
CS 310: Algorithms

Instructor: Naveed Anwar Bhatti

Lecture 17



Administrivia
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Assignment 3 will be released today



Quiz 4 - Solution
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In the class, we discussed that if weights on edges of a graph G are not distinct, 

then G may have more than one MST’s. Make a small graph (3 vertices) and show 

that with different sorted orders of edge weights (depending on how we break ties) 

Kruskal’s algorithm produces different MST’s. 



Quiz 4 - Solution
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In the class, we discussed that Dijkstra, in some scenarios, does handle negative 

edges. Make a small example of directed weighted graph (3 vertices), where 

Dijkstra algorithm does produce correct shortest paths, even though there are 

negative weights.
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Quiz 4 - Solution

5

Consider the following divide-and-conquer approach to computing MST of a graph G = (V,E,w). 

Suppose |𝑽 |  =  𝒏 =  𝟐𝒌 for some integer k. We partition 𝑽 into 𝑽𝟏 and 𝑽𝟐 such that |𝑽𝟏| = |𝑽𝟐| = 
𝒏

𝟐
. Let 𝑮𝟏 and 𝑮𝟐 be the subgraphs induced by 𝑽𝟏 and 𝑽𝟏 respectively. We recursively compute a 

MST’s in 𝑻𝟏 of 𝑮𝟏 and 𝑻𝟐 of 𝑮𝟐. Now we add the lightest edge e = (u, v) crossing the cut [𝑽𝟏, 𝑽𝟐] 

in G and use it to unite 𝑻𝟏 and 𝑻𝟐. Either prove that 𝑻 =  𝑻𝟏 Ս 𝑻𝟐 Ս [ {(𝒖, 𝒗)} is a MST of G or 

give a small counter example on n = 4 vertices on which this algorithm fails.



Quiz 4 - Solution
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In the provided graph, bold lines represent the edges of the minimum spanning 
tree (MST). Determine the minimum possible values for the non-MST edges 
labeled W, X, Y, and Z.
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Chapter 6:
Dynamic Programming

Section :
Dynamic Programming



So far…
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Greedy Algorithms Divide and Conquer 

• Solve a problem step 
by step, picking the 
best choice at each 
step.

• Only think about what 
seems best right now, 
not the whole 
problem.

• Divide the problem into smaller 
subproblems.

• Solve each small part on its own.
• Put the answers of the small 

parts together to solve the 
whole problem.

• Divide the problem into overlapping 
subproblems.

• Solve and store the solution to each 
subproblem so it doesn't need to be 
recomputed.

• Build up the solution of the main 
problem using the stored solutions 
of the smaller subproblems.

Dynamic Programming



Fibonacci Sequence
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Recursive 𝑭𝒏 computation
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Implementing the recursive definition of 𝐹𝑛

How much time will it take?



Recursive 𝑭𝒏 computation
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Implementing the recursive definition of 𝐹𝑛

How much time will it take?

n
(n-1) (n-2)

(n-1-1) (n-1-2) (n-2-1) (n-2-2)

Time Complexity ≈ 𝟐𝒏

Time Complexity = O(𝟐𝒏)



Recursive 𝑭𝒏 computation
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F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)



Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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F(6)
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Recursive 𝑭𝒏 computation
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F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Solution has unnecessarily repeated recursive calls



Recursive 𝑭𝒏 computation
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F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Save results of subproblems and use when needed 
instead of re-computing



Recursive 𝑭𝒏 computation
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F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Save results of subproblems and use when needed 
instead of re-computing

Memoization



𝑭𝒏 computation with Memoization
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F[0] 0

F[1] 1

F[2] -1

F[3] -1

F[4] -1

F[n-2] -1

F[n-1] -1



𝑭𝒏 computation with Memoization
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F[0] 0

F[1] 1

F[2] -1

F[3] -1

F[4] -1

F[n-2] -1

F[n-1] -1



Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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Recursive 𝑭𝒏 computation
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36

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)



Recursive 𝑭𝒏 computation
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𝑭𝒏 computation with Memoization (How many Calls Now)
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FROM

Time Complexity =O(𝟐𝒏)

To

Time Complexity =O(𝒏)
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Weighted Interval Scheduling Problem

39

Next Class



Thanks a lot

If you are taking a Nap, wake up........Lecture Over
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