ithms

: Algor

CS 310

Lecture 21

Instructor: Naveed Anwar Bhatti

Few Slides taken from Dr. Imdad’s CS 510 course

@ Administrivia

e Assignment 4 will be released on Wednesday
* Assignment 1 and 2 marks will be released on Thursday
 Assignment 3 marks will be released on 30" November

@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1
2 8 2
3 18 6
4 28 8
5 28 7

C=11

@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

2 8 2 4
3 18 6 3
4 28 8 3.5
5 28 7 4

@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

3 18 6 3
4 28 8 3.5
2 8 2 4
5 28 7 4

@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

3 18 6 3
4 28 8 3.5
2 8 2 4
5 28 7 4
C=4
28

Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

3 18 6 3
4 28 8 3.5
2 8 2 4
5 28 7 4
C=2
28 8

Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

3 18 6 3

4 28 8 3.5

2 8 2 4

5 28 7 4
C=0

Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)
that can maximize the total value of items that can be placed in the knapsack.

1 1 1 1

3 18 6 3

4 28 8 3.5

2 8 2 4

5 28 7 4
C=0

28 8 (2x3.5)=43
7 +2 + 2

@ Quiz 5 — Question 1 Solution

In the class, we discussed the knapsack problem. Now, let's modify the rules slightly. You are allowed to
split items into 1kg portions. Given the table below, devise the MOST OPTIMAL ALGORITHM (period)

that can maximize the total value of items that can be placed in the knapsack.

// List of items, each with a value and a weight
items = [(valuel, weightl), (value2, weight2), ..., (valueN, weightN)]

sort items by (value/weight) in descending or*der} O(nlogn)
Time Complexity

capacity = 11
total_value = © O(nlogn)

for item in items:
if capacity > @:
take weight = min(item.weight, capacity)
total value += take weight * (item.value / item.weight) O(n)
capacity -= take_weight
else:

break
10

Quiz 5 — Question 2 Solution

In the class, we discussed Segmented Least Squares problem using dynamic programming which has the
running time complexity of O(n3) (shown below). How can we improve it? You don’t need to write the
pseudo, just explain it in few lines.

INPUT: N, P;,..,Py, €

for i=0 to n:

M[n]l= -1
M[0]= 0
OPT . .
“1; D e 0 b Pre-compute least squares error e(i,n) for every possible
return 0 segment, which takes O(n?) and save it into matrix. This
if M[0]!=-1: would allow later e(i, n) to be calculated in constant time
return Minl using pre-stored calculations, reducing the overall time
min_cost = 0; > o) complexity to O(n?)

for i=1 to n: , - O(n)
cost = e(i,n) + ¢ + OPT(i - 1)
if cost < min cost:

O(n)

prorr e e e e

11

Chapter 7:
Network Flow

Section :
Maximum Flow — Min Cut Problem

]

Jesin

!
U

¢\ Algortim

i

JON KLEINBERG EVA TARDOS

12

@ Flow Networks

A network of pipelines along which water can be sent

Source Sink

13

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

5
Source & G Sink

14

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

Source & G Sink

There are TWO restrictions:

* A pipeline cannot carry more water than the weight of the corresponding edge
* No vertex can store any water

15

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

Source & G Sink

There are TWO restrictions:

* A pipeline cannot carry more water than the weight of the corresponding edge
* No vertex can store any water

16

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

Source & G Sink

There are TWO restrictions:

* A pipeline cannot carry more water than the weight of the corresponding edge
* No vertex can store any water

17

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

Source & G Sink

There are TWO restrictions:

* A pipeline cannot carry more water than the weight of the corresponding edge
* No vertex can store any water

18

@ Flow Networks

A network of pipelines along which water can be sent

The goal is to flow as much water from S to T as possible
2

[
2 >)
A D

Source & G Sink

There are TWO restrictions:

* A pipeline cannot carry more water than the weight of the corresponding edge
* No vertex can store any water

19

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

2
| D
A 2 D 2
3 2
10 1
9 1 T
)
5 5 ———
Source & G Sink

Is this the best flow (the largest amount of water that can be supplied)?

