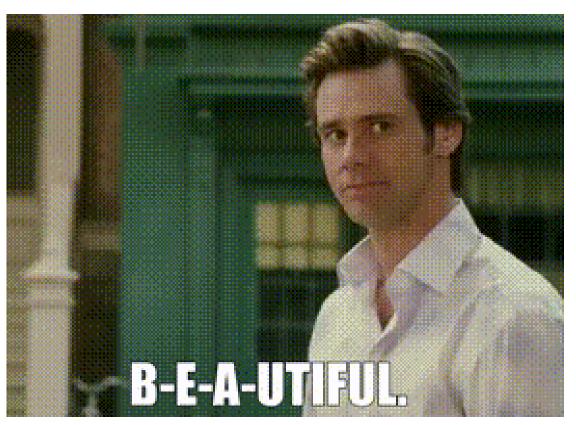


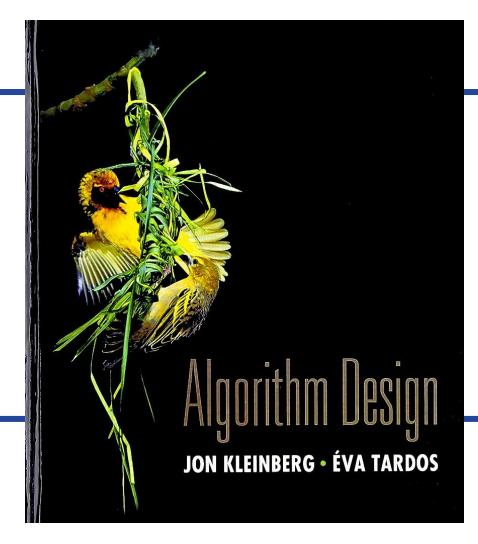
CS 310: Algorithms

Lecture 14

Instructor: Naveed Anwar Bhatti

- Three HWs (Time Complexities, Graphs and Divide & Conquer)
- Solutions will be released on Friday
- Tutorial in A1 Thursday, 6:00-7:30 pm
- Midterm Exam finalized

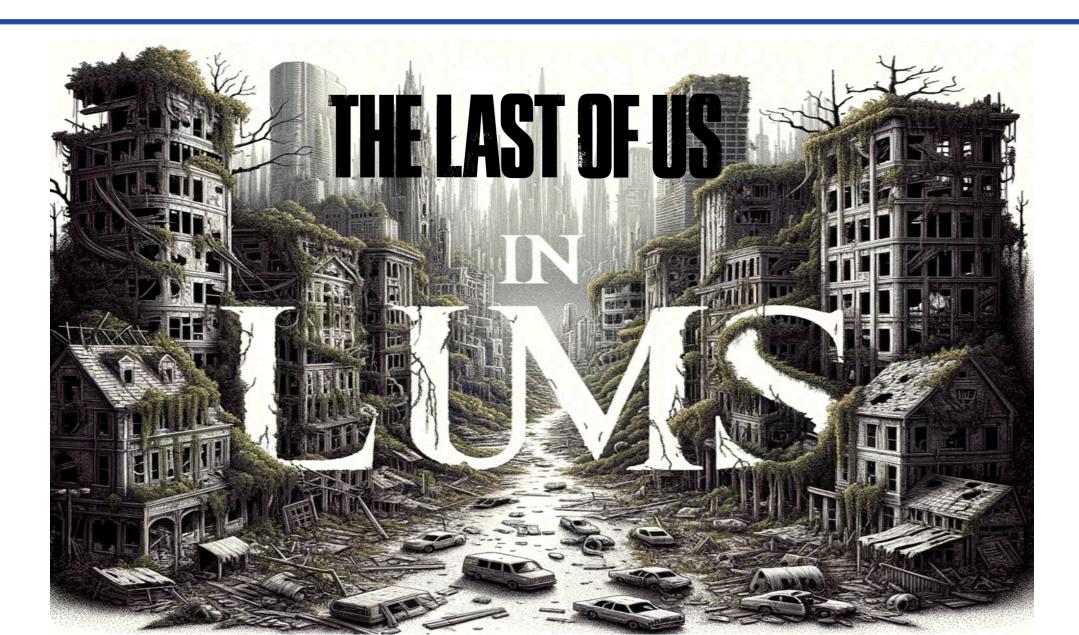




Chapter 4: **Greedy Algorithms**

Greed is Goooood

Scenario: The Last of Us



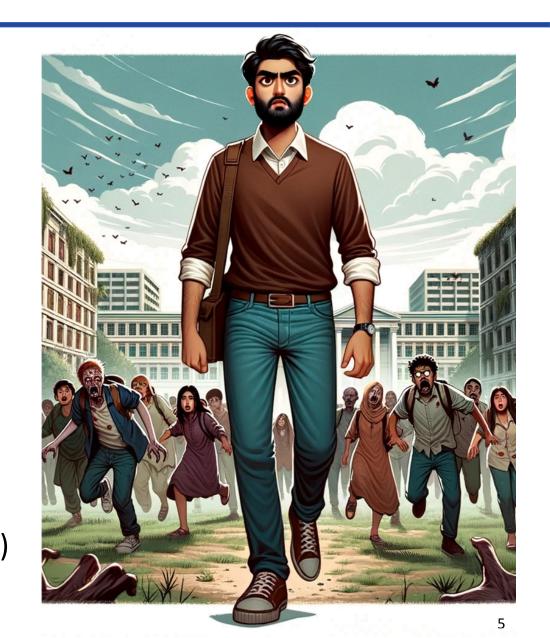
Scenario: The Last of Us

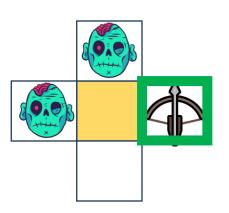
Scene: We are in LUMS maze at night (limited visibility)

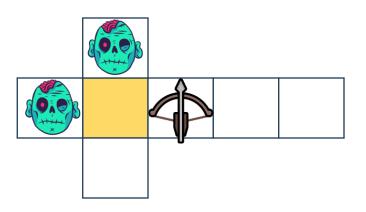
Objective: Collect the immediate weapon in sight and reach to safe zone

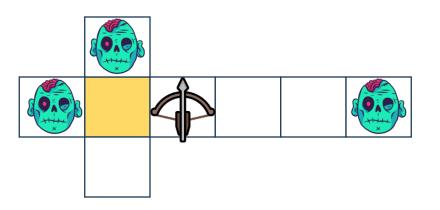
Rules:

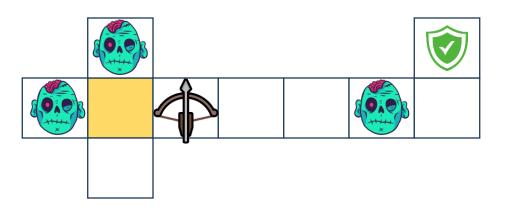
- Can move in any direction: Up, Down, Left and Right
- Once a path is taken, there is no going back
- Game ends when you reach safe zone (or die)

