Computer Organization and Assembly Language (COAL)

Lecture 3

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

X86 Processor Architecture

* General Concepts

* |A-32 Processor Architecture

* |A-32 Memory Management

* 64-Bit Processors

e Components of an IA-32 Microcomputer
* |[nput-Output System

General Concepts

« Basic microcomputer design
 Instruction execution cycle

« Reading from memory
 How programs run

N Basic Microcomputer Design

| registers |

110 /0
Device Device
#1 #2

Central Processor Unit Memory Storage
(CPU) Unit

| ALU | cU | clock |

CPU

e (Calculations and logical operations take place

* Contains:

e alimited number of storage locations named registers
e a high-frequency clock

e acontrol unit

e an arithmetic logic unit

* The clock synchronizes the internal operations of the CPU with other system
components.

* The control unit (CU) coordinates the sequencing of steps involved in executing
machine instructions.

* The arithmetic logic unit (ALU) performs arithmetic operations such as addition
and multiplication and logical operations such as AND, OR, and NOT

 CPU is attached to the rest of the computer via pins
* Most pins connect to the data bus, the control bus, and the address bus.

Memory Storage Unit

* Also known as main/internal/primary storage

* Instructions and data are held while a computer program is running
* Receives requests for data from the CPU

* Transfers data from RAM to the CPU and vice versa

e Consists of 2 types of memory:
* ROM
« RAM

Memory technologies landscape

Volatile Non-Volatile
EEPROM
Static RAM (SRAM) Flash Memory

RAM | Dynamic RAM (DRAM) FRAM
MRAM

BBSRAM

Mask ROM

ROM n/a OTPROM

EPROM

Internal organization of memory is usually an array

B I
Mem Mem Mem Mem
Cell cell | | | cen []| cen []
Word — Mem Mem | | Mem | | Mem | |
. Cell Cell Cell Cell
lines
Mem Mem . Mem Mem .
Cell Cell Cell Cell
I I |]
Mem Mem Mem Mem
Cell Cell Cell Cell
\ J
|

Bit/data lines

Non-Volatile Memory: Mask ROM

* The “simplest” memory technology

* Presence/absence of diode at each cell
denote value

* Contents are fixed when chip is made; cannot
be changed

e High upfront setup costs (mask costs)
* Small recurring marginal costs
* Good for which applications?

A0 —

Al—

A2

word
lines

¥
DEKODER YV O Bit
3/8 *— lines
Wi N
So w2 T
W3
S1 2
W .
S2 WS
W PR
7 X(_n
W

e avallatal
a—
—

OTP ROM with Example use

* Fuses that can be burned once

* Example:

* Lines connected only at circles
* Address input is 010
* Qutput is

?

§x4 ROM

3x§

NAN

decoder

'\11.‘1

L
i
il

word ()

wotd 1

word 2

< word line

F4d

by oy
0 W |

E\f
B W

programmanie
connection

I

3
3

(

LY

data line

wirad-OR

e

,f’*? 0 G

*‘P

10

Non-Volatile Memory: EPROM

* Erasable Programmable Read-Only Memory

e Constructed from floating gate FET.

* Charge trapped on the FG disconnects src and drain
* By applying high voltage (15V +) to the control gate 530 min
e “Writes” the cell witha O inﬁ;'r >3

* Writing means changing from1 2> 0 —>—c—
* Erasing means changing form0 - 1 E.E.
» Uses UV light (not electrically!)
* Electrons are trapped on a floating gate

* Erase unit is the whole device
* Retains data for 10-20 years

e But susceptible to radiation!

 PROM (or OTP) is same, just w/o window

11

Non-Volatile Memory: EEPROM

Electrically Erasable and Programmable ROM

Can erase bit with higher than normal voltage (instead of UV)

Unlike the EPROMSs can program and erase individual words
* Why?

Slow Write due to erasing and programming

e Similar storage permanence to EPROM (about 10 years)
* but more expensive

12

Non-Volatile Memory: Flash Memory

e Electrically erasable (like EEPROM, unlike EPROM)

Floating gate technology

* Erase/write cycles are limited (10K to 100K, typically)

* Used in many reprogrammable systems these days

e Erase size is block (not word)

Blocks are a few KB

e Reads are like standard RAM

* \Write can be slow

Entire block erased and rewritten for change to a single word.