20

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

2
| D
A 2 D 2
. 3 2+4=6
10
9 1 T
)
5 5 ———
Source IC G 4 Sink
4

Is this the best flow (the largest amount of water that can be supplied)?

21

@ Flow Networks

A network of pipelines along which water can be sent
The goal is to flow as much water from S to T as possible

2
| D
A 2 D 2
. 3 2+4=6
10
9 1 T
)
5 5 ———
Source IC G 4 Sink
i |

Is this the best flow (the largest amount of water that can be supplied)?
How do we determine that a given flow is the maximum possible?

22

@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)

23

@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)

(capacity of the edge uv): e = uv is associated with c. = ¢, € RT

24

@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)
(capacity of the edge uv): e = uv is associated with cc = ¢, € R

(source s): deg™(s) = 0 is the traffic generator

25

@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)
(capacity of the edge uv): e = uv is associated with ce = ¢, € R
(source s): deg™(s) = 0 is the traffic generator

(sink t): deg™(t) = 0 is the traffic consumer

26

@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)
(capacity of the edge uv): e = uv is associated with cc = ¢, € R
(source s): deg™(s) = 0 is the traffic generator

(sink t): deg™(t) = 0 is the traffic consumer

A s — t flow is given by assigning each edge e of G a flow f. € R™
with f. < c.

27

@ Max Flow — Problem Formulation

A Flow network: A directed graph with weights on edges

 Models a transportation network

* Edges can carry traffic and nodes switch traffic between edges
* Highway network: vertices: intersections/interchanges, edges: roads
 Communication network: vertices: switches/routers, edges: links
* Fluid networks: vertices: junctures where pipes are plugged, edges: pipelines

Edge weights are capacities of edges (max traffic they can carry)
(capacity of the edge uv): e = uv is associated with c. = ¢, € RT
(source s): deg™(s) = 0 is the traffic generator

(sink t): deg™(t) = 0 is the traffic consumer

A s — t flow is given by assigning each edge e of G a flow f. € R™
with f. < c.
flow f : E — R™ satisfying the capacity and storage constraints

28

@ Max Flow — Problem Formulation

Given a flow network G = (V,E.c), c: E = R™
s € V asource and t € V a sink

29

@ Max Flow — Problem Formulation

Given a flow network G = (V,E.c), c: E = R™
s € V asource and t € V a sink
f.:E—RT (fo=1f(e)) is a flow if it satisfies

30

@ Max Flow — Problem Formulation

Given a flow network G = (V,E.c), c: E = R™
se V asource and t € V a sink
f:E—RT (fo=f(e)) is a flow if it satisfies

(capacity constraints):

VecE : 0<f.<c.

31

@ Max Flow — Problem Formulation

Given a flow network G = (V. E.c), c: E - R™
s e V asource and t € V a sink
f:E—RT (fe=1f(e)) is a flow if it satisfies

(capacity constraints):

VecE : 0<f.<ce

(flow conservation constraints):

VveV . v#s,t Zf —

E into v

"

"
total flow incoming to v

2. fe

e out of v
L

o

P
total flow outgoing from v

32

Source

33

Sink

@ Max Flow — Min Cut (s-t cut)

(o R

1
&

\k@ 5

10

@ Max Flow — Min Cut (s-t cut)

10

@ Max Flow — Min Cut (s-t cut)

10-9

@ Max Flow — Min Cut (s-t cut)

10

@ Max Flow — Min Cut (s-t cut)

A

‘ﬁ

S y
C

S

10-9-18

@ Max Flow — Min Cut (s-t cut)

10-9-18-11

39

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19

40

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7

41

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10

42

@ Max Flow — Min Cut (s-t cut)

2
A D
s, : ‘ 2
. e' .
4

@ ®

10-9-18-11-19-7-10-11

43

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11

44

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19

45

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8

46

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-38

47

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9

48

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9

49

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9-8

50

@ Max Flow — Min Cut (s-t cut)

10-9-18-11-19-7-10-11-11-19-8-9-8

51

@ Max Flow — Min Cut (s-t cut)

