CS 310: Algorithms
Lecture 23

Instructor: Naveed Anwar Bhatti

Few Slides taken from Dr. Imdad’s CS 510 course






@ Administrivia

e The last class will be on 4th of December

* The last quiz will be on 4" of December

* Final exam will be on 15t of December



@ How O(fE)? Why O(fE)? When O(fE)?

2 /(A?\ 1 Waiting for Ford Fulkerson algorithm
100 to complete on 4 Vertices and 5 Edges




@ Ford-Fulkerson Algorithm

How can we improve (resolve) this?

We need to choose the augmenting path wisely to fix the problem



@ Max Flow : The Edmond-Karp Algorithm

Choose shortest augmenting paths (in terms on number of edges)



@ Max Flow : The Edmond-Karp Algorithm

Choose shortest augmenting paths in terms on number of edges

Algorithm Ford-Fulkerson Algorithm (G) with Shortest Paths

f<0 > Initialize to a (valid) flow of size 0 (on every edge)
while TRUE do
Compute Gr
Find a shortest s — t path P in Gf > Using BFS
if no such path then
return f
else

f <~ AUGMENT(P, f)




@ Again (Same example)

e

)

100 100

100 100

o
(@—r
=

o

100 100

)

Residual Network

100 100

%



@ Again (Same example)
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@ Again (Same example)
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@ Again (Same example)
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@ Again (Same example)
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@ Again (Same example)
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Flow Value = 200

Bottleneck (P) = 100



@ The Edmond-Karp Algorithm (Time Complexity)

Choose shortest augmenting paths in terms on number of edges

Algorithm Ford-Fulkerson Algorithm (G) with Shortest Paths

f<0 > Initialize to a (valid) flow of size 0 (on every edge)

while TRUE do
Compute Gf O(V+E)

Find a shortest s — t path P in Gf O(E) > Using BFS
if no such path then

return f
else

f < AUGMENT(P, f) O(E)
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@ The Edmond-Karp Algorithm (Time Complexity)

Length X

O —100—(r)—2—(8)—100—@)

In shortest Augmented path, at least one bottleneck edge gets saturated
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@ The Edmond-Karp Algorithm (Time Complexity)

Length X

O —10—(r)¢----2----(8)—100—@)

In shortest Augmented path, at least one bottleneck edge gets saturated

How many time each edge can be saturated?
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@ The Edmond-Karp Algorithm (Time Complexity)

Length X

O —10—(r)¢----2----(8)—100—@)

Next time when this saturated edge will get selected, the total length will be
at least >= X+1
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@ The Edmond-Karp Algorithm (Time Complexity)

Length X

Next time when this saturated edge will get selected, the total length will be
at least >= X+1
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@ The Edmond-Karp Algorithm (Time Complexity)

Length (V-1)

O OO D2 B OO @

Next time when this saturated edge will get selected, the total length will be
at least >= X+1
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@ The Edmond-Karp Algorithm (Time Complexity)

Length (V-1)

Q- OO @®-—2—@-0-O0-@

Each edge can be re-selected V-1 times MAX
E edges can be re-selected (E)*(V-1) times MAX
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@ The Edmond-Karp Algorithm (Time Complexity)

Choose shortest augmenting paths in terms on number of edges

Algorithm Ford-Fulkerson Algorithm (G) with Shortest Paths

f<0 > Initialize to a (valid) flow of size 0 (on every edge)

while TRUE do O(EV)
Compute Gf O(V+E)

Find a shortest s — t path P in Gf O(E) > Using BFS
if no such path then

return f
else

f < AUGMENT(P, f) O(E)
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@ The Edmond-Karp Algorithm (Time Complexity)

Choose shortest augmenting paths in terms on number of edges

Algorithm Ford-Fulkerson Algorithm (G) with Shortest Paths

f<0 > Initialize to a (valid) flow of size 0 (on every edge)

while TRUE do O(EV)
Compute Gf O(V+E)

Find a shortest s — t path P in Gf O(E) > Using BFS

if no such path then O(VE?) when E >=V
return f

else

f < AUGMENT(P, f) O(E)
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Chapter 8&:
NP and Computational Intractability

Section 8.1 :
Polynomial Time Reduction

- Mlgorithm Design

JON KLEINBERG * EVA TARDOS
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@ Efficiently Solvable Problems

So far, we dealt with problems like:

e Sorting n numbers
 Connected components in a graph
 Shortest path between two points (s-t path), We devised efficient

*Minimum Spanning Tree (MST), algorithms for them
e Best alignment (possibly in sequence alignment)

e Maximum flow

Efficient in what sense?

