
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 3

Dr. Naveed Anwar Bhatti

x86 Processor Architecture

• General Concepts
• IA-32 Processor Architecture
• IA-32 Memory Management
• 64-Bit Processors
• Components of an IA-32 Microcomputer
• Input-Output System

General Concepts

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 3

• Basic microcomputer design

• Instruction execution cycle

• Reading from memory

• How programs run

Basic Microcomputer Design

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 4

Central Processor Unit

(CPU)

Memory Storage

Unit

registers

I/O

Device

#1

I/O

Device

#2

data bus

control bus

address bus

ALU CU clock

CPU

• Calculations and logical operations take place

• Contains:
• a limited number of storage locations named registers
• a high-frequency clock
• a control unit
• an arithmetic logic unit

• The clock synchronizes the internal operations of the CPU with other system
components.

• The control unit (CU) coordinates the sequencing of steps involved in executing
machine instructions.

• The arithmetic logic unit (ALU) performs arithmetic operations such as addition
and multiplication and logical operations such as AND, OR, and NOT

• CPU is attached to the rest of the computer via pins

• Most pins connect to the data bus, the control bus, and the address bus.

Memory Storage Unit

• Also known as main/internal/primary storage

• Instructions and data are held while a computer program is running

• Receives requests for data from the CPU

• Transfers data from RAM to the CPU and vice versa

• Consists of 2 types of memory:
• ROM

• RAM

Memory technologies landscape

Volatile Non-Volatile

RAM

ROM

Static RAM (SRAM)

Dynamic RAM (DRAM)

EEPROM

Flash Memory

FRAM

MRAM
BBSRAM

Mask ROM

OTPROM
EPROM

n/a

Internal organization of memory is usually an array

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

word
lines

Bit/data lines

Non-Volatile Memory: Mask ROM

• The “simplest” memory technology

• Presence/absence of diode at each cell
denote value

• Contents are fixed when chip is made; cannot
be changed

• High upfront setup costs (mask costs)

• Small recurring marginal costs

• Good for which applications?

word
lines

Bit
lines

OTP ROM with Example use

10

• Fuses that can be burned once

• Example:
• Lines connected only at circles
• Address input is 010
• Output is _____?

Non-Volatile Memory: EPROM

11

• Erasable Programmable Read-Only Memory

• Constructed from floating gate FET.
• Charge trapped on the FG disconnects src and drain

• By applying high voltage (15V +) to the control gate
• “Writes” the cell with a 0
• Writing means changing from 1 → 0

• Erasing means changing form 0 → 1
• Uses UV light (not electrically!)
• Electrons are trapped on a floating gate

• Erase unit is the whole device

• Retains data for 10-20 years
• But susceptible to radiation!

• PROM (or OTP) is same, just w/o window

Non-Volatile Memory: EEPROM

12

• Electrically Erasable and Programmable ROM

• Can erase bit with higher than normal voltage (instead of UV)

• Unlike the EPROMs can program and erase individual words

• Why?

• Slow Write due to erasing and programming

• Similar storage permanence to EPROM (about 10 years)

• but more expensive

Non-Volatile Memory: Flash Memory

13

• Electrically erasable (like EEPROM, unlike EPROM)

• Floating gate technology

• Erase/write cycles are limited (10K to 100K, typically)

• Used in many reprogrammable systems these days

• Erase size is block (not word)

• Blocks are a few KB

• Reads are like standard RAM

• Write can be slow

• Entire block erased and rewritten for change to a single word.

• The erase is time consuming, writing is fast!

Volatile Memory: Static RAM and Dynamic RAM

14

Static RAM Dynamic RAM

Volatile Memory: Static RAM and Dynamic RAM

15

Static RAM Dynamic RAM

1

Volatile Memory: Static RAM and Dynamic RAM

16

Static RAM Dynamic RAM

1 01

Volatile Memory: Static RAM and Dynamic RAM

17

Static RAM Dynamic RAM

Volatile Memory: Static RAM and Dynamic RAM

18

Static RAM Dynamic RAM

Word line

Bit line

Volatile Memory: Static RAM and Dynamic RAM

19

Static RAM Dynamic RAM

Word line

Bit line Bit line

Volatile Memory: Static RAM and Dynamic RAM

20

Static RAM Dynamic RAM

Word line

Bit line Bit lineThis is known
as 6T

configuration

Volatile Memory: Static RAM and Dynamic RAM

21

Static RAM Dynamic RAM

Word line

Bit line Bit line

Word line

Bit line

Is RAM really that volatile?

