
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 4

Dr. Naveed Anwar Bhatti



Assembly Language Fundamentals

• Data Transfer Instructions
• Addition and Subtraction
• Data-Related Operators and Directives
• Indirect Addressing
• JMP and LOOP Instructions
• 64-Bit Programming



Data Transfer Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

• Instruction Syntax

• Operand Types

• Instruction Operand Notation

• Direct Memory Operands

• MOV Instruction

• Zero & Sign Extension

• XCHG Instruction

• Direct-Offset Instructions



Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

An assembly instruction contains four basic parts:

• Label (optional)

• Instruction mnemonic (required)

• Operand(s) (usually required)

• Comment (optional)

This is how the different parts are arranged:



Operand Types

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 5

• Immediate – a constant integer (8, 16, or 32 bits)

• value is encoded within the instruction

• Register – the name of a register

• register name is encoded  within the instruction

• Memory – reference to a location in memory

• memory address is encoded within the instruction, or a  register holds the 

address of a memory location



Instruction Operand Notation

6



Direct Memory Operands

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 7

• A direct memory operand is a named reference to storage in memory

• The named reference (label) is automatically  dereferenced by the
assembler

.data

var1 BYTE 10h

.code

mov al,var1

mov al,[var1]

; AL = 10h

; AL = 10h

alternate format



Direct Memory Operands

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 8

.data

var1 BYTE 10h

.code

mov al,var1

mov al,[var1]

; AL = 10h

; AL = 10h



MOV Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 9

• Move from source to destination

• Syntax:  MOV destination,source

• No more than one memory operand permitted

• Segments, Immediate, EIP, and IP registers cannot be the destination

• Size of operands should be same



MOV Instruction

.data

count BYTE 10h

wVal WORD 2h

.code

mov
mov  
mov

bl,count
ax,wVal  
count,al

mov al,wVal
mov ax,count
mov eax,count

; error
; error
; error



Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 11

.data
bVal BYTE 100

bVal2 BYTE ?

wVal WORD 2

dVal DWORD 5

.code

mov ds,45  

mov esi,wVal  

mov eip,dVal  

mov 25,bVal

mov bVal2,bVal

Explain why each of the following MOV statements are invalid:

immediate move to DS not permitted  

size mismatch

EIP cannot be the destination  

immediate value cannot be destination  

memory-to-memory move not permitted



Memory – to – Memory 

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 12

• A single MOV instruction cannot be used to move data directly from one memory 

location to another

• Move the source operand’s value to a register before assigning its value to a memory 

operand



Copying Smaller Values to Larger Operands

• Suppose count (unsigned, 16 bits) must be moved to ECX (32 bits). 
We can set ECX to zero and move count to CX:

• What happens if we try the same approach with a signed integer 
equal to -16?



Copying Smaller Values to Larger Operands

• If we had filled ECX first with FFFFFFFFh and then copied signedVal to CX, 
the final value would have been correct:

• The effective result of this example was to use the highest bit of the 
source operand (1) to fill the upper 16 bits of the destination operand, 
ECX

• This technique is called sign extension



Zero Extension - MOVZX

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 15

mov bl,10001111b

movzx ax,bl ; zero-extension

When you copy a smaller value into a larger destination, the  MOVZX instruction fills 

(extends) the upper half of the destination  with zeros.

1 0 0 0 1 1 1 1 Source

Destination0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1

0



Zero Extension - MOVZX

16

There are three variants:

• The destination must be a register.

• This instruction is only used with unsigned integers

• Source operand cannot be a constant.

• Source operand needs to be smaller than destination operand



Zero Extension



Sign Extension

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 18

mov bl,10001111b

movsx ax,bl ; sign extension

The MOVSX instruction fills the upper half of the destination  

with a copy of the source operand's sign bit.

1 0 0 0 1 1 1 1 Source

Destination1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1

• The destination must be a register.

• This instruction is only used with signed integers



LAHF and SAHF 

• LAHF = Load status Flags into AH

• Copies the low byte of the EFLAGS register into AH.

• The following flags are copied: Sign, Zero, Auxiliary 
Carry and Parity



LAHF and SAHF 

• SAHF = Store AH in Status Flags

• Copies AH into the low byte of the EFLAGS (or RFLAGS) register

• You can retrieve the values of flags saved earlier in a variable:



XCHG Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014.

