
CS 310: Algorithms

Instructor: Naveed Anwar Bhatti

Lecture 23

Few Slides taken from Dr. Imdad’s  CS 510 course
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Administrivia

• The last class will be on 4th of December

• Final exam will be on 15th of December

• The last quiz will be on 4th of December
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How O(f E)?    Why O(f E)?    When O(f E)?
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Ford-Fulkerson Algorithm

How can we improve (resolve) this?

We need to choose the augmenting path wisely to fix the problem



6

Max Flow : The Edmond-Karp Algorithm

Choose shortest augmenting paths (in terms on number of edges)
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Max Flow : The Edmond-Karp Algorithm

Choose shortest augmenting paths in terms on number of edges
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Again (Same example)
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Again (Same example)
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Again (Same example)
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Again (Same example)
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Again (Same example)
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Again (Same example)
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The Edmond-Karp Algorithm (Time Complexity)

Choose shortest augmenting paths in terms on number of edges

O(V+E)

O(E)

O(E)
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The Edmond-Karp Algorithm (Time Complexity)

S TBA100 2 100

In shortest Augmented path, at least one bottleneck edge gets saturated

Length X
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The Edmond-Karp Algorithm (Time Complexity)

S TBA100 2 100

In shortest Augmented path, at least one bottleneck edge gets saturated

How many time each edge can be saturated?

Length X
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The Edmond-Karp Algorithm (Time Complexity)

S TBA100 2 100

Next time when this saturated edge will get selected, the total length will be 
at least >= X+1

Length X
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The Edmond-Karp Algorithm (Time Complexity)

S TBA100 2 100

Next time when this saturated edge will get selected, the total length will be 
at least >= X+1

Length X

Z
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The Edmond-Karp Algorithm (Time Complexity)

S TBA 2

Next time when this saturated edge will get selected, the total length will be 
at least >= X+1

Length (V-1)
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The Edmond-Karp Algorithm (Time Complexity)

S TBA 2

Each edge can be re-selected V-1 times MAX

Length (V-1)

E edges can be re-selected (E)*(V-1) times MAX
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The Edmond-Karp Algorithm (Time Complexity)

Choose shortest augmenting paths in terms on number of edges

O(V+E)

O(E)

O(E)

O(EV)
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The Edmond-Karp Algorithm (Time Complexity)

Choose shortest augmenting paths in terms on number of edges

O(V+E)

O(E)

O(E)

O(EV)

O(V𝑬𝟐) when E >= V
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Chapter 8:
NP and Computational Intractability

Section 8.1 :
Polynomial Time Reduction
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Efficiently Solvable Problems

So far, we dealt with problems like:

• Sorting n numbers
• Connected components in a graph
• Shortest path between two points (s-t path),
• Minimum Spanning Tree (MST), 
• Best alignment (possibly in sequence alignment)
• Maximum flow

We devised efficient 
algorithms for them

Efficient in what sense?
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Efficiently Solvable Problems

So far, we dealt with problems like:

• Sorting n numbers
• Connected components in a graph
• Shortest path between two points (s-t path),
• Minimum Spanning Tree (MST), 
• Best alignment (possibly in sequence alignment)
• Maximum flow

Search space for solutions is typically exponential in these problems

----- 𝒏!
----- 𝟐𝑬

----- 𝟐𝑽

----- 𝒏𝒏
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Efficiently Solvable Problems

So far, we dealt with problems like:

• Sorting n numbers
• Connected components in a graph
• Shortest path between two points (s-t path),
• Minimum Spanning Tree (MST), 
• Best alignment (possibly in sequence alignment)
• Maximum flow

----- 𝒏!
----- 𝟐𝑬

----- 𝟐𝑽

----- 𝒏𝒏
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Intractable Problems
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Hard (Intractable) Problems

Cannot say they are not efficiently solvable (just don't know yet)
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Classifying Problem Types

Decision Problem: Output Yes/No

Optimization Problem: Find the best numerical value

Search Problem: Find a particular object

Connectivity: can we get from s to t in a graph G?

Distance: what is the length of shortest path from s to t in a graph G?
Max Flow-Min Cut: what is the maximum flow that can pass in a flow network?

