the programmer, are solely responsible for using the
correct data type with each instruction

Carry Flag (CF)

The Carry flag is set when the result of an operation generates an unsigned value
that is out of range (too big or too small for the destination operand).

mov al,FFh
add al,l

; Try to go below zero:

mov al,0
sub al,1l

Your turn. ..

For each of the following marked entries, show the values of
the destination operand and the Sign, Zero, and Carry flags:

mov ax,00FFh

add ax,1 ;
sub ax,1 ;
add al,1l ;
mov bh, 6Ch

add bh, 95h ;

mov al,2
sub al,3

Overflow Flag (OF)

The Overflow flag is set when the signed result of an operation is
invalid or out of range.

; Example 1
mov al,+127
add al,l1 ; OF

z

?7?

; Example 2
mov al,7Fh
add al,1

; OF

z

80h

The two examples are identical at the binary level because 7Fh equals +127. To
determine the value of the destination operand, it is often easier to calculate in
hexadecimal.

Your turn. ..

What will be the values of the given flags after each operation?

mov al,-128
neg al ;

mov ax,8000h
add ax,2

mov ax,0
sub ax, 2

mov al,-5
sub al,+125

What's Next

« Data Transfer Instructions
« Addition and Subtraction
Data-Related Operators and Directives
* Indirect Addressing
 JMP and LOORP Instructions
* 64-Bit Programming

Data-Related Operators and Directives

« OFFSET Operator
 PTR Operator
 TYPE Operator

« LENGTHOF Operator
« SIZEOF Operator
 LABEL Directive

N OFFSET Operator

OFFSET returns the address of the label

OFFSET Examples

Let's assume that the data segment begins at 00404000h:

.data

bval BYTE °?
wVal WORD ?
dval DWORD ?
dval2 DWORD ?

.code

mov esi,OFFSET bVal ; ESI = 00404000
mov esi,OFFSET wVal ; ESI = 00404001
mov esi,OFFSET dVal ; ESI = 00404003

mov esi,OFFSET dval2 ; ESI = 00404007

Relating to C/C++

The value returned by OFFSET is a pointer. Compare the
following code written for both C++ and assembly language:

; Assembly language:

// C++ version: _data
array BYTE 0Olh, C5h
char array[2]; .code

char * p = array; mov esi,OFFSET array

ALIGN directive

* aligns a variable on a byte, word or doubleword
paragraph boundary

* Syntax: ALIGN bound

e Boundcanbel, 2, 4,8, or16

In the following example, bVal 1s arbitrarily located at offset 00404000. Inserting the
ALIGN 2 directive before wVal causes 1t to be assigned an even-numbered offset:

bVal BYTE 7 ; 004040000
ALTGN 2
wVal WORD 72 ; 004040028
bVal2 BYTE 7?2 ; 00404004hn
ALTGN 4
dVal DWORD ? ; 004040080

dValZ DWORD ? ; 0040400Ch

PTR Operator

Overrides the default type of a label (variable). Provides the
flexibility to access part of a variable.

.data
myDouble DWORD 12345678h
.code

mov ax,myDouble

mov ax,WORD PTR myDouble

mov WORD PTR myDouble,4321h

Little Endian Order

 Little endian order refers to the way Intel stores integers in memory.

« Multi-byte integers are stored in reverse order, with the least significant
byte stored at the lowest address

« For example, the doubleword 12345678h would be stored as:

byte offset

78 | 0000 When integers are loaded from

56 0001 memory into registers, the bytes are
automatically re-reversed into their

34 0002 correct positions.

12 0003

PTR Operator Examples

.data
myDouble DWORD 12345678h

doubleword word byte offset

12345678 5678 78 & 0000 myDouble
56 0001 myDouble +1
34 0002 myDouble +2
12 0003 myDouble + 3

mov al,BYTE PTR myDouble
mov al,BYTE PTR [myDouble+1]
mov al,BYTE PTR [myDouble+2]
mov ax,WORD PTR myDouble
mov ax,WORD PTR [myDouble+2]

PTR Operator (cont)

PTR can also be used to combine elements of a smaller data type and move them
into a larger operand. The CPU will automatically reverse the bytes.

.data
myBytes BYTE 12h,34h,56h,78h

.code

mov ax,WORD PTR [myBytes]
mov ax,WORD PTR [myBytes+2]
mov eax,DWORD PTR myBytes

Your turn. ..

