CS 310: Algorithms

Lecture 17

Instructor: Naveed Anwar Bhatti



@ Administrivia

Assignment 3 will be released today



@ Quiz 4 - Solution

In the class, we discussed that if weights on edges of a graph G are not distinct,
then G may have more than one MST’s. Make a small graph (3 vertices) and show
that with different sorted orders of edge weights (depending on how we break ties)
Kruskal’s algorithm produces different MSTs.

Figure 4: The sorted order (b, ¢), (a,b),(a,c) produces a MST {(b,¢).(a,b)}, while the
sorted order (b, ¢), (a,c), (a,b) produces a MST {(b, c), (a,c)}



@ Quiz 4 - Solution

In the class, we discussed that Dijkstra, in some scenarios, does handle negative
edges. Make a small example of directed weighted graph (3 vertices), where
Dijkstra algorithm does produce correct shortest paths, even though there are
negative weights.




@ Quiz 4 - Solution

Consider the following divide-and-conquer approach to computing MST of a graph G = (V,E,w).
Suppose [V | = n = 2% for some integer k. We partition V into V; and V5 such that [V4| = [V,| =
g. Let G1 and G, be the subgraphs induced by V4 and V; respectively. We recursively compute a
MST’s in T4 of G1 and T, of G,. Now we add the lightest edge e = (u, v) crossing the cut [V, V]

in G and use it to unite T4 and T5. Either provethatT = T; UT, U [ {(u,v)}1s a MST of G or
give a small counter example on n = 4 vertices on which this algorithm fails.

Uoe / ; Uy

Figure 6: If we partition it as V; = {v;,v3} and V5 = {9, v3}, then left part is not even
connected, so there is no spanning tree of it, while the whole graph is connected.




@ Quiz 4 - Solution

In the provided graph, bold lines represent the edges of the minimum spanning
tree (MST). Determine the minimum possible values for the non-MST edges
labeled W, X, Y, and Z.




Chapter 6:
Dynamic Programming

Section :
Dynamic Programming

- Mlgorithm Design

JON KLEINBERG * EVA TARDOS




@ So far...

Greedy Algorithms

Solve a problem step
by step, picking the
best choice at each
step.

Only think about what
seems best right now,
not the whole
problem.

Divide and Conquer

Divide the problem into smaller
subproblems.

Solve each small part on its own.

Put the answers of the small
parts together to solve the
whole problem.

Dynamic Programming

Divide the problem into overlapping
subproblems.

Solve and store the solution to each
subproblem so it doesn't need to be
recomputed.

Build up the solution of the main
problem using the stored solutions
of the smaller subproblems.



@ Fibonacci Sequence

0,1,1,2,3.5,8,13,21. ...



@ Recursive F,, computation

Implementing the recursive definition of F,

Algorithm Recursive F, computation

function Fi1(n)
if n =0 then
return O
else if n =1 then
return 1
else
return F1iB1(n — 1) + FiB1(n — 2)

How much time will it take?
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@ Recursive F,, computation

Implementing the recursive definition of F,

Algorithm Recursive F,, computation

function FiB1(n)
if n =0 then
return O
else if n =1 then
return 1
else
return Fis1(n — 1) + FiBl(n — 2)

How much time will it take?

(n-1) (n-2)

(n-1-1) (n-1-2) (n-2-1) (n-2-2)

Time Complexity = 2"
Time Complexity = O(2™")
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation

oy

Solution has unnecessarily repeated recursive calls
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@ Recursive F,, computation

oy

Save results of subproblems and use when needed
instead of re-computing

23



@ Recursive F,, computation

oy

Save results of subproblems and use when needed
instead of re-computing

Memoization
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@ F,, computation with Memoization

Algorithm Recursive F,, computation

function FiB1(n)
if n=0 then
return O
else if n =1 then
return 1
else
return F1B1(n— 1) + FiB1(n — 2)

F[O]
F[1]
F[2]
F[3]

F[4]

F[n-2] | -

F[n-1] | -
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@ F,, computation with Memoization

Algorithm F, computation with memoization

function FI1B2(n)

if F
F
if F
F

n—1
n—1
n—2
n—2

— —1 then
«— FiB2(n—1)
— —1 then

+— FiB2(n—2)

return F[n — 1] + F[n — 2]

> Call FIB2 function only if F[n — 1] = —1

F[O]
F[1]
F[2]
F[3]

F[4]

F[n-2] | -

F[n-1] | -
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation
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@ Recursive F,, computation

31



@ Recursive F,, computation

D
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@ Recursive F,, computation

F(1)

F(0)
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@ Recursive F,, computation

@@ ()() (=)(w)  (w)(w)

F(1)

F(0)
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@ Recursive F,, computation

A BORORORORONC
@@ X ()()  (w)(em)

F(1)

F(0)
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@ Recursive F,, computation

o @ (e (m
@ @ 0 ¥ (=) (w) () (w)

@@ XN R (o)(m

F(1)

F(0)
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@ Recursive F,, computation
R -
) @ O X W W W X

)@ 00 XWX XK

F(1)

F(4)

X X

F(0)
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@ F,, computation with Memoization (How many Calls Now)

FROM

Time Complexity =0(2™)

To

Time Complexity =0(n)
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Weighted Interval Scheduling Problem

Next Class



Thanks a lot
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