Shortest Path: find the shortest path with a lowest cost
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Polynomial Time Reduction

• To explore the class of computational hard problems, we define a notion of 
comparing the hardness of two problems

• Measures the relative difficulty of two problems

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any instance of problem A can be transform using a polynomial amount of 
computation to instance of B plus polynomial amount of computation to solve 
problem B
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Polynomial Time Reduction

• To explore the class of computational hard problems, we define a notion of 
comparing the hardness of two problems

• Measures the relative difficulty of two problems

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any instance of problem A can be transform using a polynomial amount of 
computation to instance of B plus polynomial amount of computation to solve 
problem B

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any subroutine (C + + function) for problem B can be used (called (once or 
more) with clever legal inputs) to solve any instance of problem A
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Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any instance of problem A can be transform using a polynomial amount of 
computation to instance of B plus polynomial amount of computation to solve 
problem B

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any subroutine (C + + function) for problem B can be used (called (once or 
more) with clever legal inputs) to solve any instance of problem A
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Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any instance of problem A can be transform using a polynomial amount of 
computation to instance of B plus polynomial amount of computation to solve 
problem B

1. If there is a polynomial time algorithm for B, then there is a 
polynomial time algorithm for A

2. If there is no polynomial time algorithm for A, then there is no 
polynomial time algorithm for B
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Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A ≤𝒑 B

If any instance of problem A can be transform using a polynomial amount of 
computation to instance of B plus polynomial amount of computation to solve 
problem B

FindMin ≤𝒑 Sort

Sort ≤𝒑 FindMin
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Polynomial Time Reduction

Reductions by 
Equivalence

Reduction from special 
case to general case

Reduction by encoding 
with gadgets
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑

0

3

1

4

2

Find minimum number of vertices ‘K’ such that for 
every edge (u, v) of the undirected graph ‘G’, either ‘u’ 
or ‘v’ is in the vertex cover. 

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?



37

Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Finding the largest independent set of size ‘K’ in a 
undirected graph ‘G’, where an independent set is a 
set of vertices such that no two vertices are adjacent

Find minimum number of vertices ‘K’ such that for 
every edge (u, v) of the undirected graph ‘G’, either ‘u’ 
or ‘v’ is in the vertex cover. 

Problem: Is there a size ‘K’ vertex cover in graph ‘G’? Problem: Is there a size ‘K’ independent set in graph ‘G’?
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Finding the largest independent set of size ‘K’ in a 
undirected graph ‘G’, where an independent set is a 
set of vertices such that no two vertices are adjacent

Find minimum number of vertices ‘K’ such that for 
every edge (u, v) of the undirected graph ‘G’, either ‘u’ 
or ‘v’ is in the vertex cover. 

Problem: Is there a size ‘K’ vertex cover in graph ‘G’? Problem: Is there a size ‘K’ independent set in graph ‘G’?
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Finding the largest independent set of size ‘K’ in a 
undirected graph ‘G’, where an independent set is a 
set of vertices such that no two vertices are adjacent

Find minimum number of vertices ‘K’ such that for 
every edge (u, v) of the undirected graph ‘G’, either ‘u’ 
or ‘v’ is in the vertex cover. 

Problem: Is there a size ‘K’ vertex cover in graph ‘G’? Problem: Is there a size ‘K’ independent set in graph ‘G’?
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Step 1: Translation Algorithm

Step 2: Prove that Translation Algorithm runs in polynomial time

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Step 1: Translation Algorithm

Given G=(V,E) and K for VC, build G`=G, K`= V-K for IS

Step 2: Prove that Translation Algorithm runs in polynomial time

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Step 1: Translation Algorithm

Given G=(V,E) and K for VC, build G`=G, K`= V-K for IS

Step 2: Prove that Translation Algorithm runs in polynomial time

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”

This conversion takes constant time
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Polynomial Time Reduction – by equivalence 

Minimum Vertex Cover Independent Set≤𝒑
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Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”

• Suppose that S is an independent set. 
• Consider an arbitrary edge e = (u, v). 
• Since S is independent set, it cannot be the case 

that both u and v are in S; so, one of them must 
be in V - S. 

• It follows that every edge has at least one end in 
V - S, and so V - S is a vertex cover.

IS (G`, K`) = yes    =>   VC (G, K) = yes

• Suppose that S is Vertex Cover set of size K of graph 
G. 

• At least one end of all edges should be in S
• Any vertex in V-S must be connected to vertices in S
• So, V-S vertices cannot be adjacent to each other
• Thus V-S is Independent Set

VC (G, K) = yes    =>    IS (G`, K`) = yes 
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Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover Set Cover≤𝒑

0

3

1

4

2

Find minimum number of vertices ‘K’ such that for 
every edge (u, v) of the undirected graph ‘G’, either ‘u’ 
or ‘v’ is in the vertex cover. 