21

xchg ax,bx ; exchange 16-bit regs

xchg ah,al ; exchange 8-bit regs

xchg var1,bx ; exchange mem, reg

xchg eax,ebx ; exchange 32-bit regs

xchg var1,var2 ; error: two memory operands

.data

var1 WORD 1000h  

var2 WORD 2000h

.code

• XCHG exchanges the values of two operands. 

• At least one operand must be a register. 

• No immediate operands are permitted.



XCHG Instruction



Direct-Offset Operands

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 23

.data

arrayB BYTE 10h,20h,30h,40h

.code

mov al,arrayB+1  

mov al,[arrayB+1]

; AL = 20h

; alternative notation

A constant offset is added to a data label to produce an effective address (EA). 

The address is dereferenced to get the value inside its memory location.

Q: Why doesn't arrayB+1 produce 11h?



Direct-Offset Operands (cont)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 24

WORD 1000h,2000h,3000h  

DWORD 1h,2h,3h,4h

.data  

arrayW  

arrayD

.code

mov ax,[arrayW+2] ; AX = 2000h

; Will the following statements assemble?  

mov ax,[arrayW-2] ; ??

mov eax,[arrayD+16] ; ??
What will happen when they run?

A constant offset is added to a data label to produce an effective address (EA). 

The address is dereferenced to get the value inside its memory location.

mov ax,[arrayW+4] ; AX = 3000h

mov eax,[arrayD+4] ; EAX = 00000002h



Your turn. . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 25

• Step 2: Exchange EAX with the third array value and copy the  

value in EAX to the first array position.

Write a program that rearranges the values of three doubleword  values in the following array as: 3, 1, 2.

.data

arrayD DWORD 1,2,3

• Step1: copy the first value into EAX and exchange it with the  value in the second position.

mov eax,arrayD

xchg eax,[arrayD+4]

xchg eax,[arrayD+8]  

mov arrayD,eax



What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 26

• Data Transfer Instructions

• Addition and Subtraction

• Data-Related Operators and Directives

• Indirect Addressing

• JMP and LOOP Instructions

• 64-Bit Programming



Addition and Subtraction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

• INC and DEC Instructions

• ADD and SUB Instructions

• NEG Instruction

• Implementing Arithmetic Expressions

• Flags Affected by Arithmetic



INC and DEC Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

• Add 1, subtract 1 from destination operand
• operand may be register or memory

• INC destination

• Logic: destination  destination + 1

• DEC destination

• Logic: destination  destination – 1

• Flags Affected by INC and DEC 

instructions

• Zero

• Sign

• Overflow

• Auxiliary



INC and DEC Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

.data

myWord WORD 1000h  

myDword DWORD 10000000h

.code

inc myWord ; 1001h

dec myWord ; 1000h

inc myDword ; 10000001h

mov

inc

mov

inc

ax,00FFh  

ax  

ax,00FFh  

al

;

;

AX = 0100h  

AX = 0000h



ADD and SUB Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

• ADD destination, source

• Logic: destination  destination + source

• SUB destination, source

• Logic: destination  destination – source

• Same operand rules as for the MOV instruction

• The Carry, Zero, Sign, Overflow, and Auxiliary Carry are changed 
according to the value that is placed in the destination operand



ADD and SUB Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

.data

var1 DWORD 10000h

var2 DWORD 20000h

.code ; ---EAX---

mov eax,var1 ; 00010000h

add eax,var2 ; 00030000h

add ax,FFFFh ; 0003FFFFh

add eax,1 ; 00040000h

sub ax,1 ; 0004FFFFh



Evaluate this . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

• We want to write a program that adds the following three bytes:
.data

myBytes BYTE 80h,66h,A5h

• What is your evaluation of the following code?
mov al,myBytes

add al,[myBytes+1]  

add al,[myBytes+2]

• What is your evaluation of the following code?
mov ax,myBytes

add ax,[myBytes+1]  

add ax,[myBytes+2]



Evaluate this . . . (cont)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

.data

myBytes BYTE 80h,66h,A5h

• How about the following code?

movzx ax,myBytes

mov bl,[myBytes+1]  

add ax,bx

mov bl,[myBytes+2]  

add ax,bx ; AX = sum

Move zero’s to BX after the MOVZX instruction.