22

Not really!
Here is an example of

bad usage

A good use!

23

http://spectrum.ieee.org/semiconductors/memory/could-an-sram-hourglass-save-rfid-chips-just-in-time

Buses

• A common group of wires that interconnect components in a computer
system.

• Transfer address, data, & control information between microprocessor,
memory and I/O.

• Three buses exist for this transfer of information: address, data, and
control.

Buses

• The data bus transfers information between the microprocessor and its
memory and I/O address space.

• Data transfers vary in size, from 8 bits wide to 64 bits wide in various Intel
microprocessors.
• 8088 has an 8-bit data bus that transfers 8 bits of data at a time

• 8086, 80286, 80386SL, 80386SX, and 80386EX transfer 16 bits of data

• 80386DX, 80486SX, and 80486DX, 32 bits

• Pentium through Core2 microprocessors transfer 64 bits of data

• Advantage of a wider data bus is speed in applications using wide data.

Buses

• Control bus lines select and cause memory or I/O to perform a read
or write operation.

• In most computer systems, there are four control bus connections:
• MRDC (memory read control)

• MWTC (memory write control)

• IORC (I/O read control)

• IOWC (I/O write control).

• overbar indicates the control signal is active-low; (active when logic
zero appears on control line)

Clock

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 27

• Synchronizes all CPU and BUS operations

• Machine (clock) cycle measures time of a single operation

• Clock is used to trigger events

one cycle

1

0

Next Comes

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 28

• Basic microcomputer design

• Instruction execution cycle

• Reading from memory

• How programs run

• Fetch Instruction

• Decode

• Fetch operands

• Execute

• Store output

Instruction Execution Cycle

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 29

Reading from Memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 30

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus

Reading from Memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 31

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus.

2. Assert (changing the value of) the processor’s RD (read) pin.

Reading from Memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 32

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus.

2. Assert (changing the value of) the processor’s RD (read) pin.

3. Wait one clock cycle for the memory chips to respond.

Reading from Memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 33

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus.

2. Assert (changing the value of) the processor’s RD (read) pin.

3. Wait one clock cycle for the memory chips to respond.

4. Copy the data from the data bus into the destination operand

Cache Memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 34

• High-speed expensive static RAM both inside and

outside the CPU.

• Level-1 cache: inside the CPU

• Level-2 cache: outside the CPU

• Cache hit: when data to be read is already in cache

memory

• Cache miss: when data to be read is not in cache

memory.

How a Program Runs

• OS searches for the program’s filename in the current disk
directory/paths, if not found then issues an error message

• OS retrieves basic information about the program’s file from the disk
directory, including the file size and its physical location on the disk
drive

• OS determines the next available location in memory and loads the
program file into memory. It allocates a block of memory to the
program and enters information about the program’s size and location
into a table (sometimes called a descriptor table)

How a Program Runs

• The OS begins execution of the program’s first machine instruction (its entry
point)

• As soon as the program begins running, it is called a process. The OS assigns the
process an identification number (process ID), which is used to keep track of it
while running.

• The process runs by itself. It is the OS’s job to track the execution of the process
and to respond to requests for system resources

• When the process ends, it is removed from memory

How a Program Runs

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 37

Current

directory

System

path

Directory

entry

User

sends program

name to

gets starting

cluster from

Operating searches for

system program in

loads and

starts

Program

returns to

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 38

• General Concepts

• IA-32 Processor Architecture

• IA-32 Memory Management

• 64-Bit Processors

• Components of an IA-32 Microcomputer

• Input-Output System

IA-32 Processor Architecture

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 39

• Modes of operation

• Basic execution environment

• Floating-point unit

• Intel Microprocessor history

Modes of Operation

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 40

• The operating mode controls how the processor sees and manages

the system memory and the tasks that use it.

• Protected mode

• native mode (Windows, Linux)

• Real-address mode

• native MS-DOS

• System management mode

• power management, system security, diagnostics

• Virtual-8086 mode

• hybrid of Protected

• each program has its own 8086 computer

Modes of Operation

• One of the big differences between the operating modes is in the way

memory addressing works.