Tightest upper bound will come from a s — t cut of minimum capacity

10-9-18-11-19-7-10-11-11-19-8-9-8

52

@ Max Flow — Upper limit

53

@ Max Flow — Upper limit

54

@ Max Flow — Upper limit

size(f) = foUt(s) = f'"(t)

55

@ Max Flow — Upper limit

size(f) = foUt(s) = f'"(t)

56

@ Max Flow — Bottleneck

0o— G ®
0o—— @& ' ®
@

Bottleneck= 2

Bottleneck=1

0—0——

Bottleneck=4

Bottleneck= minimum C, in the path

@ Max Flow — Algorithm (first try - greedy)

58

@ Max Flow — Algorithm (first try - greedy)

59

@ Max Flow — Algorithm (first try - greedy)

60

‘ Max Flow — Algorithm (first try - greedy)

61

@ Max Flow — Algorithm (first try - greedy)

62

@ Max Flow — Algorithm (first try - greedy)

63

@ Max Flow — Algorithm (first try - greedy)

64

@ Max Flow — Algorithm (first try - greedy)

65

@ Max Flow — Problem with the Algorithm

66

@ Max Flow — Problem with the Algorithm

67

@ Max Flow — Problem with the Algorithm

68

‘ Max Flow — Problem with the Algorithm

69

@ Max Flow — Problem with the Algorithm

1+1=2

The max flow clearly is of size 2

70

@ Max Flow — Problem with the Algorithm

If the greedy algorithm adds a flow of size 1 via the s - t path s, a, b, t
No s - t path in the remaining graph

71

@ Max Flow — Problem with the Algorithm

How can we resolve this issue?

Next Class

72

‘ Max Flow — Problem with the Algorithm

How can we resolve this issue?

Next Class

. VIobiQuitous

Mobile and Ubiguitous Systems

Shepard: Dynamic Placement of Microservices in
the Edge-Cloud Continuum

Farhan Asghar®, Tehreem Fatima®, Junsid Haroon Siddiqui®, Naveed Anwar
Bhatti!, and Muhammad Hamad Alizail

Lahore University of Management and Sciences LUMS, Lahore, Pakistan
{18030017, 18030009, junaid.siddigui, naveed.bhatti,
hamzd.alizai}dlums. edu. pk

Abstract. We present Shapard, an innovative microservice placement
approach tailored for edge-assisted cloud infrastructures. Shepard dy-
namically migrates application services between the edge and cloud to
harness optimal performance gains. This approach is structured around
three core components: (1) & resource manager for monitoring available
edge resources and the evolving demands of applications, (2) an opti-
mization module that transposes the service placement dilemma into &
labeled-graph eut challenge, siming to identify the maost advantageous
cut given a set of parameters, and (3] a deployment module tasked with
adjusting service placement in response to shifts in the optimal graph
eut's position.

Owr implementation of Shepard underwent rigorous testing in two dis-
tinet ease studies. In the inangural studyv, Shepard managed energy for
a solar-driven edge within an sgricultural IoT framework, resulting in a
striking T9% elevation in service reliability and availability compared to s
conventional static service placement strategy. For our subsequent study
focusing on cost-effectivensss within a ride-hailing application, Shepard
facilitated & substantial 45% slash in application deployment expenses,
all the while maintaining comparable performance levels to a standard
dynamic service placement technigue.

Keywords: Edge Computing - Microservices-based Architecture - Dhy-
namic Resouree Management.

1 Imtroduction

The evolution of edge computing has created the need for new ways of strue-
turing and deploving application services. An edge is not just a homogencous
extension of cloud resources that can seale up application services on demand,
but & precious compute resouree near the data souree. Intelligently managing
this limited yet expensive compute resource is imperative to enhance applica-
tion performance or extend the advantages of edge to multiple applications (or
tenants). As such, deciding what part of the application logic goes info the edge
and what stays in the cloud has become a key DevOps challenge.

