Computer Organization and Assembly Language (COAL)

Lecture 1

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Who am |? Dr. Naveed Anwar Bhatti

@
Hometown: Islamabad

Senior Researcher
Last Job: RISE, Stockholm, Sweden

Joined on April, 2018
ERCIM Post-Doc (April, 2018 — Sep, 2019)

Computer Science

Politecnico di Milano, Italy
2018 System Support for Transiently
Powered Embedded Systems

Computer Science

Education: FAST-NUCES, Islamabad, Pakistan
2013 Long range RFID System: Decoupling sensing and
energy in sensor networks using energy transferenc |

Telecom

FAST-NUCES, Islamabad, Pakistan
2011 Internet Controlled Unmanned Ground Vehicle

— | PO}
o ¥ : MILANO 1863

Long range RFID-like System

Fast Water
Fountain

120

Solar Panel

$>
0
%45

>
%\-l-.
a’&

-

kﬁ—'
LAMP Leaves

Laser Module

TelosB mote
g Wire/Wireless - - _
e communication >,
| 4 < p e
Laser ~_Laser A (7 e
Tilt Tilt - é
N % 7 &
Pan Power P Pan » (7 &
owWer
.Sf.CkEt SDCKEt é’
[M) T
LAMP Master - v LAMP Master LAMP Leaves

Long range RFID-like System

System Support for Transiently Powered Embedded Systems

CHARGING RUNNING CHARGING

| | | | 1

STARTUP VOLTAGE ' 5 : : ' : -

1 : : : >

| : | LN

| : | %

MINIMUM : ' ! -

OPERATING ' ' =
VOLTAGE

CHALLENGE: MAKE EMBEDDED DEVICES IMMUNE TO TRANSIENT POWER ENVIRONMENT

System Support for Transiently Powered Embedded Systems

CHARGING RUNNING CHARGING RUNNING

| U J\ | | *

STARTUP VOLTAGE

OPERATING

VOLTAGE
e
/

SAVE THE STATE

ENERGY LEVEL

RESTORE THE STATE

System Support for Transiently Powered Embedded Systems

1 OHMS RESISTER

STM32 NUCLEO L152RE STM32 NUCLEO 91RC
ARM®32-bit Cortex®-M3 ARM®32-bit Cortex®-MO
CPU CPU
32 MHz max CPU 48 MHz max CPU
frequency frequency
512 KB Flash 256 KB Flash

80 KB SRAM 32 KB SRAM

Other Sensor Deployments

e R, e

How to reach me?

Email: naveed.bhatti@mail.au.edu.pk
Webpage: naveedanwarbhatti.github.io

Class page and slides: zupq557 (Google classroom)

Administrivia and more

e Grading split

* Assignments: 10%

* Quizzes: 10%

e Mid-Term Exam: 35%
* Final Exam: 45%

Prohibitions

Class Attendance and Late arrival

* University and HEC cares about it
e |donot!
* |shall say you are present as long as you tell me before class
* |f you are not serious about the course, its your loss
 Both money wise
 And grade wise (directly: 10% participation, quizes indirectly: exams)

* If you arrive late
 Be discrete (come in with minimal fanfare)
* Be courteous (to other students trying to listen)

Computer Organization and Assembly
Language

 Computer Organization vs Computer Architecture
* What is Assembly Language?
* Why Learn Assembly Language?

N Computer System

Components System Design High-level
Software
Control Bus
Application
Program
Memory

RAM/ROM I/O Device

|/O Devices Application

Design

Computer System

pplication Program

| ‘O
%< »

Application Design

System Design

Computer Design

Logic Design

Circuit Design

SOVAIvO
VAVAU/RURY

Computer
Component

I

Computer System

S
VAVAURURY)

pplication Program

i

Application Design

System Design

Computer Design

Logic Design

Circuit Design

Computer
Component

I

-
+

Software

v

>

Hardware

Computer System

Computer

Architectur

pplication Program

-

"

Application Design

-

AVAVAVAURYA

"

System Design

e
@r Design

F
k.

