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Long range RFID-like System
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Long range RFID-like System



System Support for Transiently Powered Embedded Systems
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System Support for Transiently Powered Embedded Systems
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System Support for Transiently Powered Embedded Systems

ARM®32-bit Cortex®-M3 
CPU
32 MHz max CPU 
frequency
512 KB Flash
80 KB SRAM

STM32 NUCLEO L152RE

ARM®32-bit Cortex®-M0 
CPU
48 MHz max CPU 
frequency
256 KB Flash
32 KB SRAM

STM32 NUCLEO 91RC
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Other Sensor Deployments

Waspmote



How to reach me?

Email:  naveed.bhatti@mail.au.edu.pk  
Webpage: naveedanwarbhatti.github.io

Class page and slides:  zupq557  (Google classroom)



Administrivia and more 

• Grading split 

• Assignments: 10%
• Quizzes: 10%
• Mid-Term Exam: 35% 
• Final Exam: 45%



Prohibitions



Class Attendance and Late arrival

• University and HEC cares about it
• I do not ! 
• I shall say you are present as long as you tell me before class
• If you are not serious about the course, its your loss

• Both money wise
• And grade wise (directly: 10% participation, quizes indirectly: exams)

• If you arrive late
• Be discrete (come in with minimal fanfare)
• Be courteous (to other students trying to listen)



Computer Organization and Assembly 
Language 

• Computer Organization vs Computer Architecture
• What is Assembly Language?
• Why Learn Assembly Language?



Computer System
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Computer Organization vs Computer Architecture

What the computer does How it does it

Deals with the functional 
behavior

Deals with a structural 
relationship

Deals with high-level design issues Deals with low-level design 
issues.

“The implementation of the architecture is called organization”

Architecture Organization



Computer Organization

https://www.learncomputerscienceonline.com/computer-organization-and-architecture/



Some questions to ask?

• What is Assembly Language?

• Why Learn Assembly Language?

• What is Machine Language?

• How is Assembly related to Machine Language?

• What is an Assembler (Compiler vs Assembler vs Linker)?

• How is Assembly related to High-Level Language?

• Is Assembly Language portable?



A Hierarchy of Languages
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A Hierarchy of Languages

High-level 
Programing 
languages

Low-level 
Programing 
languages

• Machine language
• Native to a processor: executed 

directly by hardware

• Instructions consist of binary code: 1s 
and 0s

• Assembly language
• Slightly higher-level language

• Readability of instructions is better 
than machine language

• One-to-one correspondence with 
machine language instructions



Compiler and Assembler

• Assemblers translate assembly 
to machine code

• Compilers translate high-level 
programs to machine code
• Either directly, or
• Indirectly via an assembler



Translating Languages

English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:

mov eax, A

mul B

add eax, 10

mov D, eax

Intel Machine Language:

A1 00404000

F7 25 00404004

83 C0 0A

A3 00404008

A statement in a high-level language is translated 

typically into several low-level instructions



Advantages of High-Level Languages

• Program development is faster
• High-level statements: fewer instructions to code

• Program maintenance is easier
• For the same above reasons

• Programs are portable
• Contain few machine-dependent details

• Can be used with little or no modifications on different machines

• Compiler translates to the target machine language
• However, Assembly language programs are not portable



Why Learn Assembly Language?

• Two main reasons:
• Accessibility to system hardware

• Space and time efficiency

• Accessibility to system hardware
• Assembly Language is useful for implementing system software (drivers)
• Also useful for small embedded system applications

• Space and Time efficiency
• Understanding sources of program inefficiency
• Tuning program performance
• Writing compact code



Assembly vs High-Level Languages

Some representative types of applications:



Programmer’s View of a Computer System
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Programmer's View – 2

• Application Programs (Level 5)
• Written in high-level programming languages
• Such as Java, C++, Pascal, Visual Basic . . .
• Programs compile into assembly language level (Level 4)

• Assembly Language (Level 4)
• Instruction mnemonics are used
• One-to-one correspondence to machine language
• Calls functions written at the operating system level (Level 3)
• Programs are translated into machine language (Level 2)

• Operating System (Level 3)
• Provides services to level 4 and 5 programs
• Translated to run at the machine instruction level (Level 2)
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Programmer's View – 3

• Instruction Set Architecture (Level 2)
• Specifies how a processor functions
• Machine instructions, registers, and memory are exposed
• Machine language is executed by Level 1 (microarchitecture)

• Microarchitecture (Level 1)
• Controls the execution of machine instructions (Level 2)
• Implemented by digital logic (Level 0)

• Digital Logic (Level 0)
• Implements the microarchitecture
• Uses digital logic gates
• Logic gates are implemented using transistors
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 Data Representation

 Boolean Operations

Next TimeNext Time



Summary

• Assembly language helps you learn how software is constructed at the lowest levels

• Assembly language has a one-to-one relationship with machine language

• An assembler is a program that converts assembly language programs into machine 
language

• A linker combines individual files created by an assembler into a single executable file

• A computer system can be viewed as consisting of layers. Programs at one layer are 
translated or interpreted by the next lower-level layer



Thanks a lot

If you are taking a Nap, wake up........Lecture Over



Acknowledgment and References
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