* The erase is time consuming, writing is fast!

13

Volatile Memory: Static RAM and Dynamic RAM

Static RAM Dynamic RAM

—Ppo—

Volatile Memory: Static RAM and Dynamic RAM

Static RAM Dynamic RAM

o
>

1 —@

Volatile Memory: Static RAM and Dynamic RAM

/s

Static RAM

o

>

Dynamic RAM

16

Volatile Memory: Static RAM and Dynamic RAM

Static RAM Dynamic RAM

L —po
o

Volatile Memory: Static RAM and Dynamic RAM

Static RAM
1 L »C
o

Bit line

Word line

Dynamic RAM

18

Volatile Memory: Static RAM and Dynamic RAM

Static RAM
l l Word line
1 L »C I
o

Bit line

Bit line

Dynamic RAM

19

Volatile Memory: Static RAM and Dynamic RAM

Static RAM
| Iil_jlﬁ TQJ_I |
] :IiM— ;[I:

Bit line This is known
as 6T

Bit line

configuration

Word line

Dynamic RAM

20

Volatile Memory: Static RAM and Dynamic RAM

Static RAM

|

1

Bit line

aQ

i

Bit line

Word line

Dynamic RAM

]

Bit line

Word line

21

s RAM reaIIy that volatile?

B

Lest We Remember:

Not really!

Hereisan exampleof | (Cold Boot Attacks on Encryption Keys
bad usage

citp.princeton.edu/memory

A good use!

Images: Kevin Fu

DATA DEMATERIALIZES: Data (like this picture of the Tardis) stored in an RFID chip's SRAM
decays. The TARDIS technology uses that decay as a clock that tells when the chip last
received power.

http://spectrum.ieee.org/semiconductors/memory/could-an-sram-hourglass-save-rfid-chips-just-in-time

23

Buses

I W
A common group of wires that interconnect components in a computer
system.

* Transfer address, data, & control information between microprocessor,
memory and |/O.

* Three I?uses exist for this transfer of information: address, data, and
control.

Address bus >
|| [|
up < Data bus >
4
e

[OWG —— -
s J

Y 4k |

Read-only Read/write
memory memory Keyboard Printer
ROM RAM

Buses

 The data bus transfers information between the microprocessor and its
memory and |I/O address space.

* Data transfers vary in size, from 8 bits wide to 64 bits wide in various Intel
Microprocessors.

e 8088 has an 8-bit data bus that transfers 8 bits of data at a time

* 8086, 80286, 80386SL, 80386SX, and 80386EX transfer 16 bits of data
* 80386DX, 80486SX, and 80486DX, 32 bits

* Pentium through Core2 microprocessors transfer 64 bits of data

* Advantage of a wider data bus is speed in applications using wide data.

Buses

* Control bus lines select and cause memory or I/O to perform a read
or write operation.

* In most computer systems, there are four control bus connections:
* MRDC (memory read control)
 MWTC (memory write control)
« JORC (1/O read control)
« |IOWC (1/O write control).

e overbar indicates the control signal is active-low; (active when logic
zero appears on control line)

Clock

* Synchronizes all CPU and BUS operations
« Machine (clock) cycle measures time of a single operation
* Clock is used to trigger events

one cycle
| |

L a

Next Comes

Basic microcomputer design
Instruction execution cycle
Reading from memory
How programs run

N Instruction Execution Cycle

[L1 [1213 [14

Fetch Instruction
« Decode
* Fetch operands
« Execute
« Store output

Reading from Memory

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus

Cycle 1
/\
CLK
Address
ADDR -

Reading from Memory

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus.
2. Assert (changing the value of) the processor’s RD (read) pin.

ADDR 4

;;;;;;;;;;;;;;;;;

RD

Reading from Memory

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus.
2. Assert (changing the value of) the processor’s RD (read) pin.
3. Wait one clock cycle for the memory chips to respond.