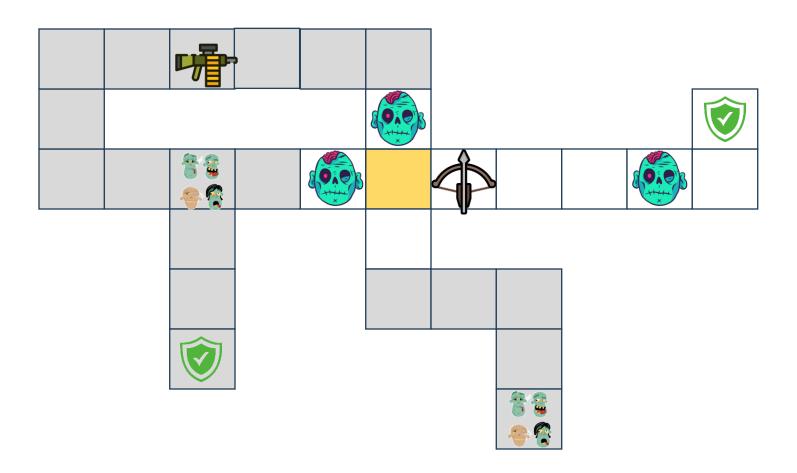


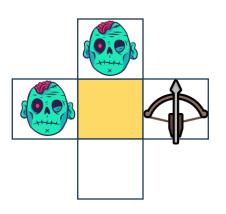


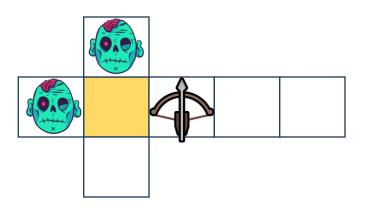


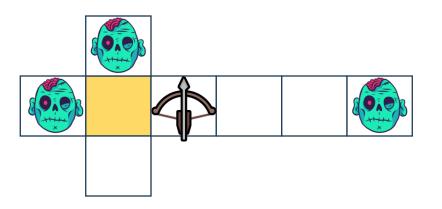


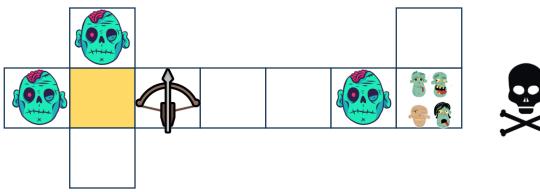


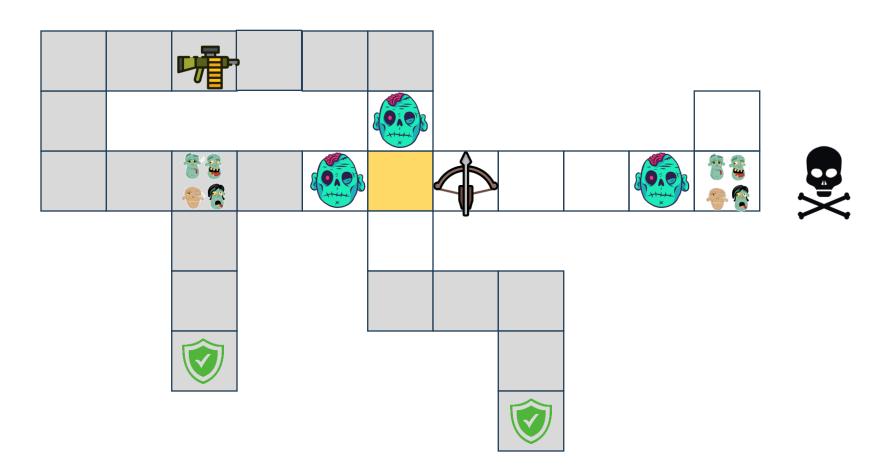








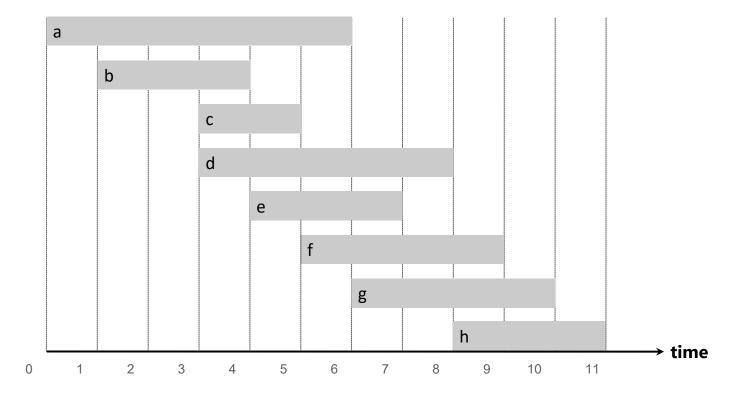




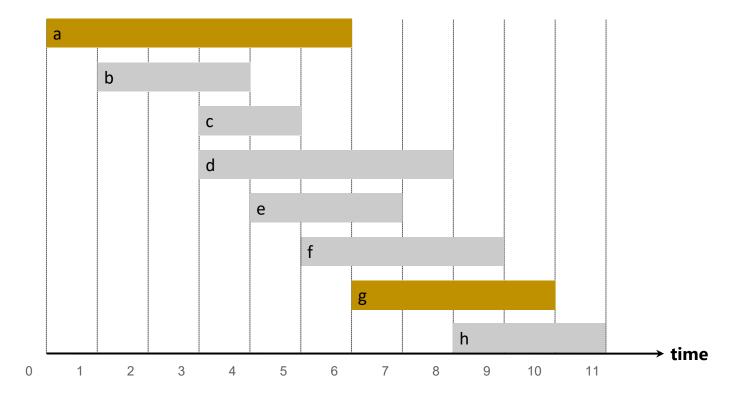
Greedy Algorithms

- An algorithm is greedy if it builds up solution in small steps
- In each step:
 - make a choice that looks best at the moment (greedy choice)
 - incrementally optimize the solution
- For many problems, greedy algorithms yield global optimal solution
 - Interval scheduling
 - Interval partitioning
 - Shortest paths in a graph
 - Minimum Spanning Tree
 - Perfect and stable matching

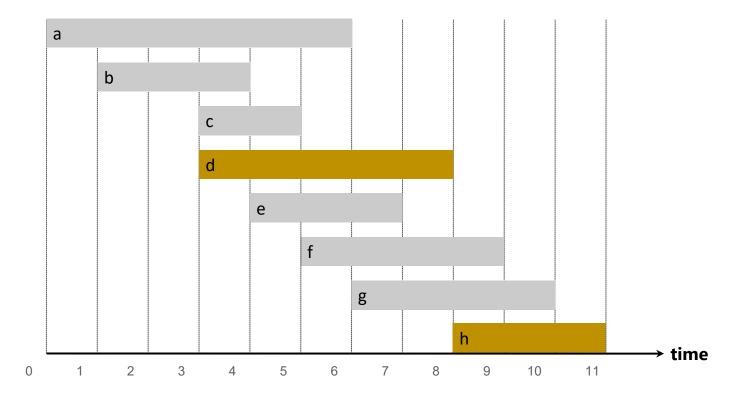
- Job j starts at s_i and finishes at f_i .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



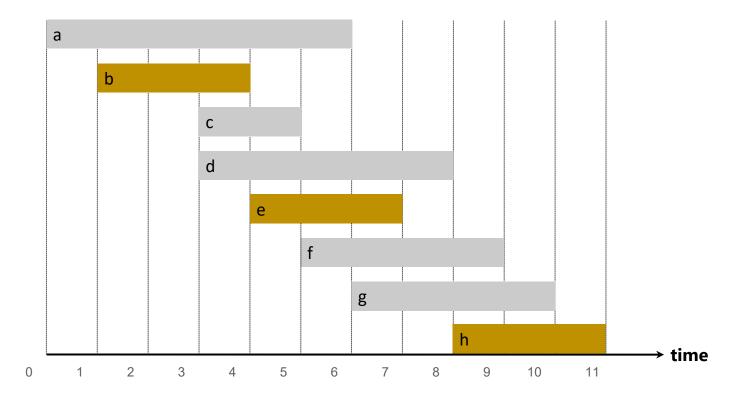
- Job j starts at s_j and finishes at f_j .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



- Job j starts at s_i and finishes at f_i .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



- Job j starts at s_i and finishes at f_i .
- Two jobs are compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.