• Both the amount of memory that can be addressed and the translation

process between logical addresses and to physical addresses may vary

depending on the operating mode

Basic Execution Environment

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 42

• Addressable memory

• General-purpose registers

• Index and base registers

• Specialized register uses

• Status flags

• Floating-point, MMX, XMM registers

Addressable Memory

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 43

• Protected mode

• 4 GB

• 32-bit address

• Real-address and Virtual-8086 modes

• 1 MB space

• 20-bit address

General-Purpose Registers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 44

CS

SS

DSEIP

EFLAGS

16-bit Segment Registers

EAX

EBX

ECX

EDX

32-bit General-Purpose Registers

ES

FS

GS

EBP

ESP

ESI

EDI

Named storage locations inside the CPU, optimized for speed.

Some Specialized Register Uses (1 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 45

• General-Purpose

• EAX/EDX – accumulator

• ECX – loop counter

• ESP – stack pointer

• ESI, EDI – index registers

• EBP – extended frame pointer (stack)

• Segment

• CS – code segment

• DS – data segment

• SS – stack segment

• ES, FS, GS - additional segments

Accessing Parts of Registers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 46

• Use 8-bit name, 16-bit name, or 32-bit name

• Applies to EAX, EBX, ECX, and EDX

16 bits

8

AL

AX

EAX

8

AH

32 bits

8 bits + 8 bits

Index and Base Registers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 47

• Some registers have only a 16-bit name for their lower half:

Some Specialized Register Uses (2 of 2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 48

• EIP – instruction pointer

• EFLAGS

• status and control flags

• each flag is a single binary bit

Status Flags

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 49

• Carry

• unsigned arithmetic out of range

• Overflow

• signed arithmetic out of range

• Sign

• result is negative

• Zero

• result is zero

• Auxiliary Carry

• carry from bit 3 to bit 4

• Parity

• sum of 1 bits is an even number

Floating-Point, MMX, XMM Registers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 50

• Eight 80-bit floating-point data registers

• ST(0), ST(1), . . . , ST(7)

• arranged in a stack

• used for all floating-point arithmetic

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)• Eight 64-bit MMX registers

• Eight 128-bit XMM registers for single-

instruction multiple-data (SIMD)

operations

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 51

• General Concepts

• IA-32 Processor Architecture

• IA-32 Memory Management

• 64-Bit Processors

• Components of an IA-32 Microcomputer

• Input-Output System

X86 Memory Management

• x86 processors manage memory according to the basic modes of
operation

• Protected mode is the most robust and powerful, but it does
restrict application programs from directly accessing system
hardware

Real Address Mode

• Only 1 MByte of memory can be addressed
• from hexadecimal 00000 to FFFFF

• The processor can run only one program at a time
• it can momentarily interrupt that program to process requests (called

interrupts) from peripherals

• Application programs are permitted to access any memory location,
including addresses that are linked directly to system hardware

• The MS-DOS operating system runs in real-address mode, and
Windows 95 and 98 can be booted into this mode

Protected Mode

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 54

• Processor can run multiple programs at the same time

• 4 GB addressable RAM

• (00000000 to FFFFFFFFh)

• Each program assigned a memory partition which is protected

from other programs

• Designed for multitasking

• Supported by Linux & MS-Windows

Virtual-8086 Mode

• Computer runs in protected mode and creates a virtual-8086 machine
with its own 1-MByte address space that simulates an 80x86
computer running in real address mode

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 56

• General Concepts

• IA-32 Processor Architecture

• IA-32 Memory Management

• 64-Bit Processors

• Components of an IA-32 Microcomputer

• Input-Output System

64-Bit Processors (1/2)

• The instruction set is a 64-bit extension of the x86 instruction set

• Some of the essential features:
• It is backward-compatible with the x86 instruction set

• Addresses are 64 bits long, allowing for a virtual address space of size 16
exabytes. In current chip implementations, only the lowest 48 bits are used

• It can use 64-bit general-purpose registers, allowing instructions to have 64-bit
integer operands.

• It uses eight more general-purpose registers than the x86.

• It uses a 48-bit physical address space, which supports up to 256 terabytes of
RAM.

• There is a legacy mode that still supports 16-bit programming, but it is
not available in 64-bit versions of Microsoft Windows.