Write down the value of each destination operand:

.data

varB BYTE 65h,31h,02h,05h
varW WORD 6543h,1202h
varD DWORD 12345678h

.code

mov ax,WORD PTR [varB+2]
mov bl,BYTE PTR varD
mov bl,BYTE PTR [varW+2]
mov ax,WORD PTR [varD+2]
mov eax,DWORD PTR varW

TYPE Operator

The TYPE operator returns the size, in bytes, of a single
element of a data declaration.

.data

varl BYTE °?
var2 WORD °?
var3 DWORD °?
var4d QWORD ?

.code

mov eax,TYPE varl ;
mov eax,TYPE var2 ;
mov eax,TYPE var3 ;
mov eax,TYPE var4 ;

o o B! N \ O I

LENGTHOF Operator

The LENGTHOF operator counts the number of
elements in a single data declaration.

.data LENGTHOF
bytel BYTE 10,20,30 ;3
arrayl WORD 30 DUP(?),0,0 ; 32
array2 WORD 5 DUP (3 DUP(?)) ; 15
array3 DWORD 1,2,3,4 ; 4
digitStr BYTE "12345678",0 ;9

.code

mov ecx,LENGTHOF arrayl

SIZEOF Operator

The SIZEOF operator returns a value that is equivalent to
multiplying LENGTHOF by TYPE.

.data SIZEOF
bytel BYTE 10,20,30 ;3
arrayl WORD 30 DUP(?),0,0 ; 64
array2 WORD 5 DUP (3 DUP(?)) ; 30
array3 DWORD 1,2,3,4 ; 16
digitStr BYTE "12345678",0 ;9
.code

mov ecx,SIZEOF arrayl ; 64

Spanning Multiple Lines (1 of 2)

A data declaration spans multiple lines if each line (except the
last) ends with a comma. The LENGTHOF and SIZEOF
operators include all lines belonging to the declaration:

.data

array WORD 10,20,
30,40,
50,60

.code
mov eax, LENGTHOF array ; 6
mov ebx,SIZEOF array ; 12

Spanning Multiple Lines (2 of 2)

In the following example, array identifies only the first WORD
declaration. Compare the values returned by LENGTHOF

and SIZEOF here to those in the previous slide:

.data

array WORD 10,20
WORD 30,40
WORD 50,60

.code
mov eax,LENGTHOF array ;2

mov ebx,SIZEOF array ; 4

LABEL Directive

* Assigns an alternate label name and type to an
existing storage location

 LABEL does not allocate any storage of its own
« Removes the need for the PTR operator

.data
dwlList LABEL DWORD
wordList LABEL WORD

intList BYTE OOh,10h,00h,20h
.code

mov eax,dwlList ; 20001000h
mov cx,wordList ; 1000h
mov dl,intList ; 00h

What's Next

e Data Transfer Instructions

e Addition and Subtraction

* Data-Related Operators and Directives
Indirect Addressing

* JMP and LOOP Instructions

* 64-Bit Programming

Indirect Addressing

Indirect Operands
Array Sum Example
Indexed Operands
Pointers

Indirect Operands (1 of2)

An indirect operand holds the address of a variable, usually an
array or string. It can be dereferenced (just like a pointer).

.data

vall BYTE 10h,20h,30h

.code

mov esi,OFFSET vall

mov al, [esi] ; dereference ESI (AL = 10h)
inc esi

mov al, [esi] ; AL = 20h

inc esi

mov al, [esi] ; AL = 30h

Indirect Operands (2 of 2)

Use PTR to clarify the size attribute of a memory operand.

.data
myCount WORD O

.code
mov esi,OFFSET myCount

inc [esi] ; error: ambiguous
inc WORD PTR [esi] ; ok

Should PTR be used here? yes, because [esi] could

point to a byte, word, or

add [esi], 20 doubleword

Array Sum Example

Indirect operands are ideal for traversing an array. Note that the
register in brackets must be incremented by a value that
matches the array type.

.data
arrayW WORD 1000h,2000h,3000h
.code

mov esi,OFFSET arrayW

mov ax, [esi]

add esi,?2 ; or: add esi,TYPE arrayW
add ax, [esi]

add esi,2

add ax, [esi] ; AX = sum of the array

ToDo: Modify this example for an array of doublewords.