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?

Given a set of elements U = {1, 2, ..., n}  (called the 
universe) and a collection of subsets of U, S = {𝑺𝟏, 
𝑺𝟏, ..., 𝑺𝒎}, and an integer ‘K’. Input is (U,S,K)

U = {1, 2, 3, 4, 5, 6, 7}      K=2 

𝑺𝟏= {3,7}

𝑺𝟐= {3,4,5,6}
𝑺𝟑= {1}

𝑺𝟒= {2,4}

Problem: Does there exist ‘K’ or fewer subsets such 
that their union is equal to U?

𝑺𝟓= {1,2,6,7}
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Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover Set Cover≤𝒑

0

3

1

4

2

Find minimum number of vertices ‘K’ such that for 
every edge (u, v) of the undirected graph ‘G’, either ‘u’ 
or ‘v’ is in the vertex cover. 

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?

Given a set of elements U = {1, 2, ..., n}  (called the 
universe) and a collection of subsets of U, S = {𝑺𝟏, 
𝑺𝟏, ..., 𝑺𝒎}, and an integer ‘K’. Input is (U,S,K) 

U = {1, 2, 3, 4, 5, 6, 7}      K=2 

𝑺𝟏= {3,7}

𝑺𝟐= {3,4,5,6}
𝑺𝟑= {1}

𝑺𝟒= {2,4}

Problem: Does there exist ‘K’ or fewer subsets such 
that their union is equal to U?

𝑺𝟓= {1,2,6,7}
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Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover Set Cover≤𝒑

Step 1: Translation Algorithm

Given G=(V,E) and K for VC, we build Set Cover (SC) input: 

1

3

2

4

5

𝑒1

𝑒2 𝑒3

𝑒4 𝑒5
𝑒6

𝑺𝟏= {𝑒1, 𝑒2, 𝑒4}

𝑺𝟐= {𝑒2, 𝑒3}

𝑺𝟑= {𝑒1, 𝑒4}

𝑺𝟒= {𝑒4, 𝑒6}

𝑺𝟓= {𝑒3, 𝑒5, 𝑒6}

K`= K

U = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6}
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Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover Set Cover≤𝒑

Step 1: Translation Algorithm

Given G=(V,E) and K for VC, we build Set Cover input: 
U = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6}
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4

5

𝑒1

𝑒2 𝑒3

𝑒4 𝑒5
𝑒6

𝑆1= {𝑒1, 𝑒2, 𝑒4}

𝑺𝟐= {𝑒2, 𝑒3}

𝑺𝟑= {𝑒1, 𝑒4}

𝑺𝟒= {𝑒4, 𝑒6}

𝑆5= {𝑒3, 𝑒5, 𝑒6}

K`= K
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Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover Set Cover≤𝒑

Step 1: Translation Algorithm

Given G=(V,E) and K for VC, we build Set Cover input: 
U = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6}

1

3

2

4

5

𝑒1

𝑒2 𝑒3

𝑒4 𝑒5
𝑒6

𝑆1= {𝑒1, 𝑒2, 𝑒4}

𝑺𝟐= {𝑒2, 𝑒3}

𝑺𝟑= {𝑒1, 𝑒4}

𝑺𝟒= {𝑒4, 𝑒6}

𝑆5= {𝑒3, 𝑒5, 𝑒6}

K`= K

Step 2 and Step 3 are straight forward
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Polynomial Time Reduction – by encoding gadgets

3-Sat Independent Set≤𝒑
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑

Step 1: Translation Algorithm

Connect nodes of each triangle with edges
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑

Step 1: Translation Algorithm

Connect nodes of each triangle with edges
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑

Step 1: Translation Algorithm

Connect nodes of each triangle with edges
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑

Step 1: Translation Algorithm

𝑥1

𝑥2

𝑥3

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

Connect nodes of each triangle with edges
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑

Step 1: Translation Algorithm

𝑥1

𝑥2

𝑥3

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

Connect nodes of each triangle with edges
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑

Step 1: Translation Algorithm

𝑥1

𝑥2

𝑥3

𝑥1

𝑥3

𝑥4

𝑥2

𝑥3

𝑥4

Connect nodes of each triangle with edges
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Polynomial Time Reduction – by encoding gadets

3-Sat Independent Set≤𝒑
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Transitivity of Reduction

3-Sat Independent Set≤𝒑 Minimum Vertex Cover Set Cover≤𝒑 ≤𝒑



Thanks a lot

If you are taking a Nap, wake up........Lecture Over
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