64-Bit Processors (2/2)

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 58

• 64-Bit Operation Modes

• Compatibility mode – can run existing 16-bit and 32-bit applications (Windows

supports only 32-bit apps in this mode)

• 64-bit mode – Windows 64 uses this, the processor runs applications that use

the 64-bit linear address space

• Basic Execution Environment

• addresses can be 64 bits (48 bits, in practice)

• 16 64-bit general purpose registers

• 64-bit instruction pointer named RIP

• 8 80-bit floating-point registers

• A 64-bit status flags register named RFLAGS

64-Bit General Purpose Registers

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 59

• 32-bit general purpose registers:

• EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D,

R9D, R10D, R11D, R12D, R13D, R14D, R15D

• 64-bit general purpose registers:

• RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9,

R10, R11, R12, R13, R14, R15

Specialized Registers

• There are some specialized registers for multimedia
processing
• Eight 64-bit MMX registers

• Sixteen 128-bit XMM registers (in 32-bit mode, you have only 8 of
these)

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 62

• General Concepts

• IA-32 Processor Architecture

• IA-32 Memory Management

• 64-Bit Processors

• Components of an IA-32 Microcomputer

• Input-Output System

Components of an IA-32 Microcomputer

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 63

• Motherboard

• Memory

• Input-output ports

Motherboard

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 64

• CPU socket

• External cache memory slots

• Main memory slots

• BIOS chips

• Sound synthesizer chip (optional)

• Video controller chip (optional)

• IDE, parallel, serial, USB, video, keyboard, joystick,

network, and mouse connectors

• PCI bus connectors (expansion cards)

Intel D850MD Motherboard

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 65

dynamic RAM

Speaker

IDE drive connectors

mouse, keyboard,

parallel, serial, and USB

connectors

AGP slot

Battery

Video

Power connector

memory controller hub

Pentium 4 socket

Diskette connector

PCI slots

Firmware hub

I/O Controller

Audio chip

Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification

Input-Output Ports

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 67

• USB (universal serial bus)

• intelligent high-speed connection to devices

• up to 12 megabits/second

• USB hub connects multiple devices

• Parallel

• short cable, high speed

• common for printers

• bidirectional, parallel data transfer

• Serial

• RS-232 serial port

• UART Protocol

Wired Technology: UART

68

What makes it ‘universal’ ?
Its parameters (format,speed ..) are configurable.

Why ‘asynchronous’ ?
It doesn’t have a clock

UART: Universal Asynchronous Receiver Transmitter

A simple half-duplex, asynchronous, serial protocol.

UART Functions

69

Outbound data
• Convert from parallel to serial
• Add start and stop delineators (bits)
• Add parity bit

Inbound data
• Convert from serial to parallel
• Remove start and stop delineators (bits)
• Check and remove parity bit

UART Basics

• Format of Communication
• The start bit marks the beginning of a new word
• Next follows the data bits (7 or 8)
• The parity bit is added to make the number of 1’s even or odd
• The stop bit marks the end of transmission

Bit Width

B B B B B B B P

Stop Bit

• Baud Rate
• Number of bits per sec

Start Bit

UART Transmission Example

71

Send the ASCII letter ‘W’ (1010111)

UART Transmission Example

72

Send the ASCII letter ‘W’ (1010111)

UART Transmission Example

73

Send the ASCII letter ‘W’ (1010111)

UART Transmission Example

74

Send the ASCII letter ‘W’ (1010111)

UART Transmission Example

75

Send the ASCII letter ‘W’ (1010111)

Device Interfaces

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 76

• ATA host adapters

• intelligent drive electronics (hard drive, CDROM)

• SATA (Serial ATA)

• inexpensive, fast, bidirectional

• FireWire

• high speed (800 MB/sec), many devices at once

• Bluetooth

• small amounts of data, short distances, low power
usage

• Wi-Fi (wireless Ethernet)

• IEEE 802.11 standard, faster than Bluetooth

What's Next

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 77

• General Concepts

• IA-32 Processor Architecture

• IA-32 Memory Management

• Components of an IA-32 Microcomputer

• Input-Output System

Levels of Input-Output

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 78

• Level 3: High-level language function

• examples: C++, Java

• portable, convenient, not always the fastest

• Level 2: Operating system

• Application Programming Interface (API)