Cycle 1 Cycle 2 Cycle 3

CLK e W N A

ADDR P

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

RD

R R N N e I Y Y T .;;..:X—u
& mm o R s s s E s R RS EEE S B RS E s EE RS EE s & & & &

Reading from Memory

Multiple machine cycles are required when reading from memory, because it responds
much more slowly than the CPU. The steps are:

1. Place the address of the value you want to read on the address bus.
2. Assert (changing the value of) the processor’s RD (read) pin.

3. Wait one clock cycle for the memory chips to respond.

4. Copy the data from the data bus into the destination operand

Cycle 1 Cycle 2 Cycle 3 Cycle 4
CLK | A N N N A N
Address | i
ADDHR D ! A P L
RD
™~ e

DATA .l.- d.- |.- I- lllllllllllllllllllllllllllllllll

Cache Memory

* High-speed expensive static RAM both inside and
outside the CPU.

 Level-1 cache: inside the CPU
 Level-2 cache: outside the CPU

« Cache hit: when data to be read is already in cache
memory

« (Cache miss: when data to be read is not in cache
memory.

How a Program Runs

e OS searches for the program’s filename in the current disk
directory/paths, if not found then issues an error message

* OS retrieves basic information about the program’s file from the disk
directory, including the file size and its physical location on the disk
drive

* OS determines the next available location in memory and loads the
program file into memory. It allocates a block of memory to the
program and enters information about the program’s size and location
into a table (sometimes called a descriptor table)

How a Program Runs

* The O)S begins execution of the program’s first machine instruction (its entry
point

* Assoon as the program begins running, it is called a process. The OS assigns the
process an identification number (process ID), which is used to keep track of it
while running.

 The process runs by itself. It is the OS’s job to track the execution of the process
and to respond to requests for system resources

 When the process ends, it is removed from memory

How a Program Runs

User

sends program
name to

v

Operating

searches for Current
system >

program in directory

gets starting
cluster from |

System
path

loads and
starts

Directory

Program
entry J

What's Next

* General Concepts
IA-32 Processor Architecture
* |A-32 Memory Management
* 64-Bit Processors
e Components of an IA-32 Microcomputer
* Input-Output System

|A-32 Processor Architecture
I W | NN
* Modes of operation
« Basic execution environment
* Floating-point unit
 Intel Microprocessor history

Modes of Operation

* The operating mode controls how the processor sees and manages
the system memory and the tasks that use it.

* Protected mode

» native mode (Windows, Linux)
 Real-address mode

* native MS-DOS
« System management mode

« power management, system security, diagnostics

* Virtual-8086 mode
* hybrid of Protected
e each program has its own 8086 computer

Modes of Operation

* One of the big differences between the operating modes is in the way
memory addressing works.

« Both the amount of memory that can be addressed and the translation
process between logical addresses and to physical addresses may vary
depending on the operating mode

Basic Execution Environment
I W | NN
 Addressable memory
« (General-purpose registers
* Index and base registers
« Specialized register uses
« Status flags
* Floating-point, MMX, XMM registers

Addressable Memory

 Protected mode
+ 4GB
o 32-bit address

« Real-address and Virtual-8086 modes
1 MB space
o 20-bit address

General-Purpose Registers

Named storage locations inside the CPU, optimized for speed.

32-bit General-Purpose Registers

EAX EBP
EBX ESP
ECX ESI
EDX EDI

16-bit Segment Registers

EFLAGS CS ES
SS FS

EIP DS GS

Some Specialized Register Uses (1 of 2)

« (General-Purpose

 EAX/EDX — accumulator

« ECX - loop counter

« ESP - stack pointer

« ESI, EDI — index registers

« EBP — extended frame pointer (stack)
¢ Segment

 CS - code segment

DS - data segment

« SS - stack segment

 ES, FS, GS - additional segments

Accessing Parts of Registers

 Use 8-bit name, 16-bit name, or 32-bit name
* Applies to EAX, EBX, ECX, and EDX

8 8

AH AL 8 bits + 8 bits

AX 16 bits
EAX 32 bits
32-bit 16-bit 8-bit (high) 8-bit (low)
EAX AX AH AL
EBX BX BH BL
BECX CX CH CL
EDX DX DH DL

Index and Base Registers

« Some registers have only a 16-bit name for their lower half:

32-bit 16-bit
ESI SI
EDI DI
EBP BP
ESP SP

Some Specialized Register Uses (2 of 2)

 EIP — instruction pointer

« EFLAGS

 status and control flags
« each flag is a single binary bit

Status Flags

« Carry
 unsigned arithmetic out of range
* QOverflow
 signed arithmetic out of range
« Sign
* result is negative
« Zero
* resultis zero
 Auxiliary Carry
* carry from bit 3 to bit 4
* Parity
« sum of 1 bits is an even number

Floating-Point, MMX, XMM Registers

« Eight 80-bit floating-point data registers
« ST(0), ST(1),...,ST(7)
« arranged in a stack
« used for all floating-point arithmetic

« Eight 64-bit MMX registers

« Eight 128-bit XMM registers for single-
instruction multiple-data (SIMD)
operations

What's Next

* General Concepts
* |A-32 Processor Architecture
IA-32 Memory Management
* 64-Bit Processors
e Components of an IA-32 Microcomputer
* |Input-Output System

X86 Memory Management

* Xx86 processors manage memory according to the basic modes of
operation

* Protected mode is the most robust and powerful, but it does

restrict application programs from directly accessing system
hardware

Real Address Mode

Only 1 MByte of memory can be addressed
e from hexadecimal 00000 to FFFFF

* The processor can run only one program at a time

* it can momentarily interrupt that program to process requests (called
interrupts) from peripherals

* Application programs are permitted to access any memory location,
including addresses that are linked directly to system hardware

 The MS-DOS operating system runs in real-address mode, and
Windows 95 and 98 can be booted into this mode

Protected Mode

* Processor can run multiple programs at the same time
4 GB addressable RAM
« (00000000 to FFFFFFFFh)

« Each program assigned a memory partition which is protected
from other programs

« Designed for multitasking
« Supported by Linux & MS-Windows

Virtual-8086 Mode

e Computer runs in protected mode and creates a virtual-8086 machine
with its own 1-MByte address space that simulates an 80x86
computer running in real address mode

What's Next

* General Concepts
* |A-32 Processor Architecture
* |A-32 Memory Management
64-Bit Processors
e Components of an IA-32 Microcomputer
* |Input-Output System

64-Bit Processors (1/2)

e The instruction set is a 64-bit extension of the x86 instruction set

* Some of the essential features:
* Itis backward-compatible with the x86 instruction set

* Addresses are 64 bits long, allowing for a virtual address space of size 16
exabytes. In current chip implementations, only the lowest 48 bits are used

* It can use 64-bit general-purpose registers, allowing instructions to have 64-bit
integer operands.

* It uses eight more general-purpose registers than the x86.

* It uses a 48-bit physical address space, which supports up to 256 terabytes of
RAM.

 Thereis a legacy mode that still supports 16-bit programming, but it is
not available in 64-bit versions of Microsoft Windows.

64-Bit Processors (2/2)

« 64-Bit Operation Modes

« Compatibility mode — can run existing 16-bit and 32-bit applications (Windows
supports only 32-bit apps in this mode)

» 64-bit mode — Windows 64 uses this, the processor runs applications that use
the 64-bit linear address space

« Basic Execution Environment
« addresses can be 64 bits (48 bits, in practice)
« 16 64-bit general purpose registers
* 64-Dbit instruction pointer named RIP
« 8 80-bit floating-point registers
« A 64-bit status flags register named RFLAGS

64-Bit General Purpose Registers

» 64-bit general purpose registers:

* RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9,
R10, R11, R12, R13, R14, R15

« 32-bit general purpose registers:

« EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D,
R9D, R10D, R11D, R12D, R13D, R14D, R15D

Specialized Registers

 There are some specialized registers for multimedia
processing
* Eight 64-bit MMX registers

e Sixteen 128-bit XMM registers (in 32-bit mode, you have only 8 of
these)

Operand Size Available Registers
8 bits AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L, R9L, R10L, R11L, R12L, R13L, R14L, R15L
16 bits AX, BX, CX, DX, DI, SI, BP, SP, R8W, ROW, R10W, R11W, R12W, R13W, R14W, R15W
32 bits EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D, R12D, R13D,