NEG (negate) Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 35

mov al,valB ; AL = -1

neg al ; AL = +1

neg valW ; valW = -32767

Reverses the sign of an operand. Operand can be a register or  

memory operand.

.data

valB BYTE -1

valW WORD +32767

.code

Suppose AX contains –32,768 and we apply NEG to it. Will  

the result be valid?



NEG Instruction and the Flags

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 36

neg valB ; CF = 1, OF = 0

neg [valB + 1] ; CF = 0, OF = 0

neg valC ; CF = 1, OF = 1

The processor implements NEG using the following internal  

operation:

SUB 0,operand



Implementing Arithmetic Expressions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Rval DWORD ?

Xval DWORD 26

Yval DWORD 30

Zval DWORD 40

.code

mov eax,Xval

neg eax ; EAX = -26

mov ebx,Yval

sub ebx,Zval ; EBX = -10

add eax,ebx

mov Rval,eax ; -36

HLL compilers translate mathematical expressions into  assembly language. You can do 

it also. For example:

Rval = -Xval + (Yval – Zval)



Your turn...

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

Translate the following expression into assembly language.

Do not permit Xval, Yval, or Zval to be modified:

Rval = Xval - (-Yval + Zval)

Assume that all values are signed doublewords.

mov ebx,Yval  

neg ebx

add ebx,Zval  

mov eax,Xval  

sub eax,ebx  

mov Rval,eax



Flags Affected by Arithmetic

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

• The ALU has a number of status flags that reflect the outcome of arithmetic 

(and bitwise) operations

• based on the contents of the destination operand

• Essential flags:

• Zero flag – set when destination equals zero

• Sign flag – set when destination is negative

• Carry flag – set when unsigned value is out of range

• Overflow flag – set when signed value is out of range

• The MOV instruction never affects the flags.



Concept Map

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

ALU
conditional jumps

branching logic

arithmetic & bitwise  

operations

part of

used by provide
attach ed to

status flags
affect

CPU

You can use diagrams such as these to express the relationships between assembly language concepts.

executes

executes



Zero Flag (ZF)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 41

mov cx,1

sub cx,1 ; CX = 0, ZF = 1

mov ax,0FFFFh

inc ax ; AX = 0, ZF = 1

inc ax ; AX = 1, ZF = 0

The Zero flag is set when the result of an operation produces  

zero in the destination operand.

Remember...

• A flag is set when it equals 1.

• A flag is clear when it equals 0.



Sign Flag (SF)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

mov cx,0

sub cx,1 ; CX = -1, SF = 1

add cx,2 ; CX = 1, SF = 0

The Sign flag is set when the destination operand is negative.  

The flag is clear when the destination is positive.

The sign flag is a copy of the destination's highest bit:

mov al,0

sub al,1 ; AL = 11111111b, SF = 1

add al,2 ; AL = 00000001b, SF = 0



Signed and Unsigned Integers:  A Hardware Viewpoint

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

• All CPU instructions operate exactly the same on signed and 

unsigned integers

• The CPU cannot distinguish between signed and  unsigned

integers

• YOU, the programmer, are solely responsible for using the 

correct data type with each instruction



Carry Flag (CF)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

The Carry flag is set when the result of an operation generatesan unsigned value 

that is out of range (too big or too small for the destination operand).

mov al,FFh

add al,1 ; CF = 1, AL = 00

; Try to go below zero:

mov al,0  

sub al,1 ; CF = 1, AL = FF



Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

For each of the following marked entries, show the values of  

the destination operand and the Sign, Zero, and Carry flags:

mov

add

ax,00FFh

ax,1 ; AX=0100h SF=0 ZF=0 CF=0

sub ax,1 ; AX=00FFh SF=0 ZF=0 CF=0

add

mov  

add

al,1

bh,6Ch  

bh,95h

;

;

AL=00h

BH=01h

SF=0 ZF=1 CF=1

SF=0 ZF=0 CF=1

mov  

sub

al,2  

al,3 ; AL=FFh SF=1 ZF=0 CF=1



Overflow Flag (OF)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

The Overflow flag is set when the signed result of an operation is  

invalid or out of range.

; Example 1

mov al,+127  

add al,1 ; OF = 1, AL = ??