Indexed Operands

An indexed operand adds a constant to a register to generate
an effective address. There are two notational forms:

[label + reqg] label[reqg]

.data
arrayW WORD 1000h,2000h,3000h
.code
mov esi,0
mov ax, [arrayW + esi] ; AX = 1000h

mov ax,arrayW[esi] ; alternate format
add esi,2

add ax, [arrayW + esi]
etc.

ToDo: Modify this example for an array of doublewords.

Index Scaling

You can scale an indirect or indexed operand to the offset of an
array element. This is done by multiplying the index by the
array's TYPE:

.data

arrayB BYTE 0,1,2,3,4,5
arrayW WOrRD ©0,1,2,3,4,5
arrayD DWORD 0,1,2,3,4,5

.code

mov esi,4

mov al,arrayB[esi*TYPE arrayB] ; 04

mov bx,arrayW[esi*TYPE arrayW] ; 0004
mov edx,arrayD[esi*TYPE arrayD] ; 00000004

Pointers

You can declare a pointer variable that contains the offset of
another variable.

.data
arrayW WORD 1000h,2000h,3000h
ptrW DWORD arrayW

.code
mov esi,ptrW
mov ax, [esi] ; AX = 1000h

Alternate format:

ptrW DWORD OFFSET arrayW

What's Next

e Data Transfer Instructions

e Addition and Subtraction

* Data-Related Operators and Directives
* Indirect Addressing

* 64-Bit Programming

JMP and LOOP Instructions

* JMP Instruction

« LOOP Instruction

« LOOP Example

« Summing an Integer Array
« Copying a String

JMP Instruction

JMP is an unconditional jump to a label that is usually within
the same procedure.

Syntax: JMP target

Logic: EIP « farget

Example:
top:

Jmp top

A jump outside the current procedure must be to a special type of
label called a global label (see Section 5.5.2.3 for details).

LOOP Instruction

« The LOOP instruction creates a counting loop
« Syntax: LOOP target
* Logic:
« ECX« ECX-1
« if ECX =0, jump to target
* Implementation:

 The assembler calculates the distance, in bytes, between
the offset of the following instruction and the offset of the
target label. It is called the relative offset.

 The relative offset is added to EIP.

LOOP Example

The following loop calculates the sum of the integers

5+4+3+2+ 1;

offset machine code source code
00000000 66 B8 0000 mov ax,0
00000004 B9 00000005 mov ecx,5
00000009 66 03 C1 Ll:add ax,cx
0000000C E2 FB loop L1
0O0000O0O0E

When LOOP is assembled, the current location = 0000000E (offset of

the next instruction). —5 (FBh) is added to the the current location,
causing a jump to location 00000009:

00000009 « 0000000E + FB

Your turn. ..

If the relative offset is encoded in a single signed byte,
(a) what is the largest possible backward jump?
(b) what is the largest possible forward jump?

(@) -128
(b) +127

Your turn. ..

mov ax, 6
mov ecx,4
What will be the final value of AX? Ll:
inc ax
10 loop L1

mov ecx,0
X2:
inc ax

4,294,967,296 loop X2

How many times will the loop
execute?

Nested Loop

If you need to code a loop within a loop, you must save the
outer loop counter's ECX value. In the following example, the
outer loop executes 100 times, and the inner loop 20 times.

.data
count DWORD ?
.code
mov ecx,100 ; set outer loop count
Ll:
mov count,ecx ; save outer loop count
mov ecx,20 ; set inner loop count
L2: .
loop L2 ; repeat the inner loop
mov ecx,count ; restore outer loop count

loop L1 ; repeat the outer loop

What's Next

Data Transfer Instructions

Addition and Subtraction
Data-Related Operators and Directives
Indirect Addressing

JMP and LOOP Instructions

64-Bit Programming

MOV instruction in 64-bit mode accepts operands of
8, 16, 32, or 64 bits

 When you move a 8, 16, or 32-bit constant to a 64-bit
register, the upper bits of the destination are cleared.

 When you move a memory operand into a 64-bit
register, the results vary:
« 32-bit move clears high bits in destination

 8-bit or 16-bit move does not affect high bits in
destination

More 64-Bit Programming

« MOVSXD sign extends a 32-bit value into a 64-bit
destination register

« The OFFSET operator generates a 64-bit address
 LOOP uses the 64-bit RCX register as a counter

* RSI and RDI are the most common 64-bit index
registers for accessing arrays.