R14D, R15D

64 bits

RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R§, R9, R10, R11, R12, R13, R14, R15

What's Next

« General Concepts
* |A-32 Processor Architecture
* |A-32 Memory Management
« 64-Bit Processors
Components of an I1A-32 Microcomputer
* Input-Output System

Components of an 1A-32 Microcomputer

* Motherboard
 Memory
* |nput-output ports

Motherboard

« CPU socket

« External cache memory slots
 Main memory slots

* BIOS chips

« Sound synthesizer chip (optional)
 Video controller chip (optional)

« |DE, parallel, serial, USB, video, keyboard, joystick,
network, and mouse connectors

« PCI bus connectors (expansion cards)

Intel D850MD Motherboard

mouse, keyboard,

Video

Audio chip

PCI slots

AGP slot

Firmware hub

I/0O Controller

Speaker
Battery

connectors

memory controller hub

Pentium 4 socket

“eeseess

dynamic RAM

Power connector

Diskette connector
IDE drive connectors

Source: Intel® Desktop Board D850MD/D850MV Technical Product Specification

Input-Output Ports

« USB (universal serial bus)
* intelligent high-speed connection to devices
« up to 12 megabits/second
« USB hub connects multiple devices

« Parallel
» short cable, high speed
« common for printers
 bidirectional, parallel data transfer

e Serial
« RS-232 serial port
« UART Protocol

Wired Technology: UART

UART: Universal Asynchronous Receiver Transmitter

A simple half-duplex, asynchronous, serial protocol.

What makes it ‘universal’ ?
Its parameters (format,speed ..) are configurable.

Why ‘asynchronous’ ?
It doesn’t have a clock

68

UART Functions

Outbound data
* Convert from parallel to serial
* Add start and stop delineators (bits)
e Add parity bit

Inbound data
* Convert from serial to parallel
 Remove start and stop delineators (bits)
* Check and remove parity bit

69

UART Basics

* Baud Rate
 Number of bits per sec

* Format of Communication
* The start bit marks the beginning of a new word
* Next follows the data bits (7 or 8)
* The parity bit is added to make the number of 1’s even or odd
* The stop bit marks the end of transmission

St‘]rt Bit Bit Width ‘

OonEEEEE -

UART Transmission Example

Send the ASCII letter ‘W’ (1010111)

Line idling

|

High

Low

71

UART Transmission Example

Send the ASCII letter ‘W’ (1010111)

Line idling Start bit
High ’/

Low I

72

UART Transmission Example

Send the ASCII letter ‘W’ (1010111)

High

Low

Line idling

|

Start bit

/

1

b

0

]

el

——

7 data bits - Least significant bit first

73

UART Transmission Example

Send the ASCII letter ‘W’ (1010111)

High

Low

Line idling

|

Start bit

/

1

o

Parity bit
(odd parity)

1

el

——

7 data bits - Least significant bit first

]

74

UART Transmission Example

Send the ASCII letter ‘W’ (1010111)

E—— . Parity bit .
Lmelldlmg /S‘rar"r bit rodd P%TY) ;Top bit
High }
1 1 1 0 1 0 1 0
Low
- e == Line idling again

7 data bits - Least significant bit first

75

Device Interfaces

 ATA host adapters

« intelligent drive electronics (hard drive, CDROM)
« SATA (Serial ATA)

* inexpensive, fast, bidirectional
* FireWire

* high speed (800 MB/sec), many devices at once
* Bluetooth

« small amounts of data, short distances, low power
usage

« Wi-Fi (wireless Ethernet)
 |[EEE 802.11 standard, faster than Bluetooth

What's Next
I W
* General Concepts
* |A-32 Processor Architecture
* |A-32 Memory Management
 Components of an IA-32 Microcomputer
Input-Output System

Levels of Input-Output

« Level 3: High-level language function
 examples: C++, Java
« portable, convenient, not always the fastest

« Level 2: Operating system

» Application Programming Interface (API)
» extended capabilities, lots of details to master

« Level 1: BIOS

 drivers that communicate directly with devices
* OS security may prevent application-level code fromworking at this level

N Displaying a String of Characters

When a HLL program displays a string of characters, the following steps take place:

Application Program

OS Function

BIOS Function

Hardware

Programming levels

Assembly language programs can perform input-output at each of the following levels:

Library Level 3
OS5 Function Level 2

ASM Program
BIOS Function Level 1

Hardware Level 0

Summary

« Central Processing Unit (CPU)
 Arithmetic Logic Unit (ALU)
 Instruction execution cycle

» Multitasking

* Floating Point Unit (FPU)

« Complex Instruction Set
 Real mode and Protected mode
 Motherboard components
 Memory types

 Input/Output and access levels

Thanks a lot

Lecture Over

	Slide 1
	Slide 2
	Slide 3: General Concepts
	Slide 4: Basic Microcomputer Design
	Slide 5: CPU
	Slide 6: Memory Storage Unit
	Slide 7: Memory technologies landscape
	Slide 8: Internal organization of memory is usually an array
	Slide 9: Non-Volatile Memory: Mask ROM
	Slide 10: OTP ROM with Example use
	Slide 11: Non-Volatile Memory: EPROM
	Slide 12: Non-Volatile Memory: EEPROM
	Slide 13: Non-Volatile Memory: Flash Memory
	Slide 14: Volatile Memory: Static RAM and Dynamic RAM
	Slide 15: Volatile Memory: Static RAM and Dynamic RAM
	Slide 16: Volatile Memory: Static RAM and Dynamic RAM
	Slide 17: Volatile Memory: Static RAM and Dynamic RAM
	Slide 18: Volatile Memory: Static RAM and Dynamic RAM
	Slide 19: Volatile Memory: Static RAM and Dynamic RAM
	Slide 20: Volatile Memory: Static RAM and Dynamic RAM
	Slide 21: Volatile Memory: Static RAM and Dynamic RAM
	Slide 22: Is RAM really that volatile?
	Slide 23: A good use!
	Slide 24: Buses
	Slide 25: Buses
	Slide 26: Buses
	Slide 27: Clock
	Slide 28: Next Comes
	Slide 29: Instruction Execution Cycle
	Slide 30: Reading from Memory
	Slide 31: Reading from Memory
	Slide 32: Reading from Memory
	Slide 33: Reading from Memory
	Slide 34: Cache Memory
	Slide 35: How a Program Runs
	Slide 36: How a Program Runs
	Slide 37: How a Program Runs
	Slide 38: What's Next
	Slide 39: IA-32 Processor Architecture
	Slide 40: Modes of Operation
	Slide 41: Modes of Operation
	Slide 42: Basic Execution Environment
	Slide 43: Addressable Memory
	Slide 44: General-Purpose Registers
	Slide 45: Some Specialized Register Uses (1 of 2)
	Slide 46: Accessing Parts of Registers
	Slide 47: Index and Base Registers
	Slide 48: Some Specialized Register Uses (2 of 2)
	Slide 49: Status Flags
	Slide 50: Floating-Point, MMX, XMM Registers
	Slide 51: What's Next
	Slide 52: X86 Memory Management
	Slide 53: Real Address Mode
	Slide 54: Protected Mode
	Slide 55: Virtual-8086 Mode
	Slide 56: What's Next
	Slide 57: 64-Bit Processors (1/2)
	Slide 58: 64-Bit Processors (2/2)
	Slide 59: 64-Bit General Purpose Registers
	Slide 60: Specialized Registers
	Slide 61
	Slide 62: What's Next
	Slide 63: Components of an IA-32 Microcomputer
	Slide 64: Motherboard
	Slide 65: Intel D850MD Motherboard
	Slide 67: Input-Output Ports
	Slide 68: Wired Technology: UART
	Slide 69: UART Functions
	Slide 70: UART Basics
	Slide 71: UART Transmission Example
	Slide 72: UART Transmission Example
	Slide 73: UART Transmission Example
	Slide 74: UART Transmission Example
	Slide 75: UART Transmission Example
	Slide 76: Device Interfaces
	Slide 77: What's Next
	Slide 78: Levels of Input-Output
	Slide 79: Displaying a String of Characters
	Slide 80: Programming levels
	Slide 81: Summary
	Slide 82: Thanks a lot

