CS 310: Algorithms
Lecture 22

Instructor: Naveed Anwar Bhatti

Few Slides taken from Dr. Imdad’s CS 510 course

@ Max Flow — Problem with the Algorithm

@ Max Flow — Problem with the Algorithm

@ Max Flow — Problem with the Algorithm

‘ Max Flow — Problem with the Algorithm

@ Max Flow — Problem with the Algorithm

1+1=2

The max flow clearly is of size 2

@ Max Flow — Problem with the Algorithm

If the greedy algorithm adds a flow of size 1 via the s - t path s, a, b, t
No s - t path in the remaining graph

7

@ Max Flow - Fix for the Algorithm

* A more general way of pushing further flow is to push forward flow on edges
where some capacity is remaining

* Cancel existing flow on the edges already carrying some flow

* Think of it as pushing flow backward

Add one unit of flow via the s, b, a, t path
ba & E, but we can cancel the existing flow on the ab € E

@ Max Flow - Fix for the Algorithm

* A more general way of pushing further flow is to push forward flow on edges
where some capacity is remaining

* Cancel existing flow on the edges already carrying some flow

* Think of it as pushing flow backward

 Add one unit of flow via the s, b, a, t path
* ba €E, but we can cancel the existing flow on the ab € E

@ Max Flow - Fix for the Algorithm

* A more general way of pushing further flow is to push forward flow on edges
where some capacity is remaining

* Cancel existing flow on the edges already carrying some flow

* Think of it as pushing flow backward

 Add one unit of flow via the s, b, a, t path
* ba €E, but we can cancel the existing flow on the ab € E

10

@ Max Flow — Residual Network

e Cancellation of existing flows on edges (if need be) is the right
framework to add more flow

* A systematic way to search for the right place to cancel flow and
adding more flow is to use the residual network

1

@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:

12

@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

13

@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:
 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < ce, there is an
edge e = uv in Gr with a capacity ¢ — fo > 0

m we can push forward c. — fo residual capacity units of flow on e

14

@ Max Flow — Residual Network

 Given a network G and a flow f on G, the residual graph Gr of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < c¢, there is an
edge e = uv in Gf with a capacity ¢, — fo > 0
m we can push forward c. — f, residual capacity units of flow on e

e backward edges: For each edge e = uv of G on which f, > 0, there is
an edge ¢ = vu in Gf with a capacity of f.

15

@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gr of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < c¢, there is an
edge e = uv in Gf with a capacity ¢, — fo > 0
m we can push forward c. — f. residual capacity units of flow on e

e backward edges: For each edge e = uv of G on which f, > 0, there is
an edge ¢ = vu in Gf with a capacity of f.
m we can cancel or push backward f, units of flow c.» = f. on e

16

@ Max Flow — Residual Network

* Given a network G and a flow f on G, the residual graph Gf of G
with respect to f is defined as follows:

 \ertex set of Gr is the same as that of G

e forward edges: For each e = uv of G on which fo < ce, there is an
edge e = uv in Gr with a capacity ¢c. — fo > 0
m we can push forward c. — fo residual capacity units of flow on e

e backward edges: For each edge e = uv of G on which f, > 0, there is
an edge ¢ = vu in Gf with a capacity of f.

m we can cancel or push backward £, units of flow c., = f. on e

e Forany G and f, Gf has at most twice as many edges as G

17

@ Max Flow — Residual Network

18

@ Max Flow — Residual Network

Flow network with
flow shown in blue

The corresponding
residual network

@ Max Flow — Residual Network

Flow network with
flow shown in blue

The corresponding
residual network

@ Max Flow — Residual Network

Flow network with
flow shown in blue

The corresponding
residual network

@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

22

@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

23

@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

Augmenting path theorem: Flow f is a max flow iff there are no augmenting paths.

