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@ Administrivia

e Assignment 4 will be released on Wednesday
* Assignment 1 and 2 marks will be released on Thursday
 Assignment 3 marks will be released on 30" November



@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1
2 8 2
3 18 6
4 28 8
5 28 7

C=11
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In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.
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Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

3 18 6 3

4 28 8 3.5

2 8 2 4

5 28 7 4
C=0

28 8 (2x3.5)=43
7 +2 + 2



@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)

that can maximize the total value of items that can be placed in the knapsack.

// List of items, each with a value and a weight
items = [(valuel, weightl), (value2, weight2), ..., (valueN, weightN)]

sort items by (value/weight) in descending or*der} O(nlogn)
Time Complexity

capacity = 11
total_value = © O(nlogn)

for item in items:
if capacity > @:
take weight = min(item.weight, capacity)
total value += take weight * (item.value / item.weight) O(n)
capacity -= take_weight
else:

break
10



Quiz 5 — Question 2 Solution

In the class, we discussed Segmented Least Squares problem using dynamic programming which has the
running time complexity of O(n3) (shown below). How can we improve it? You don’t need to write the
pseudo, just explain it in few lines.

INPUT: N, P;,..,Py, €

for i=0 to n:

M[n]l= -1
M[0]= 0
OPT . .
“1; D e 0 b Pre-compute least squares error e(i,n) for every possible
return 0 segment, which takes O(n?) and save it into matrix. This
if M[0]!=-1: would allow later e(i, n) to be calculated in constant time
return Minl using pre-stored calculations, reducing the overall time
min_cost = 0; > o) complexity to O(n?)

for i=1 to n: , - O(n)
cost = e(i,n) + ¢ + OPT(i - 1)
if cost < min cost:

O(n)

prorr e e e e

11



Chapter 7:
Network Flow

Section :
Maximum Flow — Min Cut Problem

]
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JON KLEINBERG  EVA TARDOS
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@ Flow Networks

A network of pipelines along which water can be sent

Source Sink
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@ Flow Networks

A network of pipelines along which water can be sent

The goal is to flow as much water from S to T as possible
2

[
2 > )
A D

Source & G Sink

There are TWO restrictions:

* A pipeline cannot carry more water than the weight of the corresponding edge
* No vertex can store any water
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@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

2
| D
A 2 D 2
3 2
10 1
9 1 T
)
5 5 ———
Source & G Sink

Is this the best flow (the largest amount of water that can be supplied)?
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@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

2
| D
A 2 D 2
. 3 2+4=6
10
9 1 T
)
5 5 ———
Source IC G 4 Sink
4

Is this the best flow (the largest amount of water that can be supplied)?
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@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

2
| D
A 2 D 2
. 3 2+4=6
10
9 1 T
)
5 5 ———
Source IC G 4 Sink
i |

Is this the best flow (the largest amount of water that can be supplied)?
How do we determine that a given flow is the maximum possible?

22



@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)

23
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@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
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@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)
(capacity of the edge uv): e = uv is associated with c. = ¢, € RT
(source s): deg™(s) = 0 is the traffic generator

(sink t): deg™(t) = 0 is the traffic consumer

A s — t flow is given by assigning each edge e of G a flow f. € R™
with f. < c.
flow f : E — R™ satisfying the capacity and storage constraints

28



@ Max Flow — Problem Formulation

Given a flow network G = (V,E.c), c: E = R™
s € V asource and t € V a sink
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@ Max Flow — Problem Formulation

Given a flow network G = (V,E.c), c: E = R™
s € V asource and t € V a sink
f.:E—RT (fo=1f(e)) is a flow if it satisfies
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@ Max Flow — Problem Formulation

Given a flow network G = (V,E.c), c: E = R™
se V asource and t € V a sink
f:E—RT (fo=f(e)) is a flow if it satisfies

(capacity constraints):

VecE : 0<f.<c.
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@ Max Flow — Problem Formulation

Given a flow network G = (V. E.c), c: E - R™
s e V asource and t € V a sink
f:E—RT (fe=1f(e)) is a flow if it satisfies

(capacity constraints):

VecE : 0<f.<ce

(flow conservation constraints):

VveV . v#s,t Zf —

E into v

"