• extended capabilities, lots of details to master

• Level 1: BIOS

• drivers that communicate directly with devices

• OS security may prevent application-level code from working at this level

Displaying a String of Characters

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 79

When a HLL program displays a string of characters, the following steps take place:

Application Program

OS Function

BIOS Function

Hardware

Level 3

Level 2

Level 1

Level 0

Assembly language programs can perform input-output at each of the following levels:

Programming levels

Summary

Irvine, Kip R. Assembly Language for x86 Processors 7/e, 2014. 81

• Central Processing Unit (CPU)

• Arithmetic Logic Unit (ALU)

• Instruction execution cycle

• Multitasking

• Floating Point Unit (FPU)

• Complex Instruction Set

• Real mode and Protected mode

• Motherboard components

• Memory types

• Input/Output and access levels

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: General Concepts
	Slide 4: Basic Microcomputer Design
	Slide 5: CPU
	Slide 6: Memory Storage Unit
	Slide 7: Memory technologies landscape
	Slide 8: Internal organization of memory is usually an array
	Slide 9: Non-Volatile Memory: Mask ROM
	Slide 10: OTP ROM with Example use
	Slide 11: Non-Volatile Memory: EPROM
	Slide 12: Non-Volatile Memory: EEPROM
	Slide 13: Non-Volatile Memory: Flash Memory
	Slide 14: Volatile Memory: Static RAM and Dynamic RAM
	Slide 15: Volatile Memory: Static RAM and Dynamic RAM
	Slide 16: Volatile Memory: Static RAM and Dynamic RAM
	Slide 17: Volatile Memory: Static RAM and Dynamic RAM
	Slide 18: Volatile Memory: Static RAM and Dynamic RAM
	Slide 19: Volatile Memory: Static RAM and Dynamic RAM
	Slide 20: Volatile Memory: Static RAM and Dynamic RAM
	Slide 21: Volatile Memory: Static RAM and Dynamic RAM
	Slide 22: Is RAM really that volatile?
	Slide 23: A good use!
	Slide 24: Buses
	Slide 25: Buses
	Slide 26: Buses
	Slide 27: Clock
	Slide 28: Next Comes
	Slide 29: Instruction Execution Cycle
	Slide 30: Reading from Memory
	Slide 31: Reading from Memory
	Slide 32: Reading from Memory
	Slide 33: Reading from Memory
	Slide 34: Cache Memory
	Slide 35: How a Program Runs
	Slide 36: How a Program Runs
	Slide 37: How a Program Runs
	Slide 38: What's Next
	Slide 39: IA-32 Processor Architecture
	Slide 40: Modes of Operation
	Slide 41: Modes of Operation
	Slide 42: Basic Execution Environment
	Slide 43: Addressable Memory
	Slide 44: General-Purpose Registers
	Slide 45: Some Specialized Register Uses (1 of 2)
	Slide 46: Accessing Parts of Registers
	Slide 47: Index and Base Registers
	Slide 48: Some Specialized Register Uses (2 of 2)
	Slide 49: Status Flags
	Slide 50: Floating-Point, MMX, XMM Registers
	Slide 51: What's Next
	Slide 52: X86 Memory Management
	Slide 53: Real Address Mode
	Slide 54: Protected Mode
	Slide 55: Virtual-8086 Mode
	Slide 56: What's Next
	Slide 57: 64-Bit Processors (1/2)
	Slide 58: 64-Bit Processors (2/2)
	Slide 59: 64-Bit General Purpose Registers
	Slide 60: Specialized Registers
	Slide 61
	Slide 62: What's Next
	Slide 63: Components of an IA-32 Microcomputer
	Slide 64: Motherboard
	Slide 65: Intel D850MD Motherboard
	Slide 67: Input-Output Ports
	Slide 68: Wired Technology: UART
	Slide 69: UART Functions
	Slide 70: UART Basics
	Slide 71: UART Transmission Example
	Slide 72: UART Transmission Example
	Slide 73: UART Transmission Example
	Slide 74: UART Transmission Example
	Slide 75: UART Transmission Example
	Slide 76: Device Interfaces
	Slide 77: What's Next
	Slide 78: Levels of Input-Output
	Slide 79: Displaying a String of Characters
	Slide 80: Programming levels
	Slide 81: Summary
	Slide 82: Thanks a lot