24

@ Max Flow — Augmenting Path

An augmenting path is a simple s - t path in the residual graph G¢

The corresponding
residual network

Augmenting path theorem: Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem: [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

25

@ Max Flow — Augmenting Path

Flow network

26

@ Max Flow — Augmenting Path

Flow network Residual network

27

@ Max Flow — Augmenting Path

Bottleneck (P) =1

Flow network Residual network

28

@ Max Flow — Augmenting Path

Flow network

29

@ Max Flow — Augmenting Path

Flow network

30

@ Max Flow — Augmenting Path

Algorithm AucmMmENT(P, f)

b < bottleneck(P. f)
fl«f
for each edge e = uv € P do
if e is a forward edge then
fo<—fe+ b
else if e is a backward edge then
fl ¢ fou—Db

vu

@ Max Flow — The Ford-Fulkerson Algorithm

Given a flow network G with source s and t

Algorithm Ford-Fulkerson Algorithm (G)

f+ 0 > Initialize to a (valid) flow of size 0 (on every edge)
while TRUE do
Compute Gf
Find an s — t path P in Gf > Using e.g. DFS
iIf no such path then
return f
else

f <~ AUGMENT(P. f)

32

@ The Ford-Fulkerson - Demo

10/5\: ’?\10
Q/ 10—(a) 9\@ 1c\>b

@ The Ford-Fulkerson - Demo

@ The Ford-Fulkerson - Demo

\
10 2\;
10 ﬁ

Min-Cut =19

or

Max-flow = 19

@ The Ford-Fulkerson - Demo

’?\ 0
‘ 06 =0
0

D 10

0O
Q
©
Q
o
< 2
o
%
0O £ O

o

10 02
0
10: A

O

36

@ The Ford-Fulkerson - Demo

Residual Network 10 2

@ The Ford-Fulkerson - Demo

Residual Network 10 Bottleneck (P) = 8

R T

38

@ The Ford-Fulkerson - Demo

0

B 4

8 \8)

