
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 2

Dr. Naveed Anwar Bhatti

• Data Representation

• Boolean Operations

Binary Numbers

• Digits are 1 and 0
• 1 = true In physical terms some voltage exists (2V - 5 V)

• 0 = false In physical terms no voltage exists (0V – 1V)

• MSB – most significant bit

• LSB – least significant bit

• Bit numbering:
015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSBMSB LSB

Binary Numbers

• Each bit represents a power of 2:
1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary number is a sum of
powers of 2

Converting Binary to Decimal

Weighted positional notation shows how to calculate the decimal
value of each binary bit:

Decimal = (dn-1  2n-1) + (dn-2  2n-2) + ... + (d1  21) + (d0  20)

d = binary digit

binary 00001001 = decimal 9:

(1  23) + (1  20) = 9

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value. Example of “37”

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

Convert Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

37 = 100101
stop when

quotient is zero

least significant bit

most significant bit

Binary Addition

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 14

• Starting with the LSB, add each pair of digits, include

the carry if present.

+

(4)

(7)

(11)

carry: 1

bit position:

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 1 1

7 6 5 4 3 2 1 0

Integer Storage Sizes

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 15

16

byte 8

32

64

word

doubleword

quadword

Standard sizes:

Integer Storage Sizes

16

16

byte 8

32

64

word

doubleword

quadword

Standard sizes:

Integer Storage Sizes

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 17

16

byte 8

32

64

word

doubleword

quadword

What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:

Binary values are represented in hexadecimal.

Hexadecimal Integers

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 19

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 20

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 21

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 22

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 23

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 24

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 25

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 26

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 27

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 28

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 29

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 30

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Translating Binary to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 31

• Each hexadecimal digit corresponds to 4 binary bits.

• Example: Translate the binary integer

000101101010011110010100 to hexadecimal:

Converting Hexadecimal to Decimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 32

• Multiply each digit by its corresponding power of 16:

dec = (D3  163) + (D2  162) + (D1  161) + (D0  160)

• Hex 1234 equals (1  163) + (2  162) + (3  161) + (4  160),or
decimal 4,660.

• Hex 3BA4 equals (3  163) + (11 * 162) + (10  161) + (4  160), or
decimal 15,268.

Used when calculating hexadecimal values up to 8 digits long:

Powers of 16

Converting Decimal to Hexadecimal

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 34

decimal 422 = 1A6 hexadecimal

Hexadecimal Addition

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 35

• Divide the sum of two digits by the number base (16). The quotient becomes the carry

value, and the remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, rem 5

Important skill: Programmers frequently add and subtract

the addresses of variables and instructions.

Hexadecimal Subtraction

• When a borrow is required from the digit to the left, add 16 (decimal) to the current

digit's value:

−1

C6 75
A2 47
24 2E

16 + 5 = 21

Practice: The address of var1 is 00400020. The address of the next

variable after var1 is 0040006A. How many bytes are used by var1?

Signed Integers

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 37

The highest bit indicates the sign. 1 = negative, 0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If the highest digit of a hexadecimal integer is > 7, the value is

negative. Examples: 8A, C5, A2, 9D

Forming the Two's Complement

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 38

• Negative numbers are stored in two's complement notation

• Represents the additive Inverse

Note that 00000001 + 11111111 = 00000000

Binary Subtraction

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 39

• When subtracting A – B, convert B to its two's complement

• Add A to (–B)

Practice: Subtract 0101 from 1001.

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

– 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1

0 0 0 0 1 0 0 1

Hexadecimal Two’s Complement

• Reverse all bits and add 1

• An easy way to reverse the bits of a hexadecimal digit is to
subtract the digit from 15

Translating Signed Binary to Decimal

• If the highest bit is a 1, the number is stored in two’s-complement
notation

• Take two’s-complement again and convert this new number to decimal
as if it were an unsigned binary integer.

• If the highest bit is a 0, you can convert it to decimal as if it were an
unsigned binary integer

Translating Signed Decimal to Binary

• Convert the absolute value of the decimal integer to binary

• If the original decimal integer was negative, create the two’s
complement of the binary number from the previous step

Translating Signed Decimal to Hexadecimal

• Convert the absolute value of the decimal integer to hexadecimal

• If the decimal integer was negative, create the two’s complement of
the hexadecimal number from the previous step.

Translating Signed Hexadecimal to Decimal

• If the hexadecimal integer is negative, create its two’s complement;
otherwise, retain the integer as is

• Using the integer from the previous step, convert it to decimal. If the
original value was negative, attach a minus sign to the beginning of the
decimal integer.

