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• Data Representation

• Boolean Operations



Binary Numbers

• Digits are 1 and 0
• 1 = true   In physical terms some voltage exists (2V - 5 V)

• 0 = false  In physical terms no voltage exists (0V – 1V)

• MSB – most significant bit

• LSB – least significant bit

• Bit numbering:
015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSBMSB LSB



Binary Numbers

• Each bit represents a power of 2:
1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary number is a sum of 
powers of 2



Converting Binary to Decimal

Weighted positional notation shows how to calculate the decimal 
value of each binary bit:

Decimal = (dn-1  2n-1) + (dn-2  2n-2) + ... + (d1  21) + (d0  20)

d = binary digit

binary 00001001 = decimal 9:

(1  23) + (1  20) = 9



Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a 
binary digit in the translated value. Example of “37”
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Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a 
binary digit in the translated value:

37 = 100101
stop when 

quotient is zero

least significant bit

most significant bit



Binary Addition
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• Starting with the LSB, add each pair of digits, include  

the carry if present.

+

(4)

(7)

(11)

carry: 1

bit position:

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 1

7 6 5 4 3 2 1 0



Integer Storage Sizes
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16

byte 8

32

64

word  

doubleword  

quadword

Standard sizes:
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Integer Storage Sizes
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16

byte 8

32

64

word  

doubleword  

quadword

What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:



Binary values are represented in hexadecimal.

Hexadecimal Integers



Translating Binary to Hexadecimal
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• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer  

000101101010011110010100 to hexadecimal:
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Translating Binary to Hexadecimal
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• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer  

000101101010011110010100 to hexadecimal:



Converting Hexadecimal to Decimal
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• Multiply each digit by its corresponding power of 16:

dec = (D3  163) + (D2  162) + (D1  161) + (D0  160)

• Hex 1234 equals (1  163) + (2  162) + (3  161) + (4  160),or
decimal 4,660.

• Hex 3BA4 equals (3  163) + (11 * 162) + (10  161) + (4  160), or
decimal 15,268.



Used when calculating hexadecimal values up to 8 digits long:

Powers of 16



Converting Decimal to Hexadecimal
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decimal 422 = 1A6 hexadecimal



Hexadecimal Addition

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 35

• Divide the sum of two digits by the number base (16). The quotient  becomes the carry 

value, and the remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, rem 5

Important skill: Programmers frequently add and subtract 

the  addresses of variables and instructions.



Hexadecimal Subtraction

• When a borrow is required from the digit to the left, add 16  (decimal) to the current 

digit's value:

−1

C6 75
A2 47
24 2E

16 + 5 = 21

Practice: The address of var1 is 00400020. The address of the next  

variable after var1 is 0040006A. How many bytes are used by var1?



Signed Integers
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The highest bit indicates the sign. 1 = negative,  0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If the highest digit of a hexadecimal integer is > 7, the value is  

negative. Examples: 8A, C5, A2, 9D



Forming the Two's Complement
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• Negative numbers are stored in two's complement notation

• Represents the additive Inverse

Note that 00000001 + 11111111 = 00000000



Binary Subtraction
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• When subtracting A – B, convert B to its two's  complement

• Add A to (–B)

Practice: Subtract 0101 from 1001.

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

– 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1

0 0 0 0 1 0 0 1



Hexadecimal Two’s Complement

• Reverse all bits and add 1 

• An easy way to reverse the bits of a hexadecimal digit is to 
subtract the digit from 15 



Translating Signed Binary to Decimal

• If the highest bit is a 1, the number is stored in two’s-complement 
notation

• Take two’s-complement again and convert this new number to decimal 
as if it were an unsigned binary integer. 

• If the highest bit is a 0, you can convert it to decimal as if it were an 
unsigned binary integer 



Translating Signed Decimal to Binary

• Convert the absolute value of the decimal integer to binary

• If the original decimal integer was negative, create the two’s 
complement of the binary number from the previous step 



Translating Signed Decimal to Hexadecimal

• Convert the absolute value of the decimal integer to hexadecimal

• If the decimal integer was negative, create the two’s complement of 
the hexadecimal number from the previous step.



Translating Signed Hexadecimal to Decimal

• If the hexadecimal integer is negative, create its two’s complement; 
otherwise, retain the integer as is

• Using the integer from the previous step, convert it to decimal. If the 
original value was negative, attach a minus sign to the beginning of the 
decimal integer. 



Ranges of Signed Integers
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The highest bit is reserved for the sign. This limits the range:

Practice: What is the largest positive value that may be stored in 20 bits?



Character Storage
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• Character sets

• Standard ASCII (0 – 127)

• Extended ASCII (0 – 255)

• ANSI (0 – 255)

• Unicode (0 – 65,535)

• Null-terminated String

• Array of characters followed by a null byte

• Using the ASCII table

• back inside cover of book



Reading Assignment

Read Character sets from book including the interpretation of ASCII 
table and ASCII control characters



Numeric Data Representation
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• pure binary

• can be calculated directly

• ASCII binary

• string of digits: "01010101"

• ASCII decimal

• string of digits: "65"

• ASCII hexadecimal

• string of digits: "9C"



What's Next
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• Boolean Operations



Boolean Operations
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• NOT

• AND

• OR

• Operator Precedence

• Truth Tables



Boolean Algebra
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• Based on symbolic logic, designed by George Boole

• Boolean expressions created from:

• NOT, AND, OR



NOT
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• Inverts (reverses) a boolean value

• Truth table for Boolean NOT operator:

NOT

Digital gate diagram for NOT:



AND
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• Truth table for Boolean AND operator:

AND

Digital gate diagram forAND:



OR
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• Truth table for Boolean OR operator:

OR

Digital gate diagram for OR:



Operator Precedence

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 55

• Examples showing the order of operations:



Truth Tables (1 of 3)
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• A Boolean function has one or more Boolean inputs,  and returns a 

single Boolean output.

• A truth table shows all the inputs and outputs of a  Boolean function

Example: X  Y



Truth Tables (2 of 3)
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• Example: X  Y



Truth Tables (3 of 3)
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• Example: (Y  S)  (X  S)

mux
X

Y

S

Z

Two-input multiplexer



Thanks a lot

If you are taking a Nap, wake up........Lecture Over
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