- Earliest Starting Request First
- Latest Finishing Request First
- Shortest Duration Request First

b

d

е

Earliest Finish Time First

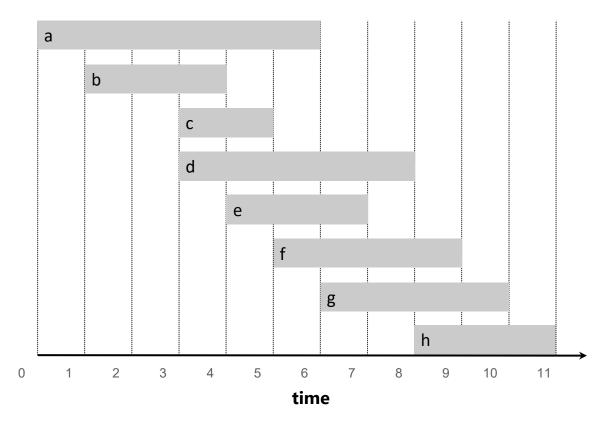
f g

→ time

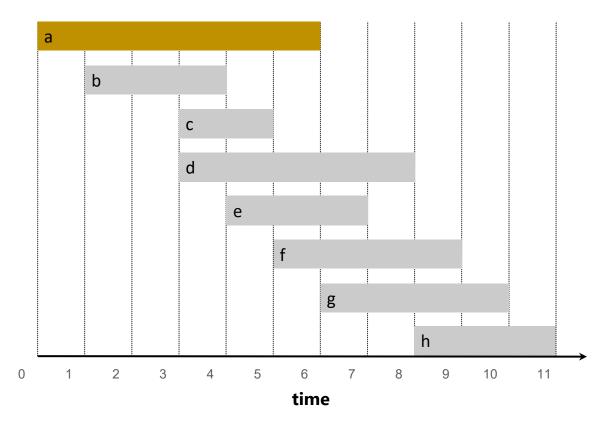
11

Sub-optimal

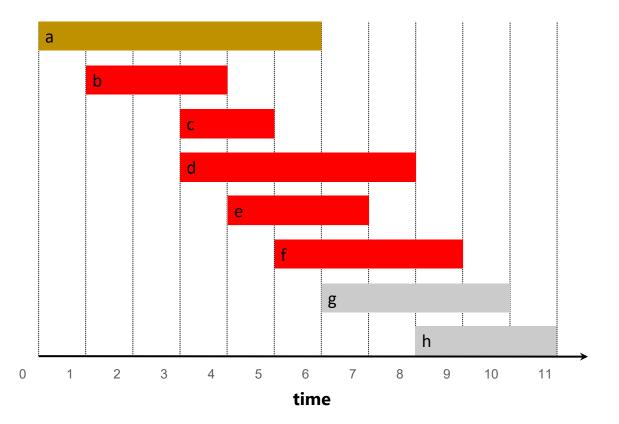
- Select the request with the earliest start time
- Eliminate any conflicting intervals (those that overlap with the chosen interval)
- Continue this process until there are no more requests left.



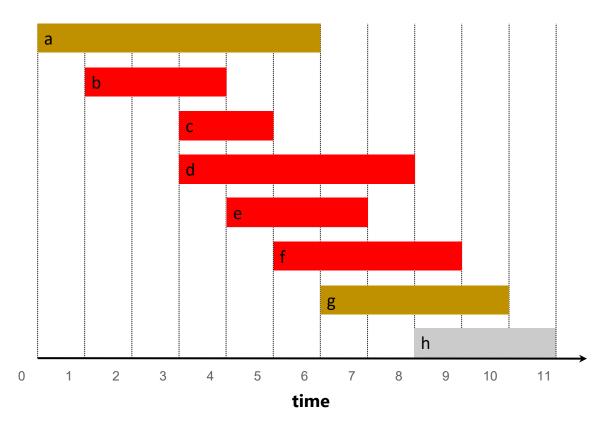
- Select the request with the earliest start time
- Eliminate any conflicting intervals (those that overlap with the chosen interval)
- Continue this process until there are no more requests left.



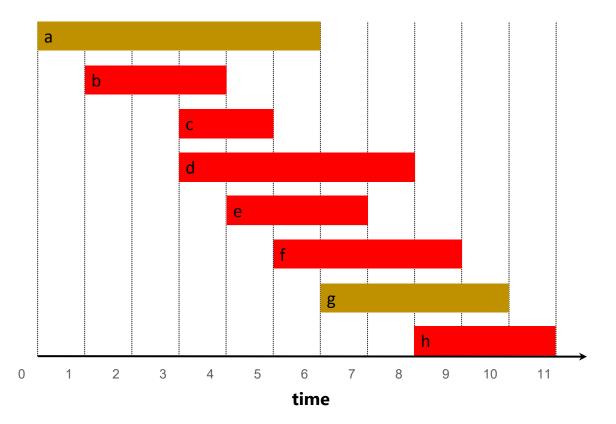
- Select the request with the earliest start time
- Eliminate any conflicting intervals (those that overlap with the chosen interval)
- Continue this process until there are no more requests left.



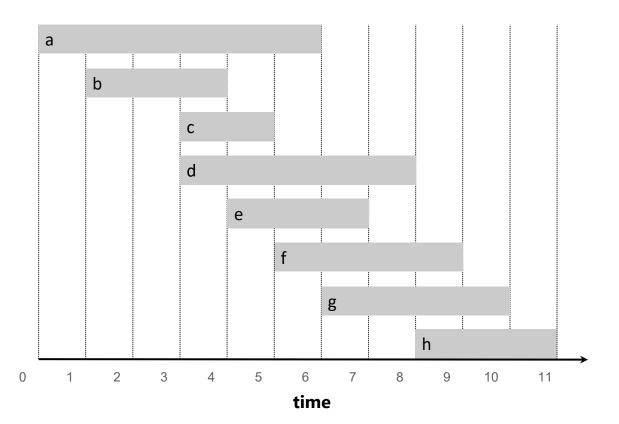
- Select the request with the earliest start time
- Eliminate any conflicting intervals (those that overlap with the chosen interval)
- Continue this process until there are no more requests left.



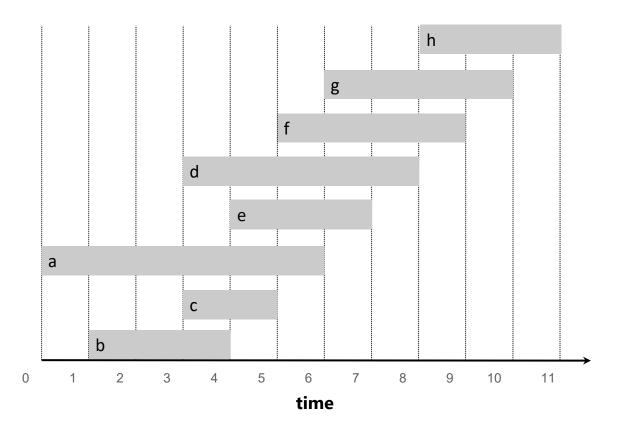
- Select the request with the earliest start time
- Eliminate any conflicting intervals (those that overlap with the chosen interval)
- Continue this process until there are no more requests left.



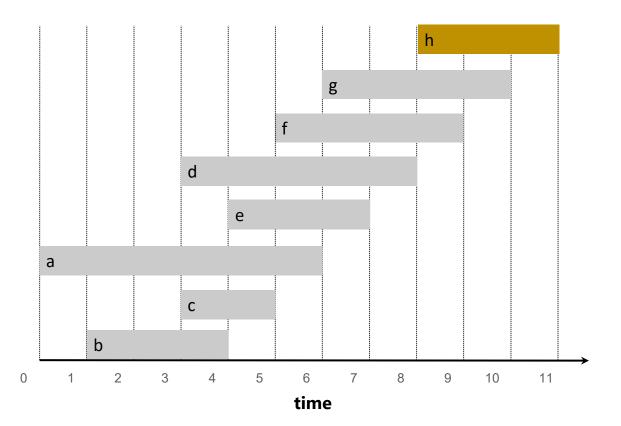
- Select the request with the latest finish time
- Eliminate any conflicting intervals
- Continue until there are no more requests left.