Ranges of Signed Integers

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 45

The highest bit is reserved for the sign. This limits the range:

Practice: What is the largest positive value that may be stored in 20 bits?

Character Storage

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 46

• Character sets

• Standard ASCII (0 – 127)

• Extended ASCII (0 – 255)

• ANSI (0 – 255)

• Unicode (0 – 65,535)

• Null-terminated String

• Array of characters followed by a null byte

• Using the ASCII table

• back inside cover of book

Reading Assignment

Read Character sets from book including the interpretation of ASCII
table and ASCII control characters

Numeric Data Representation

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 48

• pure binary

• can be calculated directly

• ASCII binary

• string of digits: "01010101"

• ASCII decimal

• string of digits: "65"

• ASCII hexadecimal

• string of digits: "9C"

What's Next

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 49

• Boolean Operations

Boolean Operations

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 50

• NOT

• AND

• OR

• Operator Precedence

• Truth Tables

Boolean Algebra

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 51

• Based on symbolic logic, designed by George Boole

• Boolean expressions created from:

• NOT, AND, OR

NOT

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 52

• Inverts (reverses) a boolean value

• Truth table for Boolean NOT operator:

NOT

Digital gate diagram for NOT:

AND

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 53

• Truth table for Boolean AND operator:

AND

Digital gate diagram forAND:

OR

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 54

• Truth table for Boolean OR operator:

OR

Digital gate diagram for OR:

Operator Precedence

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 55

• Examples showing the order of operations:

Truth Tables (1 of 3)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 56

• A Boolean function has one or more Boolean inputs, and returns a

single Boolean output.

• A truth table shows all the inputs and outputs of a Boolean function

Example: X  Y

Truth Tables (2 of 3)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 57

• Example: X  Y

Truth Tables (3 of 3)

Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2014. 58

• Example: (Y  S)  (X  S)

mux
X

Y

S

Z

Two-input multiplexer

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1
	Slide 2
	Slide 3: Binary Numbers
	Slide 4: Binary Numbers
	Slide 5: Converting Binary to Decimal
	Slide 6: Convert Unsigned Decimal to Binary
	Slide 7: Convert Unsigned Decimal to Binary
	Slide 8: Convert Unsigned Decimal to Binary
	Slide 9: Convert Unsigned Decimal to Binary
	Slide 10: Convert Unsigned Decimal to Binary
	Slide 11: Convert Unsigned Decimal to Binary
	Slide 12: Convert Unsigned Decimal to Binary
	Slide 13: Convert Unsigned Decimal to Binary
	Slide 14: Binary Addition
	Slide 15: Integer Storage Sizes
	Slide 16: Integer Storage Sizes
	Slide 17: Integer Storage Sizes
	Slide 18: Hexadecimal Integers
	Slide 19: Translating Binary to Hexadecimal
	Slide 20: Translating Binary to Hexadecimal
	Slide 21: Translating Binary to Hexadecimal
	Slide 22: Translating Binary to Hexadecimal
	Slide 23: Translating Binary to Hexadecimal
	Slide 24: Translating Binary to Hexadecimal
	Slide 25: Translating Binary to Hexadecimal
	Slide 26: Translating Binary to Hexadecimal
	Slide 27: Translating Binary to Hexadecimal
	Slide 28: Translating Binary to Hexadecimal
	Slide 29: Translating Binary to Hexadecimal
	Slide 30: Translating Binary to Hexadecimal
	Slide 31: Translating Binary to Hexadecimal
	Slide 32: Converting Hexadecimal to Decimal
	Slide 33: Powers of 16
	Slide 34: Converting Decimal to Hexadecimal
	Slide 35: Hexadecimal Addition
	Slide 36: Hexadecimal Subtraction
	Slide 37: Signed Integers
	Slide 38: Forming the Two's Complement
	Slide 39: Binary Subtraction
	Slide 40: Hexadecimal Two’s Complement
	Slide 41: Translating Signed Binary to Decimal
	Slide 42: Translating Signed Decimal to Binary
	Slide 43: Translating Signed Decimal to Hexadecimal
	Slide 44: Translating Signed Hexadecimal to Decimal
	Slide 45: Ranges of Signed Integers
	Slide 46: Character Storage
	Slide 47: Reading Assignment
	Slide 48: Numeric Data Representation
	Slide 49: What's Next
	Slide 50: Boolean Operations
	Slide 51: Boolean Algebra
	Slide 52: NOT
	Slide 53: AND
	Slide 54: OR
	Slide 55: Operator Precedence
	Slide 56: Truth Tables (1 of 3)
	Slide 57: Truth Tables (2 of 3)
	Slide 58: Truth Tables (3 of 3)
	Slide 59: Thanks a lot