Other 64-Bit Notes

« ADD and SUB affect the flags in the same way as in
32-bit mode

* You can use scale factors with indexed operands.

Summary

« Data Transfer

« MOV - data transfer from source to destination
¢« MOVSX, MOVZX, XCHG

« QOperand types

« direct, direct-offset, indirect, indexed

* Arithmetic
 INC, DEC, ADD, SUB, NEG
» Sign, Carry, Zero, Overflow flags

* QOperators
- OFFSET, PTR, TYPE, LENGTHOF, SIZEOF, TYPEDEF

« JMP and LOOP - branching instructions

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: Data Transfer Instructions
	Slide 4: Instructions
	Slide 5: Operand Types
	Slide 6: Instruction Operand Notation
	Slide 7: Direct Memory Operands
	Slide 8: Direct Memory Operands
	Slide 9: MOV Instruction
	Slide 10: MOV Instruction
	Slide 11: Your turn . . .
	Slide 12: Memory – to – Memory
	Slide 13: Copying Smaller Values to Larger Operands
	Slide 14: Copying Smaller Values to Larger Operands
	Slide 15: Zero Extension - MOVZX
	Slide 16: Zero Extension - MOVZX
	Slide 17: Zero Extension
	Slide 18: Sign Extension
	Slide 19: LAHF and SAHF
	Slide 20: LAHF and SAHF
	Slide 21: XCHG Instruction
	Slide 22: XCHG Instruction
	Slide 23: Direct-Offset Operands
	Slide 24: Direct-Offset Operands (cont)
	Slide 25: Your turn. . .
	Slide 26: What's Next
	Slide 27: Addition and Subtraction
	Slide 28: INC and DEC Instructions
	Slide 29: INC and DEC Examples
	Slide 31: ADD and SUB Instructions
	Slide 32: ADD and SUB Examples
	Slide 33: Evaluate this . . .
	Slide 34: Evaluate this . . . (cont)
	Slide 35: NEG (negate) Instruction
	Slide 36: NEG Instruction and the Flags
	Slide 37: Implementing Arithmetic Expressions
	Slide 38: Your turn...
	Slide 39: Flags Affected by Arithmetic
	Slide 40: Concept Map
	Slide 41: Zero Flag (ZF)
	Slide 42: Sign Flag (SF)
	Slide 43: Signed and Unsigned Integers: A Hardware Viewpoint
	Slide 45: Carry Flag (CF)
	Slide 46: Your turn . . .
	Slide 47: Overflow Flag (OF)
	Slide 49: Your turn . . .
	Slide 50: What's Next
	Slide 51: Data-Related Operators and Directives
	Slide 52: OFFSET Operator
	Slide 53: OFFSET Examples
	Slide 54: Relating to C/C++
	Slide 55: ALIGN directive
	Slide 56: PTR Operator
	Slide 57: Little Endian Order
	Slide 58: PTR Operator Examples
	Slide 59: PTR Operator (cont)
	Slide 60: Your turn . . .
	Slide 61: TYPE Operator
	Slide 62: LENGTHOF Operator
	Slide 63: SIZEOF Operator
	Slide 64: Spanning Multiple Lines (1 of 2)
	Slide 65: Spanning Multiple Lines (2 of 2)
	Slide 66: LABEL Directive
	Slide 67: What's Next
	Slide 68: Indirect Addressing
	Slide 69: Indirect Operands (1 of 2)
	Slide 70: Indirect Operands (2 of 2)
	Slide 71: Array Sum Example
	Slide 72: Indexed Operands
	Slide 73: Index Scaling
	Slide 74: Pointers
	Slide 75: What's Next
	Slide 76: JMP and LOOP Instructions
	Slide 77: JMP Instruction
	Slide 78: LOOP Instruction
	Slide 79: LOOP Example
	Slide 80: Your turn . . .
	Slide 81: Your turn . . .
	Slide 82: Nested Loop
	Slide 87: What's Next
	Slide 88: 64-Bit Programming
	Slide 89: More 64-Bit Programming
	Slide 90: Other 64-Bit Notes
	Slide 91: Summary
	Slide 92: Thanks a lot