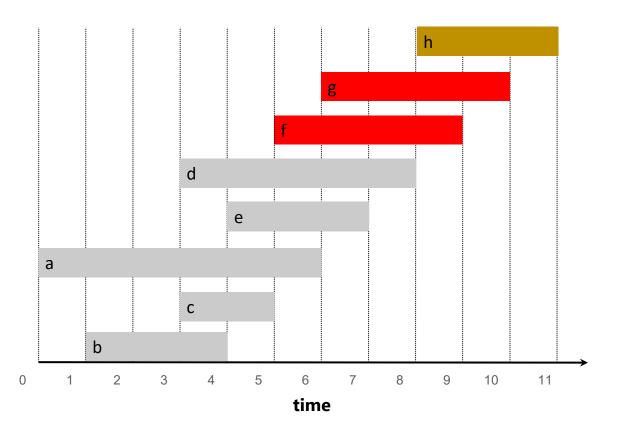
- Select the request with the latest finish time
- Eliminate any conflicting intervals
- Continue until there are no more requests left.



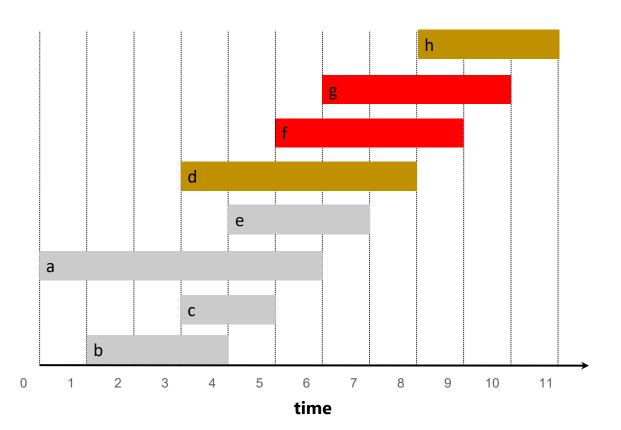
- Select the request with the latest finish time
- Eliminate any conflicting intervals
- Continue until there are no more requests left.



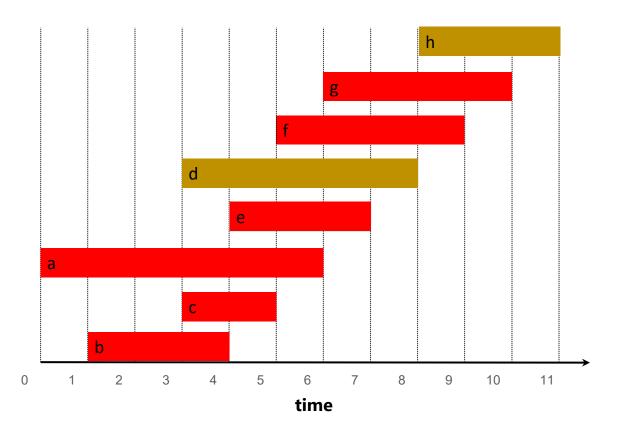
- Select the request with the latest finish time
- Eliminate any conflicting intervals
- Continue until there are no more requests left.



- Select the request with the latest finish time
- Eliminate any conflicting intervals
- Continue until there are no more requests left.

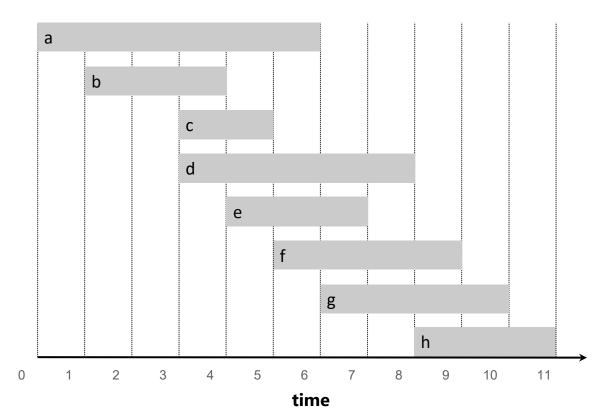


- Select the request with the latest finish time
- Eliminate any conflicting intervals
- Continue until there are no more requests left.

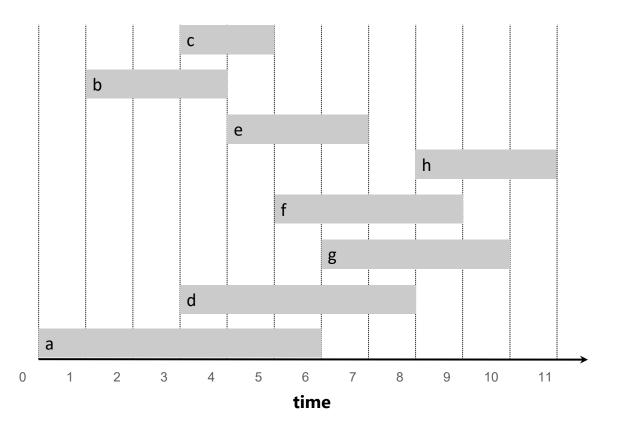


Shortest Duration Request First

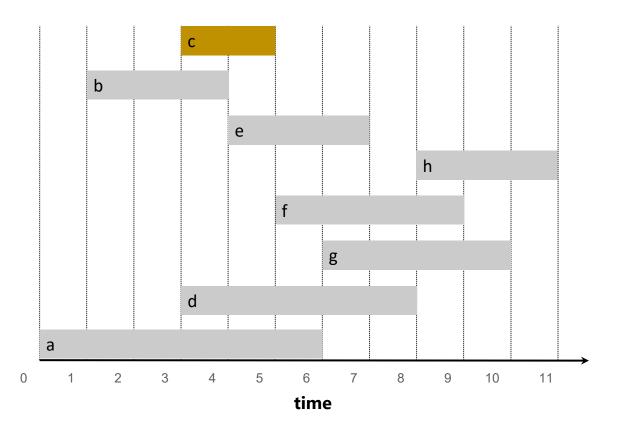
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



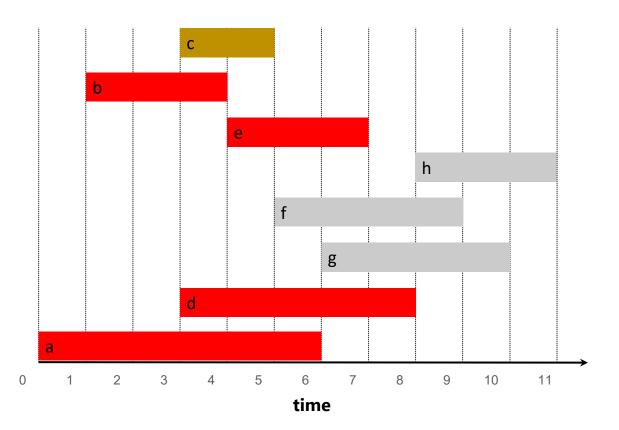
- Shortest Duration Request First
 - Select the shortest request
 - Eliminate any conflicting intervals
 - Continue this process until no more requests are left.



- Shortest Duration Request First
 - Select the shortest request
 - Eliminate any conflicting intervals
 - Continue this process until no more requests are left.

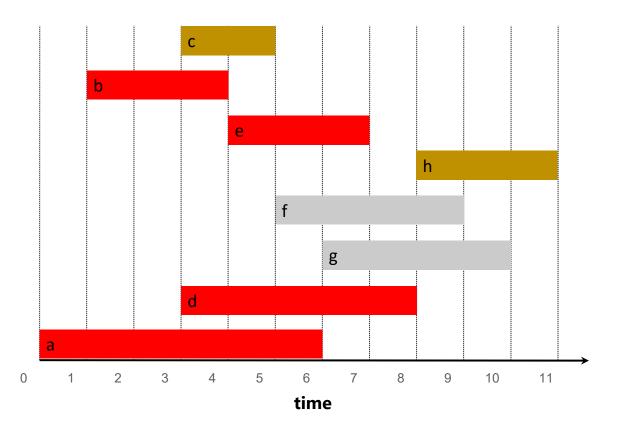


- Shortest Duration Request First
 - Select the shortest request
 - Eliminate any conflicting intervals
 - Continue this process until no more requests are left.