; Example 2  

mov al,7Fh ; OF = 1, AL = 80h

add al,1

The two examples are identical at the binary level because 7Fh equals +127. To

determine the value of the destination operand, it is often easier to calculate in

hexadecimal.



Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

What will be the values of the given flags after each operation?

mov

neg

al,-128

al ; CF = 1 OF = 1

mov  

add

ax,8000h  

ax,2 ; CF = 0 OF = 0

mov  

sub

ax,0  

ax,2 ; CF = 1 OF = 0

mov  

sub

al,-5  

al,+125 ; OF = 1



What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

• Data Transfer Instructions

• Addition and Subtraction

• Data-Related Operators and Directives

• Indirect Addressing

• JMP and LOOP Instructions

• 64-Bit Programming



Data-Related Operators and Directives

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

• OFFSET Operator

• PTR Operator

• TYPE Operator

• LENGTHOF Operator

• SIZEOF Operator

• LABEL Directive



OFFSET Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 52

• OFFSET returns the address of the label

offset

data segment:

myByte



OFFSET Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 53

mov esi,OFFSET bVal ; ESI = 00404000

mov esi,OFFSET wVal ; ESI = 00404001

mov esi,OFFSET dVal ; ESI = 00404003

mov esi,OFFSET dVal2 ; ESI = 00404007

Let's assume that the data segment begins at 00404000h:

.data

bVal BYTE ?  

wVal WORD ?  

dVal DWORD ?  

dVal2 DWORD ?

.code



Relating to C/C++

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

// C++ version:

char array[2];  

char * p = array;

The value returned by OFFSET is a pointer. Compare the  

following code written for both C++ and assembly language:

; Assembly language:

.data

array BYTE 01h, C5h

.code

mov esi,OFFSET array



ALIGN directive

• aligns a variable on a byte, word or doubleword 
paragraph boundary

• Syntax:

• Bound can be 1, 2, 4, 8, or 16



PTR Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

mov ax,myDouble ; error – why?

mov ax,WORD PTR myDouble ; loads 5678h

mov WORD PTR myDouble,4321h ; saves 4321h

Overrides the default type of a label (variable). Provides the  

flexibility to access part of a variable.

.data

myDouble DWORD 12345678h

.code



Little Endian Order

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 57

• Little endian order refers to the way Intel stores  integers in memory.

• Multi-byte integers are stored in reverse order, with  the least significant 
byte stored at the lowest address

• For example, the doubleword 12345678h would be  stored as:

byte offset

78 0000

56 0001

34 0002

12 0003

When integers are loaded from  

memory into registers, the bytes are  

automatically re-reversed into their  

correct positions.



PTR Operator Examples

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

.data

myDouble DWORD 12345678h

doubleword word byte offset

12345678 5678 78 0000 myDouble

56 0001 myDouble + 1

34 0002 myDouble + 2

12 0003 myDouble + 3

mov al,BYTE PTR myDouble ; AL = 78h

mov al,BYTE PTR [myDouble+1] ; AL = 56h

mov al,BYTE PTR [myDouble+2] ; AL = 34h

mov ax,WORD PTR myDouble ; AX = 5678h

mov ax,WORD PTR [myDouble+2] ; AX = 1234h



PTR Operator (cont)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

mov ax,WORD PTR [myBytes] ; AX = 3412h

mov ax,WORD PTR [myBytes+2] ; AX = 7856h

mov eax,DWORD PTR myBytes ; EAX = 78563412h

PTR can also be used to combine elements of a smaller data  type and move them 

into a larger operand. The CPU will  automatically reverse the bytes.

.data

myBytes BYTE 12h,34h,56h,78h

.code



Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 60

.code

mov ax,WORD PTR [varB+2]  

mov bl,BYTE PTR varD  

mov bl,BYTE PTR [varW+2]  

mov ax,WORD PTR [varD+2]  

mov eax,DWORD PTR varW

Write down the value of each destination operand:

.data

varB BYTE 65h,31h,02h,05h  

varW WORD 6543h,1202h  

varD DWORD 12345678h

; a. 0502h

; b. 78h

; c. 02h

; d. 1234h

; e. 12026543h



TYPE Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 61

The TYPE operator returns the size, in bytes, of a single  

element of a data declaration.