10 02 8 10
0 0

Pl S N

/63\ 4 b@\
Residual Network 2\8 6 10 Bottleneck (P) =
e/ —() s\¢@—m>>o

Flow Value = 8

06
8
\@ m\m

@ The Ford-Fulkerson - Demo

0
B 4
8 \8)
g 10 Flow Value = 8
0

Residual Network 10 2 8

@ The Ford-Fulkerson - Demo

0
B 4
8 \8 U
3 10 Flow Value =8
0

/'C@'\4 '@\
Residual Nitwork/ /2 8 10

@ The Ford-Fulkerson - Demo

0
/VCB\ : ’@\0
8
\g 10 Flow Value = 8
0

/?\4 @\
Residual Network 272) 3 6 10 Bottleneck (P) = 2
% 0 ﬂé_g%z—;b

@ The Ford-Fulkerson - Demo

0
/VCB\ : ’@\)
10
\g 10 Flow Value = 10
2

/?\4 @\
Residual Network 272) 3 6 10 Bottleneck (P) = 2
% 0 ﬂé_g%z—;b

@ The Ford-Fulkerson - Demo

0
/VCB\ : ’@\0
10
\g 10 Flow Value = 10
2

Residual Network 10 2 8

6
e/ N A\{ . %‘ 1c\b
2

@ The Ford-Fulkerson - Demo

0
/VCB\ : ’@\)
10 \8
3 06 10 Flow Value = 10
2 10
N 5N

AR

Residual Network 10 2 8

6 10
410 A 7% 10
2

Bottleneck (P) = 6

45

@ The Ford-Fulkerson - Demo

0
/VCB\ : ’@\ °
10 \8
3 656 10 Flow Value = 16
8 10
N 5N

AR

Residual Network 10 2 8

6 10
410 A 7% 10
2

Bottleneck (P) = 6

46

@ The Ford-Fulkerson - Demo

0
B 4
10 \8 °
g 10 Flow Value = 16
8

Residual Network 10 2 8

6 6\
e/ P 10

@ The Ford-Fulkerson - Demo

0
B 4
10 \8 °
g 10 Flow Value = 16
8

AN
Residual Network 10/ 2 8 6 6 4 Bottleneck (P) = 2
1
9?1—4%4 -N‘ m\b

48

@ The Ford-Fulkerson - Demo

2
B 4
10 \8 °
g 10 Flow Value = 18
8

AN
Residual Network 10/ 2 8 6 6 4 Bottleneck (P) = 2
1
9?1—4%4 -N‘ m\b

49

@ The Ford-Fulkerson - Demo

2
/VCB\ : ’@\8
10
\g 10 Flow Value = 18
8

Residual Network 10 2

@ The Ford-Fulkerson - Demo

2
A
10 \8 8
10 02 8 10 Flow Value = 18
e/ 8 o
10 9

(1)
%2_!@\
/ ’
Residual Network) 8 6 8 2 Bottleneck (P) =
9—{— ——>®<—18§@' w\b

51

@ The Ford-Fulkerson - Demo

3
e N
10 \7 9
10 02 8 10 Flow Value = 19
e/ 9 o
10 9

(1)
%2_!@\
/ ’
Residual Network) 8 6 8 2 Bottleneck (P) =
9—{— ——>®<—18§@' w\b

52

@ The Ford-Fulkerson - Demo

3
B 4
19 \7 ¥ Flow Value = 19
3 66 10 ow Value =
9 10
;) m\m

() G
Residual Network 10 2 7\ 6 9 !

53

@ The Ford-Fulkerson Algorithm — Time Complexity

Given a flow network G with source s and t

Algorithm Ford-Fulkerson Algorithm (G)
f+ 0 > Initialize to a (valid) flow of size O (on every edge)
while TRUE do O(f)
Compute G O(V+E)

Find an s — t path P in Gf O(V+E) > Using e.g. DFS
iIf no such path then O(f E) when E >= V

return f
else

f + AUGMENT(P, f) O(E)

54

@ How O(fE)? Why O(fE)? When O(fE)?

100

0 /,QD\ 0

100 100
< 10 >:ﬂ

100

. \\\\\4ib”//// °

/VCAD\
100 100
Residual Network 1)
100 100

%

55

@ How O(fE)? Why O(fE)? When O(fE)?

Residual Network < >ﬂ Bottleneck (P) =

%

56

@ How O(fE)? Why O(fE)? When O(fE)?

Flow Value=1

Residual Network < >ﬂ Bottleneck (P) =

%

57

@ How O(fE)? Why O(fE)? When O(fE)?

Residual Network

Flow Value=1

@ How O(fE)? Why O(fE)? When O(fE)?

0
100

>:ﬂ Flow Value =1

100

)

e I
=
[KY

100

) Bottleneck (P) =

1

4 4

Residual Network (

¢

59

@ How O(fE)? Why O(fE)? When O(fE)?

1
100

>:ﬂ Flow Value = 2

100

}

(@)—=
o
[KY

100

) Bottleneck (P) =

1

4 4

Residual Network (

¢

60

@ How O(fE)? Why O(fE)? When O(fE)?
1 A 1
100////a<:}\\\\1oo
< 10 >:ﬂ Flow Value =2
100 100
1 \\\\\1ibv”// .
A
99 99
Residual Network 1
'\99 99

(e =

@ How O(fE)? Why O(fE)? When O(fE)?

1/‘<A>\1
100 100

10 >:ﬂ Flow Value = 2
100\V1oo
1 (8) 1
ggﬂw
1 1
Residual Network (1 Bottleneck (P) =1

(e :

@ How O(fE)? Why O(fE)? When O(fE)?

Z/VQAD\]'
100 100

11) Flow Value =3
100 100
1 ,
ggﬂw
1 1
Residual Network (1 > Bottleneck (P) =1
¢\\\\\22 99 :
1~ G

@ How O(fE)? Why O(fE)? When O(fE)?

I N
o

A
100
11) Flow Value = 3
100\‘/100
1 (8))
gsﬂw
1 1
Residual Network (1

1
1~3(B

@ How O(fE)? Why O(fE)? When O(fE)?
2 A 1
100’///)(:>\\\\\1oo
< 1) Flow Value =3

1
100 100
12

\\“~99

98

1
1
Residual Network (1 > Bottleneck (P) =1
13

1

65

@ How O(fE)? Why O(fE)? When O(fE)?