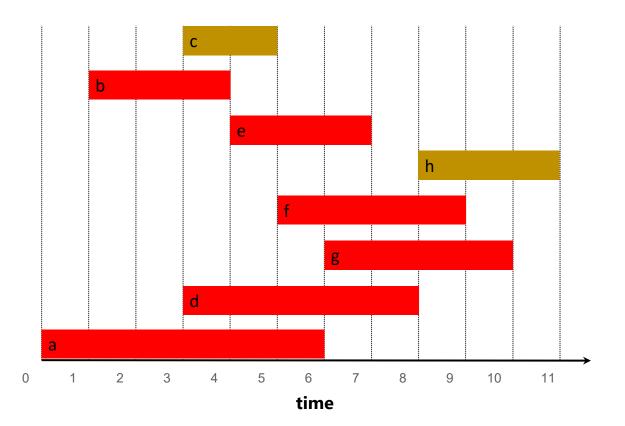
Shortest Duration Request First

- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.

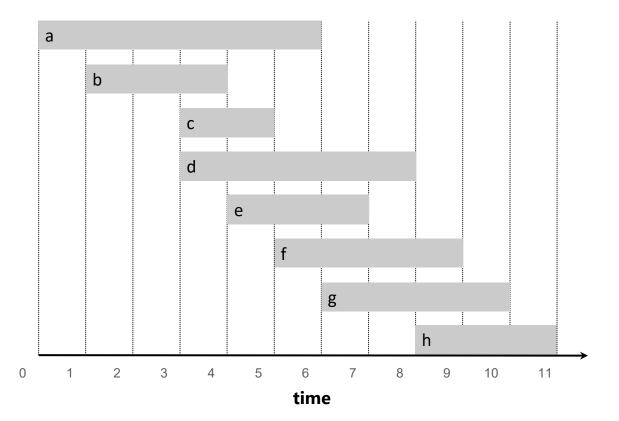


Shortest Duration Request First

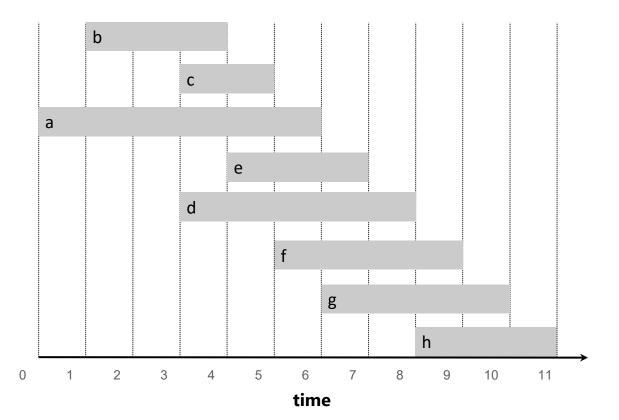
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



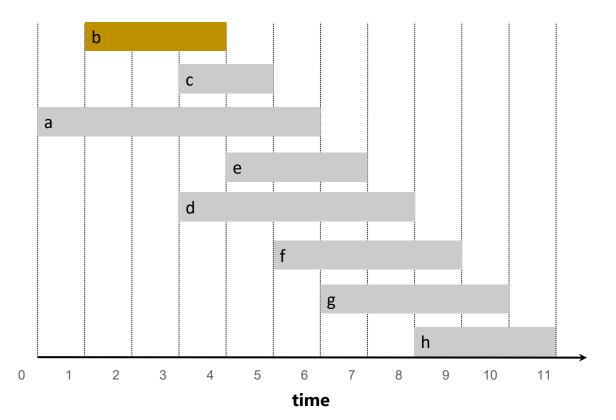
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



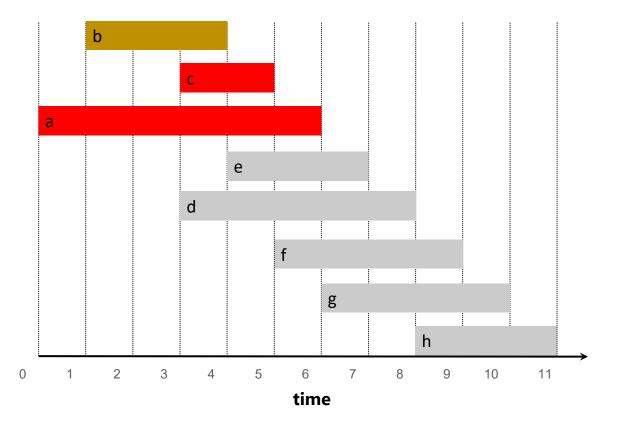
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



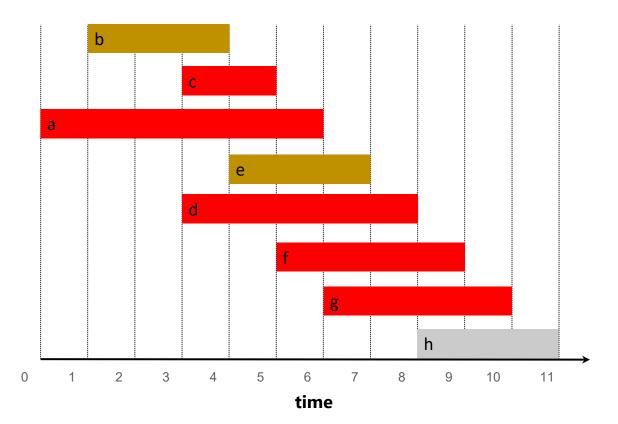
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



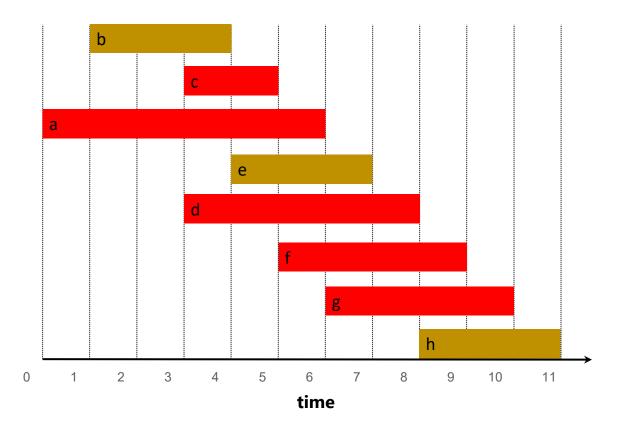
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



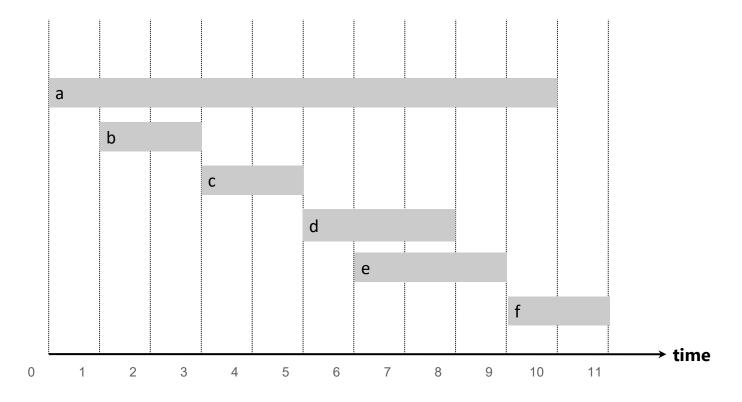
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



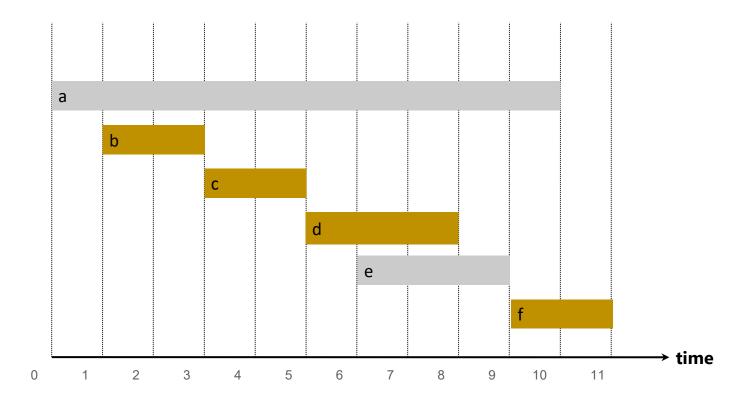
- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



- Select the shortest request
- Eliminate any conflicting intervals
- Continue this process until no more requests are left.