.data

var1 BYTE ?  

var2 WORD ?  

var3 DWORD ?  

var4 QWORD ?

.code

mov eax,TYPE var1 ; 1

mov eax,TYPE var2 ; 2

mov eax,TYPE var3 ; 4

mov eax,TYPE var4 ; 8



LENGTHOF Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

.data LENGTHOF
byte1 BYTE 10,20,30 ; 3

array1 WORD 30 DUP(?),0,0 ; 32

array2 WORD 5 DUP(3 DUP(?)) ; 15

array3 DWORD 1,2,3,4 ; 4

digitStr BYTE "12345678",0 ; 9

.code

mov ecx,LENGTHOF array1 ; 32

The LENGTHOF operator counts the number of  

elements in a single data declaration.



SIZEOF Operator

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

.data SIZEOF
byte1 BYTE 10,20,30 ; 3

array1 WORD 30 DUP(?),0,0 ; 64

array2 WORD 5 DUP(3 DUP(?)) ; 30

array3 DWORD 1,2,3,4 ; 16

digitStr BYTE "12345678",0 ; 9

.code

mov ecx,SIZEOF array1 ; 64

The SIZEOF operator returns a value that is equivalent to  

multiplying LENGTHOF by TYPE.



Spanning Multiple Lines (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

.code

mov eax,LENGTHOF array  

mov ebx,SIZEOF array

; 6

; 12

A data declaration spans multiple lines if each line (except the  

last) ends with a comma. The LENGTHOF and SIZEOF  

operators include all lines belonging to the declaration:

.data

array WORD 10,20,

30,40,

50,60



Spanning Multiple Lines (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

.data

array WORD 10,20

WORD 30,40

WORD 50,60

.code

mov eax,LENGTHOF array  

mov ebx,SIZEOF array

; 2

; 4

In the following example, array identifies only the first WORD  

declaration. Compare the values returned by LENGTHOF  

and SIZEOF here to those in the previous slide:



LABEL Directive

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 66

• Assigns an alternate label name and type to an  

existing storage location

• LABEL does not allocate any storage of its own

• Removes the need for the PTR operator

.data

dwList LABEL DWORD  

wordList LABEL WORD

intList BYTE 00h,10h,00h,20h

.code

mov eax,dwList ; 20001000h

mov cx,wordList ; 1000h

mov dl,intList ; 00h



What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

• Data Transfer Instructions

• Addition and Subtraction

• Data-Related Operators and Directives

• Indirect Addressing

• JMP and LOOP Instructions

• 64-Bit Programming



Indirect Addressing

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 68

• Indirect Operands

• Array Sum Example

• Indexed Operands

• Pointers



Indirect Operands (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 69

mov

mov

inc

esi,OFFSET

al,[esi]

esi

val1

; dereference ESI (AL = 10h)

mov al,[esi] ; AL = 20h

inc  

mov

esi  

al,[esi] ; AL = 30h

An indirect operand holds the address of a variable, usually an  

array or string. It can be dereferenced (just like a pointer).

.data

val1 BYTE 10h,20h,30h

.code



Indirect Operands (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 70

mov

inc

esi,OFFSET myCount

[esi] ; error: ambiguous

inc WORD PTR [esi] ; ok

Use PTR to clarify the size attribute of a memory operand.

.data

myCount WORD 0

.code

Should PTR be used here?

add [esi],20

yes, because [esi] could

point to a byte, word, or

doubleword



Array Sum Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 71

; or: add esi,TYPE arrayWadd esi,2  

add ax,[esi]  

add esi,2  

add ax,[esi] ; AX = sum of the array

Indirect operands are ideal for traversing an array. Note that the  

register in brackets must be incremented by a value that  

matches the array type.

.data

arrayW WORD 1000h,2000h,3000h

.code

mov esi,OFFSET arrayW  

mov ax,[esi]

ToDo: Modify this example for an array of doublewords.



Indexed Operands

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 72

; AX = 1000h

; alternate format

.data

arrayW WORD 1000h,2000h,3000h

.code

mov esi,0

mov ax,[arrayW + esi]  

mov ax,arrayW[esi]  

add esi,2

add ax,[arrayW + esi]  

etc.

An indexed operand adds a constant to a register to generate  

an effective address. There are two notational forms:

[label + reg] label[reg]

ToDo: Modify this example for an array of doublewords.