2 /(A?\ 1 Waiting for Ford Fulkerson algorithm
100 to complete on 4 Vertices and 5 Edges

Thanks a lot

	Slide 1: CS 310: Algorithms
	Slide 2: Max Flow – Problem with the Algorithm
	Slide 3: Max Flow – Problem with the Algorithm
	Slide 4: Max Flow – Problem with the Algorithm
	Slide 5: Max Flow – Problem with the Algorithm
	Slide 6: Max Flow – Problem with the Algorithm
	Slide 7: Max Flow – Problem with the Algorithm
	Slide 8: Max Flow – Fix for the Algorithm
	Slide 9: Max Flow – Fix for the Algorithm
	Slide 10: Max Flow – Fix for the Algorithm
	Slide 11: Max Flow – Residual Network
	Slide 12: Max Flow – Residual Network
	Slide 13: Max Flow – Residual Network
	Slide 14: Max Flow – Residual Network
	Slide 15: Max Flow – Residual Network
	Slide 16: Max Flow – Residual Network
	Slide 17: Max Flow – Residual Network
	Slide 18: Max Flow – Residual Network
	Slide 19: Max Flow – Residual Network
	Slide 20: Max Flow – Residual Network
	Slide 21: Max Flow – Residual Network
	Slide 22: Max Flow – Augmenting Path
	Slide 23: Max Flow – Augmenting Path
	Slide 24: Max Flow – Augmenting Path
	Slide 25: Max Flow – Augmenting Path
	Slide 26: Max Flow – Augmenting Path
	Slide 27: Max Flow – Augmenting Path
	Slide 28: Max Flow – Augmenting Path
	Slide 29: Max Flow – Augmenting Path
	Slide 30: Max Flow – Augmenting Path
	Slide 31: Max Flow – Augmenting Path
	Slide 32: Max Flow – The Ford-Fulkerson Algorithm
	Slide 33: The Ford-Fulkerson - Demo
	Slide 34: The Ford-Fulkerson - Demo
	Slide 35: The Ford-Fulkerson - Demo
	Slide 36: The Ford-Fulkerson - Demo
	Slide 37: The Ford-Fulkerson - Demo
	Slide 38: The Ford-Fulkerson - Demo
	Slide 39: The Ford-Fulkerson - Demo
	Slide 40: The Ford-Fulkerson - Demo
	Slide 41: The Ford-Fulkerson - Demo
	Slide 42: The Ford-Fulkerson - Demo
	Slide 43: The Ford-Fulkerson - Demo
	Slide 44: The Ford-Fulkerson - Demo
	Slide 45: The Ford-Fulkerson - Demo
	Slide 46: The Ford-Fulkerson - Demo
	Slide 47: The Ford-Fulkerson - Demo
	Slide 48: The Ford-Fulkerson - Demo
	Slide 49: The Ford-Fulkerson - Demo
	Slide 50: The Ford-Fulkerson - Demo
	Slide 51: The Ford-Fulkerson - Demo
	Slide 52: The Ford-Fulkerson - Demo
	Slide 53: The Ford-Fulkerson - Demo
	Slide 54: The Ford-Fulkerson Algorithm – Time Complexity
	Slide 55: How O(f E)? Why O(f E)? When O(f E)?
	Slide 56: How O(f E)? Why O(f E)? When O(f E)?
	Slide 57: How O(f E)? Why O(f E)? When O(f E)?
	Slide 58: How O(f E)? Why O(f E)? When O(f E)?
	Slide 59: How O(f E)? Why O(f E)? When O(f E)?
	Slide 60: How O(f E)? Why O(f E)? When O(f E)?
	Slide 61: How O(f E)? Why O(f E)? When O(f E)?
	Slide 62: How O(f E)? Why O(f E)? When O(f E)?
	Slide 63: How O(f E)? Why O(f E)? When O(f E)?
	Slide 64: How O(f E)? Why O(f E)? When O(f E)?
	Slide 65: How O(f E)? Why O(f E)? When O(f E)?
	Slide 66: How O(f E)? Why O(f E)? When O(f E)?
	Slide 67: Thanks a lot