Interval Scheduling: EFTF Algorithm Analysis

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT jobs by finish times and renumber so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

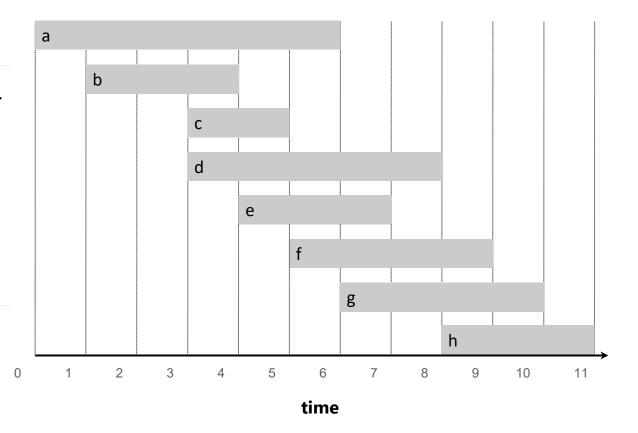
 $S \leftarrow \varnothing$. set of jobs selected

FOR j = 1 TO n

IF (*job j is compatible with S*)

$$S \leftarrow S \cup \{j\}.$$

RETURN S.



Interval Scheduling: EFTF Algorithm Analysis

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT jobs by finish times and renumber so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

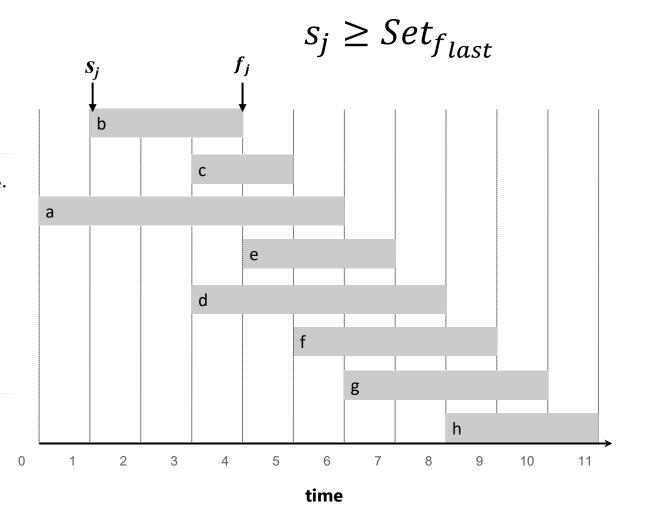
 $Set \leftarrow \varnothing$. set of jobs selected

FOR j = 1 TO n

IF (job j is compatible with Set)

 $Set \leftarrow Set \cup \{j\}.$

RETURN S.



$$\Theta(n \log n) + \Theta(n)$$

Theorem: The earliest-finish-time-first (EFTF) algorithm is optimal.

Let
$$A = i_1, i_2, i_3, i_4, ... i_k$$
Assume sorted: $f(i_1) \le f(i_2) \le f(i_3) ...$

Let
$$B = j_1, j_2, j_3, j_4, \dots j_k, j_{k+1}, \dots j_m$$
, Assume sorted: $f(j_1) \le f(j_2) \le f(j_3) \dots$ Magic Optimal

where $\mathbf{m} > \mathbf{k}$

We need to show $m \le k$

Let
$$A = i_1, i_2, i_3, i_4, \dots i_k$$

Assume sorted: $f(i_1) \le f(i_2) \le f(i_3) \dots$

Let B=
$$j_1, j_2, j_3, j_4, ..., j_k, j_{k+1}, ..., j_m$$
,
Assume sorted: $f(j_1) \le f(j_2) \le f(j_3) ...$

First, we need to show that for each $\mathbf{r} \leq \mathbf{k}$, $\mathbf{f}(i_r) \geq \mathbf{f}(j_r)$ [by Induction]

Then, we need to show that for each $m \le k$, [by Contradiction]

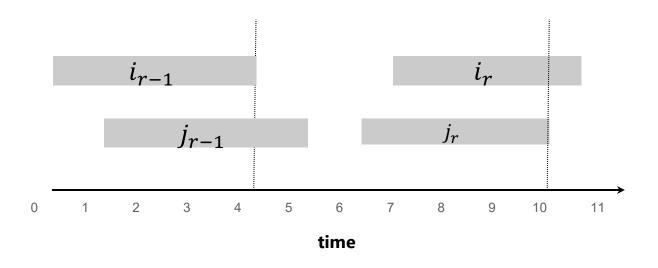
Proof: [by Induction]

Base Case:

- r=1: EFTF chooses booking i_1 with earliest overall finish time, i.e., $\mathbf{f}(i_1) \leq \mathbf{f}(j_1)$ Inductive Hypothesis:
- r> 1: Assume, by induction that $f(i_{r-1}) \le f(j_{r-1})$

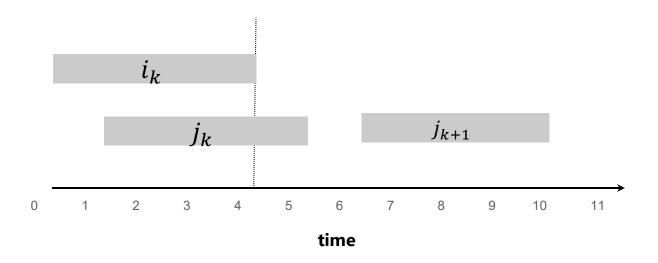
Then

• It must be the case that $f(i_r) \le f(j_r)$



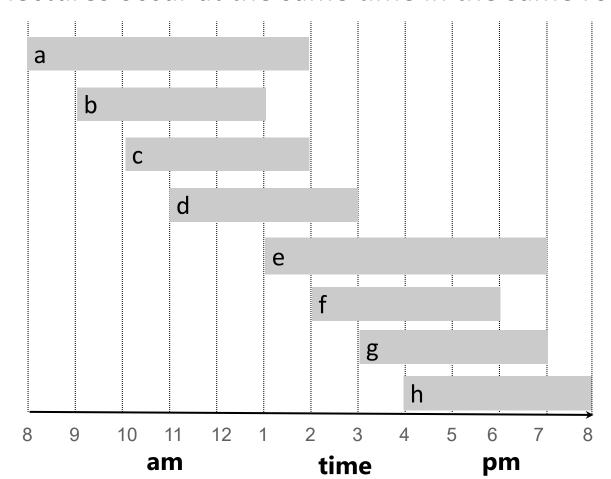
Proof: [by Contradiction]

