
Computer Organization and Assembly Language (COAL)

Webpage: naveedanwarbhatti.github.io

Lecture 1

Dr. Naveed Anwar Bhatti

Who am I? Dr. Naveed Anwar Bhatti

Hometown: Islamabad

Last Job:

Senior Researcher
RISE, Stockholm, Sweden
Joined on April, 2018
ERCIM Post-Doc (April, 2018 – Sep, 2019)

Education:

PhD
2018

Computer Science
Politecnico di Milano, Italy
System Support for Transiently
Powered Embedded Systems

MS
2013

BS
2011

Computer Science
FAST-NUCES, Islamabad, Pakistan
Long range RFID System: Decoupling sensing and
energy in sensor networks using energy transference

Telecom
FAST-NUCES, Islamabad, Pakistan
Internet Controlled Unmanned Ground Vehicle

Long range RFID-like System

TelosB moteLaser Module

Solar Panel

Long range RFID-like System

System Support for Transiently Powered Embedded Systems

MINIMUM
OPERATING

VOLTAGE

CHARGING RUNNING CHARGING

CHALLENGE: MAKE EMBEDDED DEVICES IMMUNE TO TRANSIENT POWER ENVIRONMENT

DEAD DEAD DEAD

0%

85%

0%

90%

0%

70%

EN
ER

G
Y

LE
V

EL

STARTUP VOLTAGE

System Support for Transiently Powered Embedded Systems

OPERATING
VOLTAGE

CHARGING RUNNING RUNNINGCHARGING

0%

85% 100%

SAVE THE STATE

RESTORE THE STATE

85%

EN
ER

G
Y

LE
V

EL

STARTUP VOLTAGE

System Support for Transiently Powered Embedded Systems

ARM®32-bit Cortex®-M3
CPU
32 MHz max CPU
frequency
512 KB Flash
80 KB SRAM

STM32 NUCLEO L152RE

ARM®32-bit Cortex®-M0
CPU
48 MHz max CPU
frequency
256 KB Flash
32 KB SRAM

STM32 NUCLEO 91RC

1 OHMS RESISTER

Other Sensor Deployments

Waspmote

How to reach me?

Email: naveed.bhatti@mail.au.edu.pk
Webpage: naveedanwarbhatti.github.io

Class page and slides: zupq557 (Google classroom)

Administrivia and more

• Grading split

• Assignments: 10%
• Quizzes: 10%
• Mid-Term Exam: 35%
• Final Exam: 45%

Prohibitions

Class Attendance and Late arrival

• University and HEC cares about it
• I do not !
• I shall say you are present as long as you tell me before class
• If you are not serious about the course, its your loss

• Both money wise
• And grade wise (directly: 10% participation, quizes indirectly: exams)

• If you arrive late
• Be discrete (come in with minimal fanfare)
• Be courteous (to other students trying to listen)

Computer Organization and Assembly
Language

• Computer Organization vs Computer Architecture
• What is Assembly Language?
• Why Learn Assembly Language?

Computer System

Data BusData Bus

RAM/ROMRAM/ROM I/O DeviceI/O Device

Address BusAddress Bus

Control BusControl Bus

CPUCPU

CPU

Memory

I/O Devices

Buses

Application

Design

Application

Design

Application

Program

Application

Program

Components System Design High-level
Software

Computer System

Computer System

Computer System

Computer System

Computer Organization vs Computer Architecture

What the computer does How it does it

Deals with the functional
behavior

Deals with a structural
relationship

Deals with high-level design issues Deals with low-level design
issues.

“The implementation of the architecture is called organization”

Architecture Organization

Computer Organization

https://www.learncomputerscienceonline.com/computer-organization-and-architecture/

Some questions to ask?

• What is Assembly Language?

• Why Learn Assembly Language?

• What is Machine Language?

• How is Assembly related to Machine Language?

• What is an Assembler (Compiler vs Assembler vs Linker)?

• How is Assembly related to High-Level Language?

• Is Assembly Language portable?

