
CS 310: Algorithms

Instructor: Naveed Anwar Bhatti

Lecture 17

Administrivia

2

Assignment 3 will be released today

Quiz 4 - Solution

3

In the class, we discussed that if weights on edges of a graph G are not distinct,

then G may have more than one MST’s. Make a small graph (3 vertices) and show

that with different sorted orders of edge weights (depending on how we break ties)

Kruskal’s algorithm produces different MST’s.

Quiz 4 - Solution

4

In the class, we discussed that Dijkstra, in some scenarios, does handle negative

edges. Make a small example of directed weighted graph (3 vertices), where

Dijkstra algorithm does produce correct shortest paths, even though there are

negative weights.

A

C

B
-1

-3

4 A

C

B6

1

-4

Quiz 4 - Solution

5

Consider the following divide-and-conquer approach to computing MST of a graph G = (V,E,w).

Suppose |𝑽 | = 𝒏 = 𝟐𝒌 for some integer k. We partition 𝑽 into 𝑽𝟏 and 𝑽𝟐 such that |𝑽𝟏| = |𝑽𝟐| =
𝒏

𝟐
. Let 𝑮𝟏 and 𝑮𝟐 be the subgraphs induced by 𝑽𝟏 and 𝑽𝟏 respectively. We recursively compute a

MST’s in 𝑻𝟏 of 𝑮𝟏 and 𝑻𝟐 of 𝑮𝟐. Now we add the lightest edge e = (u, v) crossing the cut [𝑽𝟏, 𝑽𝟐]

in G and use it to unite 𝑻𝟏 and 𝑻𝟐. Either prove that 𝑻 = 𝑻𝟏 Ս 𝑻𝟐 Ս [{(𝒖, 𝒗)} is a MST of G or

give a small counter example on n = 4 vertices on which this algorithm fails.

Quiz 4 - Solution

6

In the provided graph, bold lines represent the edges of the minimum spanning
tree (MST). Determine the minimum possible values for the non-MST edges
labeled W, X, Y, and Z.

1

9

2

9
6

Z

Y

X

W

A

B

C

D

E

F

1

9

2

9
6

10

10

10

10

A

B

C

D

E

F

7

Chapter 6:
Dynamic Programming

Section :
Dynamic Programming

So far…

8

Greedy Algorithms Divide and Conquer

• Solve a problem step
by step, picking the
best choice at each
step.

• Only think about what
seems best right now,
not the whole
problem.

• Divide the problem into smaller
subproblems.

• Solve each small part on its own.
• Put the answers of the small

parts together to solve the
whole problem.

• Divide the problem into overlapping
subproblems.

• Solve and store the solution to each
subproblem so it doesn't need to be
recomputed.

• Build up the solution of the main
problem using the stored solutions
of the smaller subproblems.

Dynamic Programming

Fibonacci Sequence

9

Recursive 𝑭𝒏 computation

10

Implementing the recursive definition of 𝐹𝑛

How much time will it take?

Recursive 𝑭𝒏 computation

11

Implementing the recursive definition of 𝐹𝑛

How much time will it take?

n
(n-1) (n-2)

(n-1-1) (n-1-2) (n-2-1) (n-2-2)

Time Complexity ≈ 𝟐𝒏

Time Complexity = O(𝟐𝒏)

Recursive 𝑭𝒏 computation

12

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

13

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

14

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

15

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

16

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

17

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

18

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

19

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

20

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

21

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

22

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Solution has unnecessarily repeated recursive calls

Recursive 𝑭𝒏 computation

23

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Save results of subproblems and use when needed
instead of re-computing

Recursive 𝑭𝒏 computation

24

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Save results of subproblems and use when needed
instead of re-computing

Memoization

𝑭𝒏 computation with Memoization

25

F[0] 0

F[1] 1

F[2] -1

F[3] -1

F[4] -1

F[n-2] -1

F[n-1] -1

𝑭𝒏 computation with Memoization

26

F[0] 0

F[1] 1

F[2] -1

F[3] -1

F[4] -1

F[n-2] -1

F[n-1] -1

Recursive 𝑭𝒏 computation

27

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

28

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

29

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

30

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

31

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

32

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

33

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

34

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

35

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

36

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

Recursive 𝑭𝒏 computation

37

F(6)

F(5) F(4)

F(4) F(3) F(3) F(2)

F(3) F(2) F(2) F(1) F(2) F(1) F(1) F(0)

F(2) F(1) F(1) F(0) F(1) F(0) F(1) F(0)

F(1) F(0)

𝑭𝒏 computation with Memoization (How many Calls Now)

38

FROM

Time Complexity =O(𝟐𝒏)

To

Time Complexity =O(𝒏)

39

Weighted Interval Scheduling Problem

39

Next Class

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Administrivia
	Slide 3: Quiz 4 - Solution
	Slide 4: Quiz 4 - Solution
	Slide 5: Quiz 4 - Solution
	Slide 6: Quiz 4 - Solution
	Slide 7: Chapter 6: Dynamic Programming Section : Dynamic Programming
	Slide 8: So far…
	Slide 9: Fibonacci Sequence
	Slide 10: Recursive bold italic cap F sub bold italic n computation
	Slide 11: Recursive bold italic cap F sub bold italic n computation
	Slide 12: Recursive bold italic cap F sub bold italic n computation
	Slide 13: Recursive bold italic cap F sub bold italic n computation
	Slide 14: Recursive bold italic cap F sub bold italic n computation
	Slide 15: Recursive bold italic cap F sub bold italic n computation
	Slide 16: Recursive bold italic cap F sub bold italic n computation
	Slide 17: Recursive bold italic cap F sub bold italic n computation
	Slide 18: Recursive bold italic cap F sub bold italic n computation
	Slide 19: Recursive bold italic cap F sub bold italic n computation
	Slide 20: Recursive bold italic cap F sub bold italic n computation
	Slide 21: Recursive bold italic cap F sub bold italic n computation
	Slide 22: Recursive bold italic cap F sub bold italic n computation
	Slide 23: Recursive bold italic cap F sub bold italic n computation
	Slide 24: Recursive bold italic cap F sub bold italic n computation
	Slide 25: bold italic cap F sub bold italic n computation with Memoization
	Slide 26: bold italic cap F sub bold italic n computation with Memoization
	Slide 27: Recursive bold italic cap F sub bold italic n computation
	Slide 28: Recursive bold italic cap F sub bold italic n computation
	Slide 29: Recursive bold italic cap F sub bold italic n computation
	Slide 30: Recursive bold italic cap F sub bold italic n computation
	Slide 31: Recursive bold italic cap F sub bold italic n computation
	Slide 32: Recursive bold italic cap F sub bold italic n computation
	Slide 33: Recursive bold italic cap F sub bold italic n computation
	Slide 34: Recursive bold italic cap F sub bold italic n computation
	Slide 35: Recursive bold italic cap F sub bold italic n computation
	Slide 36: Recursive bold italic cap F sub bold italic n computation
	Slide 37: Recursive bold italic cap F sub bold italic n computation
	Slide 38: bold italic cap F sub bold italic n computation with Memoization (How many Calls Now)
	Slide 39: Weighted Interval Scheduling Problem
	Slide 40: Thanks a lot