Index Scaling

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 73

.data

arrayB BYTE 0,1,2,3,4,5

arrayW WORD 0,1,2,3,4,5

arrayD

.code

DWORD 0,1,2,3,4,5

mov esi,4

mov al,arrayB[esi*TYPE arrayB] ; 04

mov bx,arrayW[esi*TYPE arrayW] ; 0004

mov edx,arrayD[esi*TYPE arrayD] ; 00000004

You can scale an indirect or indexed operand to the offset of an  

array element. This is done by multiplying the index by the  

array's TYPE:



Pointers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 74

You can declare a pointer variable that contains the offset of  

another variable.

.data

arrayW WORD 1000h,2000h,3000h

ptrW DWORD arrayW

.code

mov esi,ptrW

mov ax,[esi] ; AX = 1000h

Alternate format:

ptrW DWORD OFFSET arrayW



What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 75

• Data Transfer Instructions

• Addition and Subtraction

• Data-Related Operators and Directives

• Indirect Addressing

• JMP and LOOP Instructions

• 64-Bit Programming



JMP and LOOP Instructions

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 76

• JMP Instruction

• LOOP Instruction

• LOOP Example

• Summing an Integer Array

• Copying a String



JMP Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 77

top:

.

.

jmp top

• JMP is an unconditional jump to a label that is usually within  

the same procedure.

• Syntax: JMP target

• Logic: EIP  target

• Example:

A jump outside the current procedure must be to a special type of  

label called a global label (see Section 5.5.2.3 for details).



LOOP Instruction

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 78

• The LOOP instruction creates a counting loop

• Syntax: LOOP target

• Logic:

• ECX  ECX – 1

• if ECX != 0, jump to target

• Implementation:

• The assembler calculates the distance, in bytes, between  

the offset of the following instruction and the offset of the  

target label. It is called the relative offset.

• The relative offset is added to EIP.



LOOP Example

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 79

The following loop calculates the sum of the integers  

5 + 4 + 3 +2 + 1:

When LOOP is assembled, the current location = 0000000E (offset of  

the next instruction). –5 (FBh) is added to the the current location,  

causing a jump to location 00000009:

00000009  0000000E + FB

offset machine code source code

00000000 66 B8 0000 mov ax,0

00000004 B9 00000005 mov ecx,5

00000009 66 03 C1 L1: add ax,cx

0000000C

0000000E

E2 FB loop L1



Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 80

If the relative offset is encoded in a single signed byte,

(a) what is the largest possible backward jump?

(b) what is the largest possible forward jump?

(a) −128

(b) +127



Your turn . . .

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 81

mov ax,6  

mov ecx,4

L1:

inc ax  

loop L1

mov ecx,0

X2:

inc ax  

loop X2

What will be the final value of AX?

10

How many times will the loop  

execute?
4,294,967,296



Nested Loop

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 82

If you need to code a loop within a loop, you must save the  

outer loop counter's ECX value. In the following example, the  

outer loop executes 100 times, and the inner loop 20 times.

.data

count DWORD ?

.code

mov ecx,100 ; set outer loop count

L1:

mov count,ecx ; save outer loop count

mov ecx,20 ; set inner loop count

L2:.

.

loop L2 ; repeat the inner loop

mov ecx,count ; restore outer loop count

loop L1 ; repeat the outer loop



What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 87

• Data Transfer Instructions

• Addition and Subtraction

• Data-Related Operators and Directives

• Indirect Addressing

• JMP and LOOP Instructions

• 64-Bit Programming



64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 88

• MOV instruction in 64-bit mode accepts operands of  

8, 16, 32, or 64 bits

• When you move a 8, 16, or 32-bit constant to a 64-bit  

register, the upper bits of the destination are cleared.

• When you move a memory operand into a 64-bit  

register, the results vary:

• 32-bit move clears high bits in destination

• 8-bit or 16-bit move does not affect high bits in  

destination



More 64-Bit Programming

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 89

• MOVSXD sign extends a 32-bit value into a 64-bit  

destination register

• The OFFSET operator generates a 64-bit address

• LOOP uses the 64-bit RCX register as a counter

• RSI and RDI are the most common 64-bit index  

registers for accessing arrays.