24



@ Efficiently Solvable Problems

So far, we dealt with problems like:

e Sorting n numbers ----- n!

 Connected components in a graph ----- 2F

e Shortest path between two points (s-t path), ----- 2V
* Minimum Spanning Tree (MST), ----- n"

e Best alignment (possibly in sequence alignment)
e Maximum flow

Search space for solutions is typically exponential in these problems
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@ Efficiently Solvable Problems

So far, we dealt with problems like:

e Sorting n numbers ----- n!

 Connected components in a graph ----- 2F

e Shortest path between two points (s-t path), ----- 2V
* Minimum Spanning Tree (MST), ----- n"

e Best alignment (possibly in sequence alignment)
e Maximum flow

Efficiently Solvable Problem = Polynomial Time complexity

3 an O(n*) worst case time algorithm for instances of size n, constant k
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@ Intractable Problems

Dictionary

Definitions from Oxford Languages - Learn more

@ intractable

/tn traktsbl/
adjfective

hard to control or deal with.
"intractable economic problems”

Similar: unmanageable uncantrollable

« (of a person) difficult or stubborn.

Similar: =~ stubborn obstinate obdurate

ungovernable

Hard (Intractable) Problems

m No known O(n*) algorithm

m Exponential time is needed O(n"), O(n!), O(k")

out of control

unadaptable

out of hand

unmalleable

S

'
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@ Hard (Intractable) Problems

Hard (Intractable) Problems

m No known O(n*) algorithm
m Exponential time is needed O(n"), O(n!), O(k")

Cannot say they are not efficiently solvable (just don't know yet)

We establish that These “hard problems” in some sense are equivalent J
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@ Classifying Problem Types

Decision Problem: Output Yes/No

Connectivity: can we get from sto tin a graph G?

Optimization Problem: Find the best numerical value

Distance: what is the length of shortest path from sto tin a graph G?
Max Flow-Min Cut: what is the maximum flow that can pass in a flow network?

Search Problem: Find a particular object
Shortest Path: find the shortest path with a lowest cost
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@ Polynomial Time Reduction

* To explore the class of computational hard problems, we define a notion of
comparing the hardness of two problems
 Measures the relative difficulty of two problems

Problem A is polynomial time reducible to Problem B, A <, B

If any instance of problem A can be transform using a polynomial amount of
computation to instance of B plus polynomial amount of computation to solve
problem B
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@ Polynomial Time Reduction

* To explore the class of computational hard problems, we define a notion of
comparing the hardness of two problems
 Measures the relative difficulty of two problems

Problem A is polynomial time reducible to Problem B, A <, B

If any instance of problem A can be transform using a polynomial amount of
computation to instance of B plus polynomial amount of computation to solve
problem B

Problem A is polynomial time reducible to Problem B, A <, B

If any subroutine (C + + function) for problem B can be used (called (once or
more) with clever legal inputs) to solve any instance of problem A
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@ Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A <, B

If any instance of problem A can be transform using a polynomial amount of
computation to instance of B plus polynomial amount of computation to solve
problem B

Problem A is polynomial time reducible to Problem B, A <, B

If any subroutine (C + + function) for problem B can be used (called (once or
more) with clever legal inputs) to solve any instance of problem A

Subroutine for B takes an instance y of B and return the solution B(y)

T Y B(y) A(x)

— »| Preprocess |————w Subroutine for B ——w» Postprocess | ——»

Algorithm for A transform an instance r of A to an insfance y of B. Then transform B(y) to A(x)



@ Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A <, B

If any instance of problem A can be transform using a polynomial amount of
computation to instance of B plus polynomial amount of computation to solve
problem B

1. If there is a polynomial time algorithm for B, then there is a
polynomial time algorithm for A

2. lIf there is no polynomial time algorithm for A, then there is no
polynomial time algorithm for B
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@ Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A <, B

If any instance of problem A can be transform using a polynomial amount of
computation to instance of B plus polynomial amount of computation to solve
problem B

FindMin <p Sort

Sort Sp FindMin
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@ Polynomial Time Reduction

Reductions by Reduction from special Reduction by encoding

Equivalence case to general case with gadgets
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@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover < Independent Set

Find minimum number of vertices ‘K’ such that for
every edge (u, v) of the undirected graph ‘G’, either ‘U’
or ‘v’ is in the vertex cover.

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?
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@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover

Independent Set

Find minimum number of vertices ‘K’ such that for
every edge (u, v) of the undirected graph ‘G’, either ‘U’
or ‘v’ is in the vertex cover.

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?

Finding the largest independent set of size ‘K’ in a
undirected graph ‘G’, where an independent set is a
set of vertices such that no two vertices are adjacent

Problem: Is there a size ‘K’ independent set in graph ‘G’?