"
total flow incoming to v

2. fe

e out of v
L

o

P
total flow outgoing from v

32
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@ Max Flow — Min Cut (s-t cut)
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@ Max Flow — Min Cut (s-t cut)
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@ Max Flow — Min Cut (s-t cut)

10-9



@ Max Flow — Min Cut (s-t cut)
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@ Max Flow — Min Cut (s-t cut)
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C

S

10-9-18



@ Max Flow — Min Cut (s-t cut)

10-9-18-11

39



@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10
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@ Max Flow — Min Cut (s-t cut)

2
A D
s, : ‘ 2
. e' .
4

@ ®

10-9-18-11-19-7-10-11
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-38
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9-8
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@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9-8
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@ Max Flow — Min Cut (s-t cut)

Tightest upper bound will come from a s — t cut of minimum capacity

10-9-18-11-19-7-10-11-11-19-8-9-8
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@ Max Flow — Upper limit
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@ Max Flow — Upper limit
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@ Max Flow — Upper limit

size(f) = foUt(s) = f'"(t)
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@ Max Flow — Upper limit

size(f) = foUt(s) = f'"(t)
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@ Max Flow — Bottleneck

0o— G ®
0o—— @& ' ®
@

Bottleneck= 2

Bottleneck=1

0—0——

Bottleneck=4

Bottleneck= minimum C, in the path



@ Max Flow — Algorithm (first try - greedy)
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@ Max Flow — Algorithm (first try - greedy)
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@ Max Flow — Algorithm (first try - greedy)
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@ Max Flow — Problem with the Algorithm
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‘ Max Flow — Problem with the Algorithm

69



@ Max Flow — Problem with the Algorithm

1+1=2

The max flow clearly is of size 2
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@ Max Flow — Problem with the Algorithm

If the greedy algorithm adds a flow of size 1 via the s - t path s, a, b, t
No s - t path in the remaining graph

71



@ Max Flow — Problem with the Algorithm

How can we resolve this issue?

Next Class
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‘ Max Flow — Problem with the Algorithm

How can we resolve this issue?

Next Class

. VIobiQuitous

Mobile and Ubiguitous Systems

Shepard: Dynamic Placement of Microservices in
the Edge-Cloud Continuum

Farhan Asghar®, Tehreem Fatima®, Junsid Haroon Siddiqui®, Naveed Anwar
Bhatti!, and Muhammad Hamad Alizail

Lahore University of Management and Sciences LUMS, Lahore, Pakistan
{18030017, 18030009, junaid.siddigui, naveed.bhatti,
hamzd.alizai}dlums. edu. pk

Abstract. We present Shapard, an innovative microservice placement
approach tailored for edge-assisted cloud infrastructures. Shepard dy-
namically migrates application services between the edge and cloud to
harness optimal performance gains. This approach is structured around
three core components: (1) & resource manager for monitoring available
edge resources and the evolving demands of applications, (2) an opti-
mization module that transposes the service placement dilemma into &
labeled-graph eut challenge, siming to identify the maost advantageous
cut given a set of parameters, and (3] a deployment module tasked with
adjusting service placement in response to shifts in the optimal graph
eut's position.

Owr implementation of Shepard underwent rigorous testing in two dis-
tinet ease studies. In the inangural studyv, Shepard managed energy for
a solar-driven edge within an sgricultural IoT framework, resulting in a
striking T9% elevation in service reliability and availability compared to s
conventional static service placement strategy. For our subsequent study
focusing on cost-effectivensss within a ride-hailing application, Shepard
facilitated & substantial 45% slash in application deployment expenses,
all the while maintaining comparable performance levels to a standard
dynamic service placement technigue.

Keywords: Edge Computing - Microservices-based Architecture - Dhy-
namic Resouree Management.

1 Imtroduction

The evolution of edge computing has created the need for new ways of strue-
turing and deploving application services. An edge is not just a homogencous
extension of cloud resources that can seale up application services on demand,
but & precious compute resouree near the data souree. Intelligently managing
this limited yet expensive compute resource is imperative to enhance applica-
tion performance or extend the advantages of edge to multiple applications (or
tenants). As such, deciding what part of the application logic goes info the edge
and what stays in the cloud has become a key DevOps challenge.
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Thanks a lot

Lecture OVER
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