CS 310: Algorithms
Lecture 22

Instructor: Naveed Anwar Bhatti

Few Slides taken from Dr. Imdad’s CS 510 course



@ Max Flow — Problem with the Algorithm
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@ Max Flow — Problem with the Algorithm

1+1=2

The max flow clearly is of size 2



@ Max Flow — Problem with the Algorithm

If the greedy algorithm adds a flow of size 1 via the s - t path s, a, b, t
No s - t path in the remaining graph
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@ Max Flow - Fix for the Algorithm

* A more general way of pushing further flow is to push forward flow on edges
where some capacity is remaining

* Cancel existing flow on the edges already carrying some flow

* Think of it as pushing flow backward

Add one unit of flow via the s, b, a, t path
ba & E, but we can cancel the existing flow on the ab € E
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@ Max Flow - Fix for the Algorithm

* A more general way of pushing further flow is to push forward flow on edges
where some capacity is remaining

* Cancel existing flow on the edges already carrying some flow

* Think of it as pushing flow backward

 Add one unit of flow via the s, b, a, t path
* ba €E, but we can cancel the existing flow on the ab € E
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@ Max Flow — Residual Network

e Cancellation of existing flows on edges (if need be) is the right
framework to add more flow

* A systematic way to search for the right place to cancel flow and
adding more flow is to use the residual network
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@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:
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@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:
 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < ce, there is an
edge e = uv in Gr with a capacity ¢ — fo > 0

m we can push forward c. — fo residual capacity units of flow on e
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@ Max Flow — Residual Network

 Given a network G and a flow f on G, the residual graph Gr of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < c¢, there is an
edge e = uv in Gf with a capacity ¢, — fo > 0
m we can push forward c. — f, residual capacity units of flow on e

e backward edges: For each edge e = uv of G on which f, > 0, there is
an edge ¢ = vu in Gf with a capacity of f.
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@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gr of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < c¢, there is an
edge e = uv in Gf with a capacity ¢, — fo > 0
m we can push forward c. — f. residual capacity units of flow on e
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an edge ¢ = vu in Gf with a capacity of f.
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@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < ce, there is an
edge e = uv in Gr with a capacity ¢c. — fo > 0
m we can push forward c. — fo residual capacity units of flow on e

e backward edges: For each edge e = uv of G on which f, > 0, there is
an edge ¢ = vu in Gf with a capacity of f.

m we can cancel or push backward £, units of flow c., = f. on e

e Forany G and f, Gf has at most twice as many edges as G
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@ Max Flow — Residual Network
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@ Max Flow — Residual Network

Flow network with
flow shown in blue

The corresponding
residual network
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flow shown in blue

The corresponding
residual network




@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

22



@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network
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@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

Augmenting path theorem: Flow f is a max flow iff there are no augmenting paths.
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@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

Augmenting path theorem: Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem: [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.
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@ Max Flow — Augmenting Path

Flow network
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@ Max Flow — Augmenting Path

Flow network Residual network
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@ Max Flow — Augmenting Path

Bottleneck (P) =1

Flow network Residual network
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@ Max Flow — Augmenting Path

Flow network

29



@ Max Flow — Augmenting Path

Flow network
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@ Max Flow — Augmenting Path

Algorithm AucmMmENT(P, f)

b < bottleneck(P. f)
fl«f
for each edge e = uv € P do
if e is a forward edge then
fo<—fe+ b
else if e is a backward edge then
fl ¢ fou—Db

vu




@ Max Flow — The Ford-Fulkerson Algorithm

Given a flow network G with source s and t

Algorithm Ford-Fulkerson Algorithm (G)

f+ 0 > Initialize to a (valid) flow of size 0 (on every edge)
while TRUE do
Compute Gf
Find an s — t path P in Gf > Using e.g. DFS
iIf no such path then
return f
else

f <~ AUGMENT(P. f)
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson - Demo

Residual Network 10 2




@ The Ford-Fulkerson - Demo

Residual Network 10 Bottleneck (P) = 8

R T
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson - Demo
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@ The Ford-Fulkerson Algorithm — Time Complexity

Given a flow network G with source s and t

Algorithm Ford-Fulkerson Algorithm (G)
f+ 0 > Initialize to a (valid) flow of size O (on every edge)
while TRUE do O(f)
Compute G O(V+E)

Find an s — t path P in Gf O(V+E) > Using e.g. DFS
iIf no such path then O(f E) when E >= V

return f
else

f + AUGMENT(P, f) O(E)
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@ How O(fE)? Why O(fE)? When O(fE)?
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@ How O(fE)? Why O(fE)? When O(fE)?

Residual Network < >ﬂ Bottleneck (P) =

%
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Flow Value=1
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%
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@ How O(fE)? Why O(fE)? When O(fE)?

Residual Network

Flow Value=1
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@ How O(fE)? Why O(fE)? When O(fE)?
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@ How O(fE)? Why O(fE)? When O(fE)?

2 /(A?\ 1 Waiting for Ford Fulkerson algorithm
100 to complete on 4 Vertices and 5 Edges




Thanks a lot
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