(1)
0 @ 2



@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover

Independent Set

Find minimum number of vertices ‘K’ such that for
every edge (u, v) of the undirected graph ‘G’, either ‘U’
or ‘v’ is in the vertex cover.

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?

Finding the largest independent set of size ‘K’ in a
undirected graph ‘G’, where an independent set is a
set of vertices such that no two vertices are adjacent

Problem: Is there a size ‘K’ independent set in graph ‘G’?

(1)
0 1) 2



@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover

Independent Set

Find minimum number of vertices ‘K’ such that for
every edge (u, v) of the undirected graph ‘G’, either ‘U’
or ‘v’ is in the vertex cover.

Problem: Is there a size ‘K’ vertex cover in graph ‘G’?

Finding the largest independent set of size ‘K’ in a
undirected graph ‘G’, where an independent set is a
set of vertices such that no two vertices are adjacent

Problem: Is there a size ‘K’ independent set in graph ‘G’?

(1)
0 \Z_lj 2



@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover Independent Set

Step 1: Translation Algorithm

Step 2: Prove that Translation Algorithm runs in polynomial time

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”
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@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover Independent Set

Step 1: Translation Algorithm
Given G=(V,E) and K for VC, build G'=G, K'= V-K for IS

Step 2: Prove that Translation Algorithm runs in polynomial time

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”
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@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover Independent Set

Step 1: Translation Algorithm
Given G=(V,E) and K for VC, build G'=G, K'= V-K for IS
Step 2: Prove that Translation Algorithm runs in polynomial time
This conversion takes constant time

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”
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@ Polynomial Time Reduction — by equivalence

Minimum Vertex Cover

0

e&(

Independent Set

0

b(

Step 3: Prove that the original instance will have output of “YES” iff translated instance have output of “YES”

IS(G,K')=yes => VC(G, K)=yes

VC (G, K)=yes => IS(G,K)=yes

* Suppose that S is an independent set.

e Consider an arbitrary edge e = (u, v).

* Since Sis independent set, it cannot be the case
that both uand varein S; so, one of them must
beinV-S.

* |t follows that every edge has at least one end in
V-S,and soV-Sisavertex cover.

Suppose that S is Vertex Cover set of size K of graph
G.

At least one end of all edges should be in S

Any vertex in V-S must be connected to vertices in S
So, V-S vertices cannot be adjacent to each other
Thus V-S is Independent Set
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@ Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover < Set Cover
—P
Find minimum number of vertices ‘K’ such that for Given a set of elements U = {1, 2, ..., n} (called the
every edge (u, v) of the undirected graph ‘G’, either ‘U’ universe) and a collection of subsets of U, S = {§,
or ‘v’ is in the vertex cover. 81, --» Sm}, and an integer ‘K’. Input is (U,S,K)
Problem: Is there a size ‘K’ vertex cover in graph ‘G’? Problem: Does there exist ‘K’ or fewer subsets such
that their union is equal to U?
U=1{1,2,3,4,5,6,7 K=2
—D—G { ’
\J S]_: {317}
‘ SZ= {3;4;5;6}
OO et
S4-: {214}

55=11,2,6,7}
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@ Polynomial Time Reduction - from Special Cases to General Case

Minimum Vertex Cover < Set Cover
—P
Find minimum number of vertices ‘K’ such that for Given a set of elements U = {1, 2, ..., n} (called the
every edge (u, v) of the undirected graph ‘G’, either ‘U’ universe) and a collection of subsets of U, S = {§,
or ‘v’ is in the vertex cover. 81, --» Sm}, and an integer ‘K’. Input is (U,S,K)
Problem: Is there a size ‘K’ vertex cover in graph ‘G’? Problem: Does there exist ‘K’ or fewer subsets such
that their union is equal to U?
U={1,2,3,4,56,7 K=2
—D—G ‘ }
\J 51: {317}
‘ SZ= {314)5;6}
OO et
S4-: {214}

SS= {11216;7}
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@ Polynomial Time Reduction - from Special Cases to General Case

Set Cover

Minimum Vertex Cover

Step 1: Translation Algorithm
Given G=(V,E) and K for VC, we build Set Cover (SC) input:

U={e, e, e3, €4, €5, €4}

S1=1{eq1, €3, e4} Sa=1{es, €6}
S2=1{ez, ez} S5=1{e3, es, es}
S3=1{ey, €4} K=K
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@ Polynomial Time Reduction - from Special Cases to General Case