Other 64-Bit Notes

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 90

• ADD and SUB affect the flags in the same way as in  

32-bit mode

• You can use scale factors with indexed operands.



Summary

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 91

• Data Transfer

• MOV – data transfer from source to destination

• MOVSX, MOVZX, XCHG

• Operand types

• direct, direct-offset, indirect, indexed

• Arithmetic

• INC, DEC, ADD, SUB, NEG

• Sign, Carry, Zero, Overflow flags

• Operators

• OFFSET, PTR, TYPE, LENGTHOF, SIZEOF, TYPEDEF

• JMP and LOOP – branching instructions



Thanks a lot

If you are taking a Nap, wake up........Lecture Over


	Slide 1
	Slide 2
	Slide 3: Data Transfer Instructions
	Slide 4: Instructions
	Slide 5: Operand Types
	Slide 6: Instruction Operand Notation
	Slide 7: Direct Memory Operands
	Slide 8: Direct Memory Operands
	Slide 9: MOV Instruction
	Slide 10: MOV Instruction
	Slide 11: Your turn . . .
	Slide 12: Memory – to – Memory 
	Slide 13: Copying Smaller Values to Larger Operands
	Slide 14: Copying Smaller Values to Larger Operands
	Slide 15: Zero Extension - MOVZX
	Slide 16: Zero Extension - MOVZX
	Slide 17: Zero Extension
	Slide 18: Sign Extension
	Slide 19: LAHF and SAHF 
	Slide 20: LAHF and SAHF 
	Slide 21: XCHG Instruction
	Slide 22: XCHG Instruction
	Slide 23: Direct-Offset Operands
	Slide 24: Direct-Offset Operands (cont)
	Slide 25: Your turn. . .
	Slide 26: What's Next
	Slide 27: Addition and Subtraction
	Slide 28: INC and DEC Instructions
	Slide 29: INC and DEC Examples
	Slide 31: ADD and SUB Instructions
	Slide 32: ADD and SUB Examples
	Slide 33: Evaluate this . . .
	Slide 34: Evaluate this . . . (cont)
	Slide 35: NEG (negate) Instruction
	Slide 36: NEG Instruction and the Flags
	Slide 37: Implementing Arithmetic Expressions
	Slide 38: Your turn...
	Slide 39: Flags Affected by Arithmetic
	Slide 40: Concept Map
	Slide 41: Zero Flag (ZF)
	Slide 42: Sign Flag (SF)
	Slide 43: Signed and Unsigned Integers:  A Hardware Viewpoint
	Slide 45: Carry Flag (CF)
	Slide 46: Your turn . . .
	Slide 47: Overflow Flag (OF)
	Slide 49: Your turn . . .
	Slide 50: What's Next
	Slide 51: Data-Related Operators and Directives
	Slide 52: OFFSET Operator
	Slide 53: OFFSET Examples
	Slide 54: Relating to C/C++
	Slide 55: ALIGN directive
	Slide 56: PTR Operator
	Slide 57: Little Endian Order
	Slide 58: PTR Operator Examples
	Slide 59: PTR Operator (cont)
	Slide 60: Your turn . . .
	Slide 61: TYPE Operator
	Slide 62: LENGTHOF Operator
	Slide 63: SIZEOF Operator
	Slide 64: Spanning Multiple Lines (1 of 2)
	Slide 65: Spanning Multiple Lines (2 of 2)
	Slide 66: LABEL Directive
	Slide 67: What's Next
	Slide 68: Indirect Addressing
	Slide 69: Indirect Operands (1 of 2)
	Slide 70: Indirect Operands (2 of 2)
	Slide 71: Array Sum Example
	Slide 72: Indexed Operands
	Slide 73: Index Scaling
	Slide 74: Pointers
	Slide 75: What's Next
	Slide 76: JMP and LOOP Instructions
	Slide 77: JMP Instruction
	Slide 78: LOOP Instruction
	Slide 79: LOOP Example
	Slide 80: Your turn . . .
	Slide 81: Your turn . . .
	Slide 82: Nested Loop
	Slide 87: What's Next
	Slide 88: 64-Bit Programming
	Slide 89: More 64-Bit Programming
	Slide 90: Other 64-Bit Notes
	Slide 91: Summary
	Slide 92: Thanks a lot