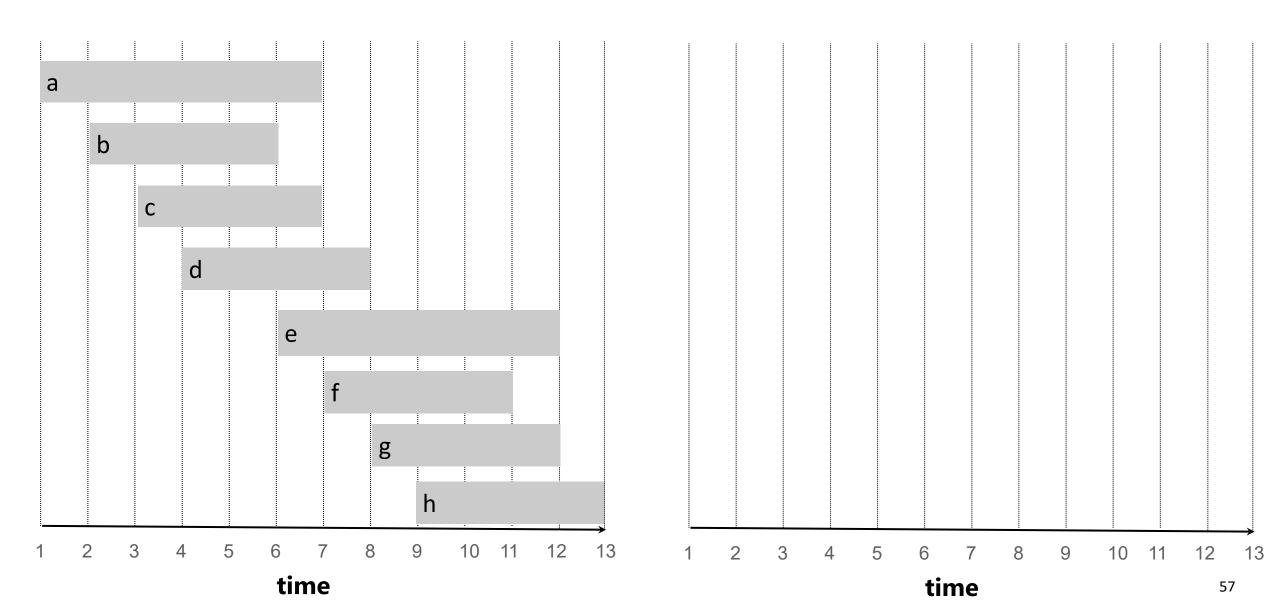
- We know that $f(i_r) \le f(j_r)$
- Consider j_{k+1} in "Magic Optimal"
- Greedy algorithms terminates only when no more jobs are left or all remaining jobs overlaps
- Contradiction

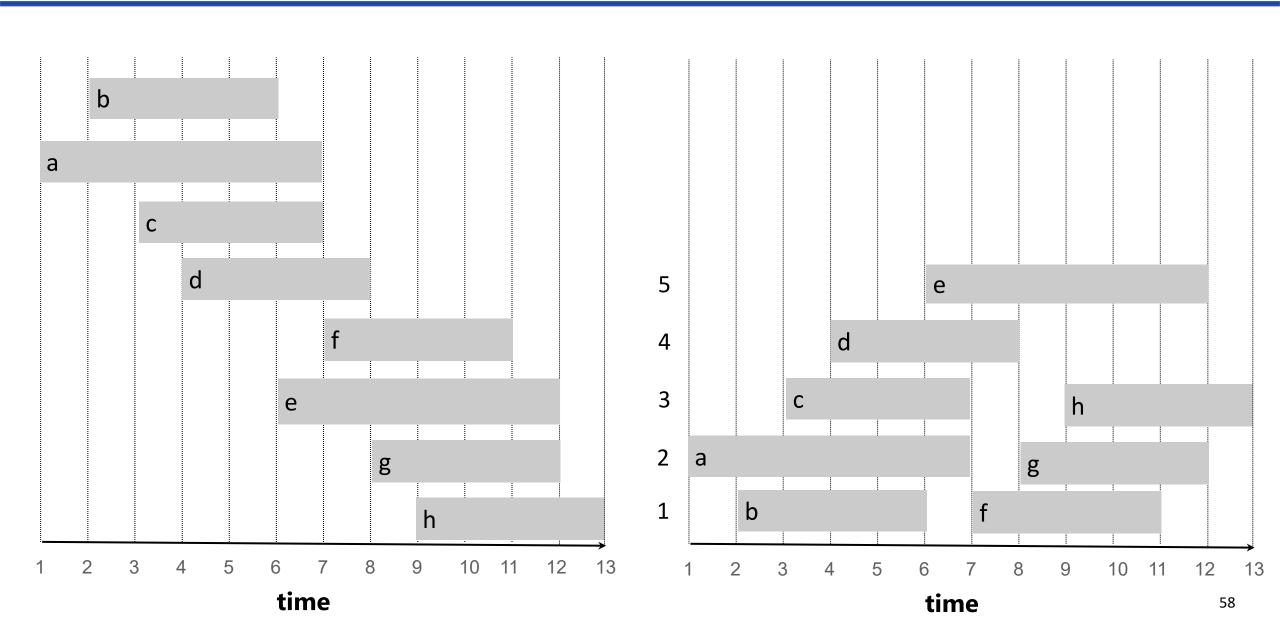


Interval partitioning

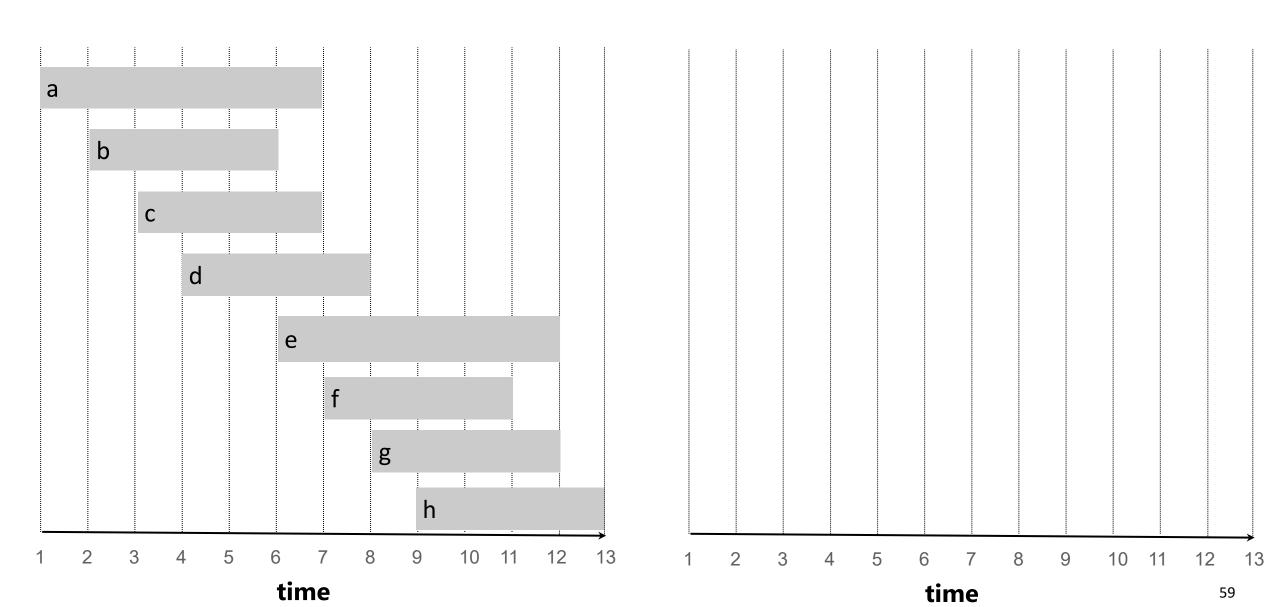
- Lecture j starts at s_i and finishes at f_i .
- **Goal:** find **minimum** number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room.