Set Cover

Minimum Vertex Cover

Step 1: Translation Algorithm

Given G=(V,E) and K for VC, we build Set Cover input:
U={eq, ez, €3, €4, €5, €4}

S51=1{eq, €z, €4} Sa=1{es, €6}

S2=1{ez, ez} Ss=1es, es, s}

S3=1{eq, e4} K=K
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@ Polynomial Time Reduction - from Special Cases to General Case

Set Cover

Minimum Vertex Cover

Step 1: Translation Algorithm

Given G=(V,E) and K for VC, we build Set Cover input:
U={ey, ey, e3, ey, es, e}
S1=1{e1, ez, e4} Sa=1{es, €6}
Step 2 and Step 3 are straight forward
SZ= {62: 63} 55= {33, 65,66} P P 18
S3={ey, es} K'= K
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@ Polynomial Time Reduction — by encoding gadgets

< Independent Set

f = (Xll V X172 V}(lg) ;"\(Xgl V X2 VXQ:;) AN A (Xml V' Xm2 V}(mg)

We need to set each of x;,...,x,t0 0/1soas f =1

4

Alternatively,

We need to pick a literal from each clause and set it to 1

But we cannot make conflicting settings
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@ Polynomial Time Reduction — by encoding gadets

< Independent Set

f=(xuVxaVxs) Ao VxeVxes) Ao oA (X V Xm2 V Xm3)

Step 1: Translation Algorithm

Given f on n variables and m clauses - Make a graph G
For each clause make a triangle with nodes labeled with literals

O
O

B Connect nodes of each triangle with edges

m Make edges between literals appearing in different clauses as complements
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@ Polynomial Time Reduction — by encoding gadets

Step 1: Translation Algorithm

m Given f on n variables and m clauses - Make a graph G
m For each clause make a triangle with nodes labeled with literals

B Connect nodes of each triangle with edges
m Make edges between literals appearing in different clauses as complements

{11?11 Vrio V Elg) FAN A {Iﬂ V rio V 1"1'3) Aooos N {Ijl vy Ij2 v Ijg} MNoooo A (irml V o V T}ng)

@ @

(012
AN




@ Polynomial Time Reduction — by encoding gadets

Step 1: Translation Algorithm

m Given f on n variables and m clauses - Make a graph G
m For each clause make a triangle with nodes labeled with literals

B Connect nodes of each triangle with edges
m Make edges between literals appearing in different clauses as complements

{11?11 Vrio V Elg) FAN A {Iﬂ V rio V 1"1'3) Aooos N {Ijl vy Ij2 v Ijg} MNoooo A (irml V o V T}ng)

D (vir) (vir)

o
A

U2

) D) ST
\13) i) N,



@ Polynomial Time Reduction — by encoding gadets

Step 1: Translation Algorithm

m Given f on n variables and m clauses - Make a graph G
m For each clause make a triangle with nodes labeled with literals

B Connect nodes of each triangle with edges
m Make edges between literals appearing in different clauses as complements

T VI VI3) A (BT VI3V T2 VI3V Iy
V T V N V T3 V A VT3 V Tq)

X1 X1 X2
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@ Polynomial Time Reduction — by encoding gadets

Step 1: Translation Algorithm

m Given f on n variables and m clauses - Make a graph G
m For each clause make a triangle with nodes labeled with literals

B Connect nodes of each triangle with edges
m Make edges between literals appearing in different clauses as complements

(ry VEaVE3) N (B VI3 VEy) N (T2 VI3V

X1) %) Xa
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@ Polynomial Time Reduction — by encoding gadets

Step 1: Translation Algorithm

m Given f on n variables and m clauses - Make a graph G
m For each clause make a triangle with nodes labeled with literals

B Connect nodes of each triangle with edges
m Make edges between literals appearing in different clauses as complements

(ry VEaVE3) N (B VI3 VEy) N (T2 VI3V

X1) %) Xa
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@ Polynomial Time Reduction — by encoding gadets

Theorem: f is satisfiable iff G has an independent set of size m |

The reduction is as follows:

m Let A be an algorithm for the INDEPENDENT-SET(G, k) problem
m We will use A to solve the 3-SAT(f) problem

Given any instance f of 3-SAT(f) on n variables and m clauses
Construct the graph as outlined above

m Call Aon [G, m]

m if A returns Yes, declare f satisfiable and vice-versa

m G can be constructed in time polynomial in n and m
m Hence, this is a polynomial time reduction
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@ Transitivity of Reduction

We used the following techniques for reduction

m Simple Equivalence
m Special Case to General Case

m Encoding with Gadgets

A very powerful technique is to exploit transitivity of reductions

Theorem: [f X <, Y and Y <, Z, then X <, 7 J
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Thanks a lot
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