-

Logic Design

Circuit Design

1L

Computer

Component

Software

et
|

Hardware

Computer System

pplication Program

k

Application Design

Software

System Design

-
=

Computer
Architecture

l “ Computer Design

-

et
|

Logic Design

Computer Hardware

Organizatio

Circuit Design

(O
VAVAURURY

Computer

Component

Computer Organization vs Computer Architecture

I W | NN
Architecture Organization
What the computer does How it does it
Deals with the functional Deals with a structural
behavior relationship
Deals with high-level design issues Deals with low-level design
issues.

“The implementation of the architecture is called organization”

N Computer Organization

2
r—o Decode | j

-> No —> 1 Fetch | Instruction * eyacute) 3

Cycle
L .. Store "—)
Yes 2
_ Service Interrupt T l
Disk Memory
Secondary Memory :
Operating System Loads G .
Program Into RAM intel
1 CPU
1 Instruction. s S —
2 Instruction. Processor CPU
3 Instruction.
4 Instruction.
5 Instruction. - —
6 Instruction. MODE | OPCODE [OPRAND}
Primary Memo .
Mair:y sz b Program Is Set Of Instruction Format
RAM Y Instructions Stored InThe

Main Memory RAM

https://www.learncomputerscienceonline.com/computer-organization-and-architecture/

Some questions to ask?

* What is Assembly Language?
* Why Learn Assembly Language?

* What is Machine Language?

* How is Assembly related to Machine Language?

* What is an Assembler (Compiler vs Assembler vs Linker)?
* How is Assembly related to High-Level Language?

* |Is Assembly Language portable?

N A Hierarchy of Languages

B
Application programs
High-level | 00 and Visual |
High-level languages Programing N St |
Machine-independent High-level languages : AN SY -
------------------------------------- languages FORTRAN
Machine-specific Low-level languages r ' ' : ,
Assembly language High-Level Language
Machine language languages

Machine Language

H gl bemm i,
| = | Ld) = 3
A AWal o

Hardware

Microprogram control

A Hierarchy of Languages

* Machine language
* Native to a processor: executed

| High-level e —
directly by hardware programing < L0 Vil Lorgace |

* Instructions consist of binary code: 1s languages Fomnam‘l C] Pascal
and Os 4 High-Level Language

Low-level
’ Assembly language Programing < Assembly Language
* Slightly higher-level language languages
- Machine Language

e Readability of instructions is better
than machine language

* One-to-one correspondence with
machine language instructions

* Assemblers translate assembly

Compiler and Assembler

to machine code

Compilers translate high-level
programs to machine code

Either directly, or
Indirectly via an assembler

High-level languages

Assembly language

Machine language

Translating Languages

English: D is assigned the sum of A times B plus 10.

¥

High-Level Language: D=A*B + 10

typically into several low-level instructions

' A statement in a high-level language is translated

Intel Assembly Language:
mov eax, A

mul B

add eax, 10

mov D, eax

>

Intel Machine Language:
A1 00404000

F7 25 00404004

83 CO OA

A3 00404008

Advantages of High-Level Languages

* Program development is faster
* High-level statements: fewer instructions to code

* Program maintenance is easier
* For the same above reasons

* Programs are portable

* Contain few machine-dependent details
e Can be used with little or no modifications on different machines
* Compiler translates to the target machine language

 However, Assembly language programs are not portable

Why Learn Assembly Language?

* Two main reasons:
* Accessibility to system hardware
* Space and time efficiency

* Accessibility to system hardware
* Assembly Language is useful for implementing system software (drivers)
* Also useful for small embedded system applications

e Space and Time efficiency
* Understanding sources of program inefficiency
* Tuning program performance
* Writing compact code

Assembly vs High-Level Languages

Some representative types of applications:

Type of Application

High-Level Languages

Assembly Language

Business application soft-
ware, written for single
platform, medium to large

slzZe.

Hardware device driver.

Formal structures make it easy to
organize and maintain large sec-
tions of code.

Language may not provide for
direct hardware access. Even it 1t
does, awkward coding techniques
must often be used. resulting in
maintenance difficulties.