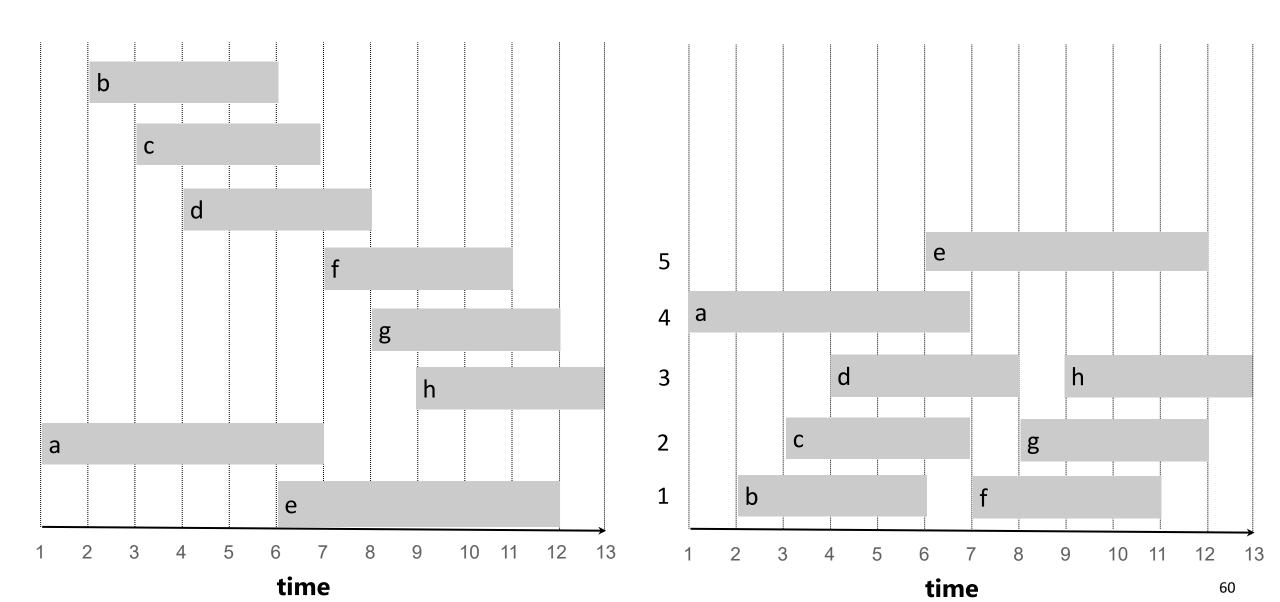




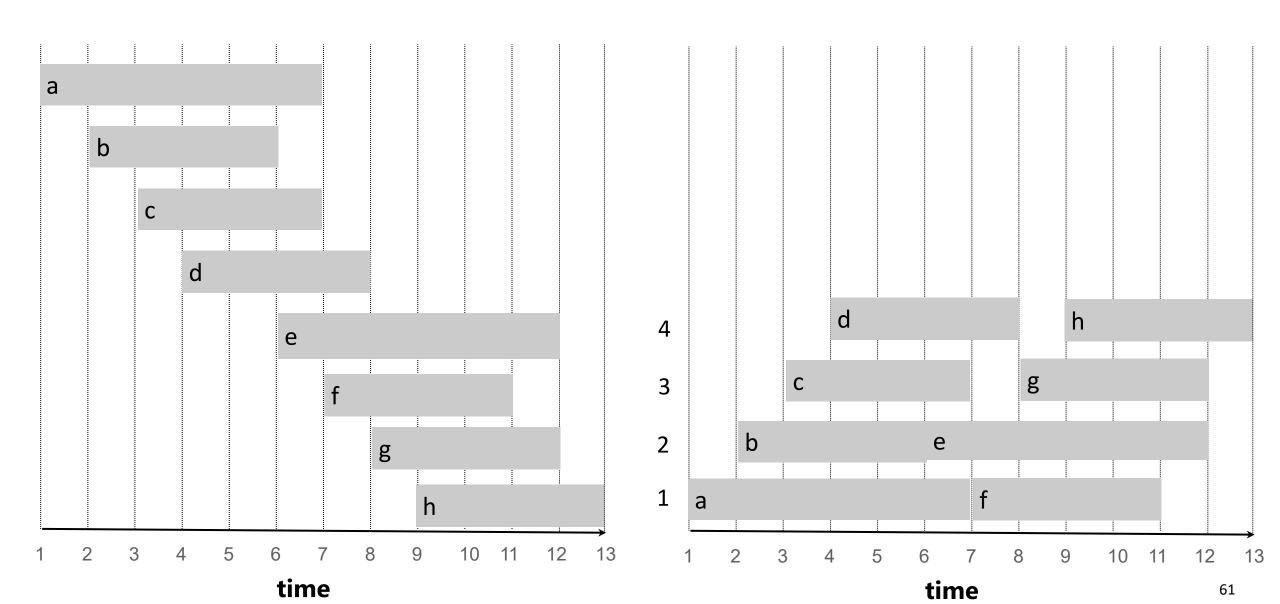
Smallest Interval First



Smallest Interval First



Earliest Start Time First



Interval Partitioning: ESTF Algorithm Analysis

```
EARLIEST-START-TIME-FIRST (n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)
                                                                                                    \Theta(n \log n)
SORT lectures by start times and renumber so that s_1 \leq s_2 \leq \ldots \leq s_n.
d \leftarrow 1 — number of allocated classrooms
FOR j = 1 TO n
   IF (lecture j is compatible with some classroom k \in \{1, 2, ..., d\})
      Schedule lecture j in any such classroom k
   ELSE
      Allocate a new classroom d + 1.
      Schedule lecture j in classroom d + 1.
      d \leftarrow d + 1.
RETURN schedule.
```


Interval Partitioning: ESTF Algorithm Analysis

Proposition: The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

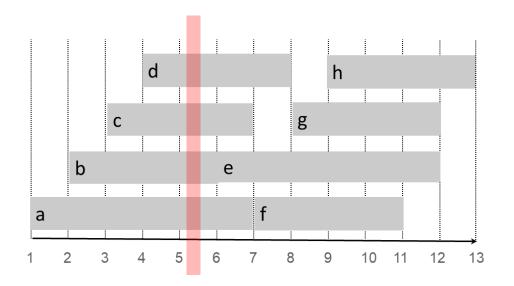
Proof:

- Sorting by start times takes $O(n \log n)$ time.
- Store classrooms in a priority queue (key = finish time of its last lecture).
 - to allocate a new classroom, INSERT classroom onto priority queue.
 - to schedule lecture j in classroom k, INCREASE-KEY of classroom k to f_j .
 - to determine whether lecture j is compatible with any classroom, compare s_j to FIND-MIN
- Total # of priority queue operations is O(n); each takes $O(\log n)$ time. •

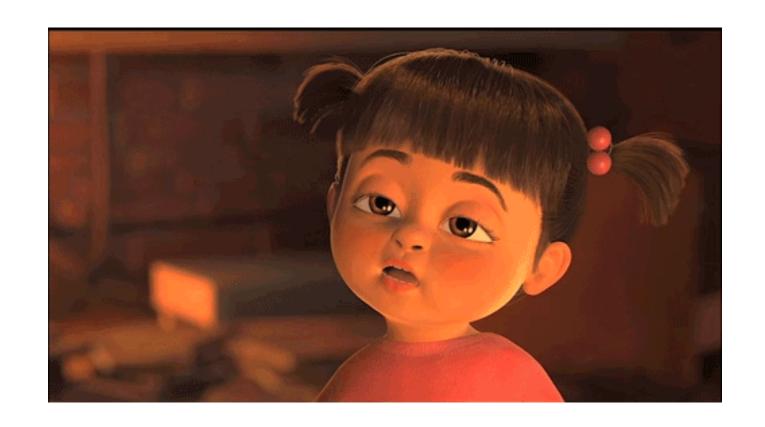
Remark: This implementation chooses a classroom k whose finish time of its last lecture is the earliest.

Interval Partitioning: ESTF Algorithm Analysis

- **Def:** The depth of a set of open intervals is the maximum number of intervals that contain any given point.
- **Key observation:** Number of classrooms needed \geq depth.
- Q. Does minimum number of classrooms needed always equal depth?
- A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule whose number of classrooms equals the depth.



Thanks a lot



If you are taking a Nap, wake up.....Lecture Over