73

Thanks a lot

Lecture OVER

	Slide 1: CS 310: Algorithms
	Slide 2: Administrivia
	Slide 3: Quiz 5 – Question 1 Solution
	Slide 4: Quiz 5 – Question 1 Solution
	Slide 5: Quiz 5 – Question 1 Solution
	Slide 6: Quiz 5 – Question 1 Solution
	Slide 7: Quiz 5 – Question 1 Solution
	Slide 8: Quiz 5 – Question 1 Solution
	Slide 9: Quiz 5 – Question 1 Solution
	Slide 10: Quiz 5 – Question 1 Solution
	Slide 11: Quiz 5 – Question 2 Solution
	Slide 12: Chapter 7: Network Flow Section : Maximum Flow – Min Cut Problem
	Slide 13: Flow Networks
	Slide 14: Flow Networks
	Slide 15: Flow Networks
	Slide 16: Flow Networks
	Slide 17: Flow Networks
	Slide 18: Flow Networks
	Slide 19: Flow Networks
	Slide 20: Flow Networks
	Slide 21: Flow Networks
	Slide 22: Flow Networks
	Slide 23: Max Flow – Problem Formulation
	Slide 24: Max Flow – Problem Formulation
	Slide 25: Max Flow – Problem Formulation
	Slide 26: Max Flow – Problem Formulation
	Slide 27: Max Flow – Problem Formulation
	Slide 28: Max Flow – Problem Formulation
	Slide 29: Max Flow – Problem Formulation
	Slide 30: Max Flow – Problem Formulation
	Slide 31: Max Flow – Problem Formulation
	Slide 32: Max Flow – Problem Formulation
	Slide 33: Max Flow – Min Cut
	Slide 34: Max Flow – Min Cut (s-t cut)
	Slide 35: Max Flow – Min Cut (s-t cut)
	Slide 36: Max Flow – Min Cut (s-t cut)
	Slide 37: Max Flow – Min Cut (s-t cut)
	Slide 38: Max Flow – Min Cut (s-t cut)
	Slide 39: Max Flow – Min Cut (s-t cut)
	Slide 40: Max Flow – Min Cut (s-t cut)
	Slide 41: Max Flow – Min Cut (s-t cut)
	Slide 42: Max Flow – Min Cut (s-t cut)
	Slide 43: Max Flow – Min Cut (s-t cut)
	Slide 44: Max Flow – Min Cut (s-t cut)
	Slide 45: Max Flow – Min Cut (s-t cut)
	Slide 46: Max Flow – Min Cut (s-t cut)
	Slide 47: Max Flow – Min Cut (s-t cut)
	Slide 48: Max Flow – Min Cut (s-t cut)
	Slide 49: Max Flow – Min Cut (s-t cut)
	Slide 50: Max Flow – Min Cut (s-t cut)
	Slide 51: Max Flow – Min Cut (s-t cut)
	Slide 52: Max Flow – Min Cut (s-t cut)
	Slide 53: Max Flow – Upper limit
	Slide 54: Max Flow – Upper limit
	Slide 55: Max Flow – Upper limit
	Slide 56: Max Flow – Upper limit
	Slide 57: Max Flow – Bottleneck
	Slide 58: Max Flow – Algorithm (first try - greedy)
	Slide 59: Max Flow – Algorithm (first try - greedy)
	Slide 60: Max Flow – Algorithm (first try - greedy)
	Slide 61: Max Flow – Algorithm (first try - greedy)
	Slide 62: Max Flow – Algorithm (first try - greedy)
	Slide 63: Max Flow – Algorithm (first try - greedy)
	Slide 64: Max Flow – Algorithm (first try - greedy)
	Slide 65: Max Flow – Algorithm (first try - greedy)
	Slide 66: Max Flow – Problem with the Algorithm
	Slide 67: Max Flow – Problem with the Algorithm
	Slide 68: Max Flow – Problem with the Algorithm
	Slide 69: Max Flow – Problem with the Algorithm
	Slide 70: Max Flow – Problem with the Algorithm
	Slide 71: Max Flow – Problem with the Algorithm
	Slide 72: Max Flow – Problem with the Algorithm
	Slide 73: Max Flow – Problem with the Algorithm
	Slide 74: Thanks a lot