Minimal formal structure, so one
must be imposed by program-
mers who have varving levels of
experience. This leads to difficul-
ties maintaining existing code.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and

well documented.

Business application written
for multuple platforms (dif-
ferent operating systems).

Embedded systems and

computer games requiring

direct hardware access.

Usually very portable. The source

code can be recompiled on each

target operating system with mini-

mal changes.

Produces too much executable
code, and may not run efficiently.

Must be recoded separately for
cach platform. often using an
assembler with a different syn-
tax. Difficult to maintain.

[deal, because the executable
code 1s small and runs quickly.

N Programmer’s View of a Computer System

Increased level
of abstraction

A

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic

v

Each level hides
the details of the
level below it

N Programmer's View — 2

Application Programs

High-Level Language

* Application Programs (Level 5)
* Written in high-level programming languages ‘

e Such as Java, C++, Pascal, Visual Basic

* Programs compile into assembly language level (Level 4) Assembly Language

 Assembly Language (Level 4)

e Instruction mnemonics are used ‘ Operating System

* One-to-one correspondence to machine language
 Calls functions written at the operating system level (Level 3) '”StrU?tion Set
* Programs are translated into machine language (Level 2) Architecture

Microarchitecture

e Operating System (Level 3)

* Provides services to level 4 and 5 programs
* Translated to run at the machine instruction level (Level 2) Digital Logic

N Programmer's View — 3

. . Application Programs
* Instruction Set Architecture (Level 2) High-Level Language

» Specifies how a processor functions
* Machine instructions, registers, and memory are exposed
* Machine language is executed by Level 1 (microarchitecture)

Assembly Language

* Microarchitecture (Level 1) Operating System
e Controls the execution of machine instructions (Level 2)
* Implemented by digital logic (Level 0) Instruction Set
Architecture

* Digital Logic (Level 0)
* Implements the microarchitecture ‘
» Uses digital logic gates
* Logic gates are implemented using transistors ‘ Digital Logic ‘

Microarchitecture ‘

Next Time

® Data Representation
® Boolean Operations

Summary

* Assembly language helps you learn how software is constructed at the lowest levels
* Assembly language has a one-to-one relationship with machine language

* An assembler is a program that converts assembly language programs into machine
language

* A linker combines individual files created by an assembler into a single executable file

* A computer system can be viewed as consisting of layers. Programs at one layer are
translated or interpreted by the next lower-level layer

Thanks a lot

Lecture Over

Acknowledgment and References

* Most of the slides are borrowed from
* Umme Hani previously taught course

	Slide 1
	Slide 2: Who am I? Dr. Naveed Anwar Bhatti
	Slide 3: Long range RFID-like System
	Slide 4: Long range RFID-like System
	Slide 5: System Support for Transiently Powered Embedded Systems
	Slide 6: System Support for Transiently Powered Embedded Systems
	Slide 7: System Support for Transiently Powered Embedded Systems
	Slide 8: Other Sensor Deployments
	Slide 9: How to reach me?
	Slide 10: Administrivia and more
	Slide 11: Prohibitions
	Slide 12: Class Attendance and Late arrival
	Slide 13
	Slide 14: Computer System
	Slide 15: Computer System
	Slide 16: Computer System
	Slide 17: Computer System
	Slide 18: Computer System
	Slide 19: Computer Organization vs Computer Architecture
	Slide 20: Computer Organization
	Slide 21: Some questions to ask?
	Slide 22: A Hierarchy of Languages
	Slide 23: A Hierarchy of Languages
	Slide 24: Compiler and Assembler
	Slide 25: Translating Languages
	Slide 26: Advantages of High-Level Languages
	Slide 27: Why Learn Assembly Language?
	Slide 28: Assembly vs High-Level Languages
	Slide 29: Programmer’s View of a Computer System
	Slide 30: Programmer's View – 2
	Slide 31: Programmer's View – 3
	Slide 32
	Slide 33: Summary
	Slide 34: Thanks a lot
	Slide 35: Acknowledgment and References