A Hierarchy of Languages

High-level
Programing
languages

Low-level
Programing
languages

A Hierarchy of Languages

High-level
Programing
languages

Low-level
Programing
languages

• Machine language
• Native to a processor: executed

directly by hardware

• Instructions consist of binary code: 1s
and 0s

• Assembly language
• Slightly higher-level language

• Readability of instructions is better
than machine language

• One-to-one correspondence with
machine language instructions

Compiler and Assembler

• Assemblers translate assembly
to machine code

• Compilers translate high-level
programs to machine code
• Either directly, or
• Indirectly via an assembler

Translating Languages

English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:

mov eax, A

mul B

add eax, 10

mov D, eax

Intel Machine Language:

A1 00404000

F7 25 00404004

83 C0 0A

A3 00404008

A statement in a high-level language is translated

typically into several low-level instructions

Advantages of High-Level Languages

• Program development is faster
• High-level statements: fewer instructions to code

• Program maintenance is easier
• For the same above reasons

• Programs are portable
• Contain few machine-dependent details

• Can be used with little or no modifications on different machines

• Compiler translates to the target machine language
• However, Assembly language programs are not portable

Why Learn Assembly Language?

• Two main reasons:
• Accessibility to system hardware

• Space and time efficiency

• Accessibility to system hardware
• Assembly Language is useful for implementing system software (drivers)
• Also useful for small embedded system applications

• Space and Time efficiency
• Understanding sources of program inefficiency
• Tuning program performance
• Writing compact code

Assembly vs High-Level Languages

Some representative types of applications:

Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Digital Logic
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Increased level

of abstraction

Each level hides

the details of the

level below it

Programmer's View – 2

• Application Programs (Level 5)
• Written in high-level programming languages
• Such as Java, C++, Pascal, Visual Basic . . .
• Programs compile into assembly language level (Level 4)

• Assembly Language (Level 4)
• Instruction mnemonics are used
• One-to-one correspondence to machine language
• Calls functions written at the operating system level (Level 3)
• Programs are translated into machine language (Level 2)

• Operating System (Level 3)
• Provides services to level 4 and 5 programs
• Translated to run at the machine instruction level (Level 2)

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Digital Logic
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Programmer's View – 3

• Instruction Set Architecture (Level 2)
• Specifies how a processor functions
• Machine instructions, registers, and memory are exposed
• Machine language is executed by Level 1 (microarchitecture)

• Microarchitecture (Level 1)
• Controls the execution of machine instructions (Level 2)
• Implemented by digital logic (Level 0)

• Digital Logic (Level 0)
• Implements the microarchitecture
• Uses digital logic gates
• Logic gates are implemented using transistors

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Digital Logic
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

 Data Representation

 Boolean Operations

Next TimeNext Time

Summary

• Assembly language helps you learn how software is constructed at the lowest levels

• Assembly language has a one-to-one relationship with machine language

• An assembler is a program that converts assembly language programs into machine
language

• A linker combines individual files created by an assembler into a single executable file

• A computer system can be viewed as consisting of layers. Programs at one layer are
translated or interpreted by the next lower-level layer

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

Acknowledgment and References

• Most of the slides are borrowed from
• Umme Hani previously taught course

	Slide 1
	Slide 2: Who am I? Dr. Naveed Anwar Bhatti
	Slide 3: Long range RFID-like System
	Slide 4: Long range RFID-like System
	Slide 5: System Support for Transiently Powered Embedded Systems
	Slide 6: System Support for Transiently Powered Embedded Systems
	Slide 7: System Support for Transiently Powered Embedded Systems
	Slide 8: Other Sensor Deployments
	Slide 9: How to reach me?
	Slide 10: Administrivia and more
	Slide 11: Prohibitions
	Slide 12: Class Attendance and Late arrival
	Slide 13
	Slide 14: Computer System
	Slide 15: Computer System
	Slide 16: Computer System
	Slide 17: Computer System
	Slide 18: Computer System
	Slide 19: Computer Organization vs Computer Architecture
	Slide 20: Computer Organization
	Slide 21: Some questions to ask?
	Slide 22: A Hierarchy of Languages
	Slide 23: A Hierarchy of Languages
	Slide 24: Compiler and Assembler
	Slide 25: Translating Languages
	Slide 26: Advantages of High-Level Languages
	Slide 27: Why Learn Assembly Language?
	Slide 28: Assembly vs High-Level Languages
	Slide 29: Programmer’s View of a Computer System
	Slide 30: Programmer's View – 2
	Slide 31: Programmer's View – 3
	Slide 32
	Slide 33: Summary
	Slide 34: Thanks a lot
	Slide 35: Acknowledgment and References

