CS 310: Algorithms

Lecture 14

Instructor: Naveed Anwar Bhatti

@ Administrivia

 Three HWs (Time Complexities, Graphs and Divide & Conquer)
* Solutions will be released on Friday

e Tutorial in A1 — Thursday, 6:00-7:30 pm

* Midterm Exam finalized |

Chapter 4:
Greedy Algorithms

Greed is Goooood

Alqorithm Design

JON KLEINBERG * EVA TARDOS

‘ Scenario: The Last of Us

o]

e

.I'l 1

@ Scenario: The Last of Us

Scene: We are in LUMS maze at night (limited
visibility)

Objective: Collect the immediate weapon in
sight and reach to safe zone

Rules:

 Can move in any direction: Up, Down, Left
and Right

* Once a path is taken, there is no going back

 Game ends when you reach safe zone (or die)

@ Scenario 1

cenario

@ Scenario 1

i o

5 e

11

12

13

14

15

16

@ Scenario 2

6 i
1% 'J-’-;il

i e
%08 'J-’-;il

17

@ Greedy Algorithms

* An algorithm is greedy if it builds up solution in small steps

- In each step:
- make a choice that looks best at the moment (greedy choice)
- incrementally optimize the solution

* For many problems, greedy algorithms yield global optimal solution
Interval scheduling

Interval partitioning

Shortest paths in a graph

Minimum Spanning Tree

Perfect and stable matching

@ Interval Scheduling Problem

* Jobj starts at s; and finishes at f,.
* Two jobs are compatible if they don’t overlap.
* Goal: find maximum subset of mutually compatible jobs.

> time

@ Interval Scheduling Problem

* Jobj starts at s; and finishes at f,.
* Two jobs are compatible if they don’t overlap.
* Goal: find maximum subset of mutually compatible jobs.

> time

@ Interval Scheduling Problem

* Jobj starts at s; and finishes at f,.
* Two jobs are compatible if they don’t overlap.
* Goal: find maximum subset of mutually compatible jobs.

h e

@ Interval Scheduling Problem

* Jobj starts at s; and finishes at f,.
* Two jobs are compatible if they don’t overlap.
* Goal: find maximum subset of mutually compatible jobs.

h e

@ Interval Scheduling Problem

Earliest Starting Request First
Latest Finishing Request First

> Sub-optimal

Shortest Duration Request First
Earliest Finish Time First

d

11

> time

@ Interval Scheduling Problem

 Earliest Starting Request First

Select the request with the earliest start time

Eliminate any conflicting intervals (those that overlap with the chosen interval)
Continue this process until there are no more requests left.

\ 4

0 1 2 3 4 5 6 7 8 9 10 11

@ Interval Scheduling Problem

 Earliest Starting Request First

Select the request with the earliest start time

Eliminate any conflicting intervals (those that overlap with the chosen interval)
Continue this process until there are no more requests left.

\ 4

0 1 2 3 4 5 6 7 8 9 10 11

@ Interval Scheduling Problem

 Earliest Starting Request First

Select the request with the earliest start time

Eliminate any conflicting intervals (those that overlap with the chosen interval)
Continue this process until there are no more requests left.

8

\ 4

0 1 2 3 4 5 6 7 8 9 10 11

@ Interval Scheduling Problem

 Earliest Starting Request First

* Select the request with the earliest start time

Eliminate any conflicting intervals (those that overlap with the chosen interval)
Continue this process until there are no more requests left.

h

0 1 2 3 4 5 6 7 8 9 10 11

time

@ Interval Scheduling Problem

 Earliest Starting Request First

* Select the request with the earliest start time

Eliminate any conflicting intervals (those that overlap with the chosen interval)
Continue this process until there are no more requests left.

@ Interval Scheduling Problem

 Latest Finishing Request First

* Select the request with the latest finish time
* Eliminate any conflicting intervals
* Continue until there are no more requests left.

11

\ 4

@ Interval Scheduling Problem

 Latest Finishing Request First

* Select the request with the latest finish time
* Eliminate any conflicting intervals
* Continue until there are no more requests left.

0 1 2 3 4 5 6 7 8 9 10

11

\ 4

@ Interval Scheduling Problem

 Latest Finishing Request First

* Select the request with the latest finish time
* Eliminate any conflicting intervals

Continue until there are no more requests left.

10

11

\ 4

@ Interval Scheduling Problem

 Latest Finishing Request First

* Select the request with the latest finish time
* Eliminate any conflicting intervals
* Continue until there are no more requests left.

; ; ; ; ;
(R

. ; ; ;

e
a
C
b
0 1 2 3 4 5 6 7 8 9 10 11

@ Interval Scheduling Problem

 Latest Finishing Request First

* Select the request with the latest finish time
* Eliminate any conflicting intervals

e Continue until there are no more requests left.

e

@ Interval Scheduling Problem

 Latest Finishing Request First

* Select the request with the latest finish time
* Eliminate any conflicting intervals

e Continue until there are no more requests left.

1 2 3 4

0 5 6 7 8 9 10 11

time

@ Interval Scheduling Problem

e Shortest Duration Request First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

11

\ 4

@ Interval Scheduling Problem

e Shortest Duration Request First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

10

11

\ 4

@ Interval Scheduling Problem

e Shortest Duration Request First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

10

11

\ 4

@ Interval Scheduling Problem

e Shortest Duration Request First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

f

g . .
o 1 2 3 4 5 6 7 8 9 10

time

@ Interval Scheduling Problem

e Shortest Duration Request First

Select the shortest request
Eliminate any conflicting intervals

Continue this process until no more requests are left.

f
g . .
o 1 2 3 4 5 6 7 8 9 10 11

time

@ Interval Scheduling Problem

* Shortest Duration Request First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

6 7 8 9 10 11

0 1 2 3 4 5

time

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
* Continue this process until no more requests are left.

\ 4

11

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
* Continue this process until no more requests are left.

b

\ 4

11

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals

* Continue this process until no more requests are left.

c

\ 4

11

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
* Continue this process until no more requests are left.

eii
d
f.
h \
01234567891011’

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals

* Continue this process until no more requests are left.

\ 4

11

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

h

0 1 2 3 4 5 6 7 8 9 10 11
time

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
* Continue this process until no more requests are left.

> time

@ Interval Scheduling Problem

e Earliest Finish Time First

e Select the shortest request
* Eliminate any conflicting intervals
e Continue this process until no more requests are left.

> time

@ Interval Scheduling: EFTF Algorithm Analysis

EARLIEST-FINISH-TIME-FIRST (n, S1, 82, ..., Su, f1, 2, ..., fn)

SORT jobs by finish times and renumber so that /1 < /2 < ...

S« & < set of jobs selected
FOR j=1TO n
IF (job j is compatible with S)
S —Sufjl

RETURN S.

< fo

10

11

\ 4

50

@ Interval Scheduling: EFTF Algorithm Analysis

EARLIEST-FINISH-TIME-FIRST (n, S1, 82, ..., Su, f1, 2, ..., fn)

SORT jobs by finish times and renumber so that /1 < /2 < ...

Set «— = set of jobs selected
FOR j=1TO n
IF (job j is compatible with Set)
Set «— Set U{ j}.

RETURN S.

O(nlogn) + O(n)

Sj 2 Setflast

11

\ 4

51

@ Interval Scheduling: Correctness

Theorem: The earliest-finish-time-first (EFTF) algorithm is optimal.

Let A= il ,iz , i3) i4,... ik
Assume sorted: f(iy) < f(i,) < f(is) ...

<+——— EFTF

Let B=J1 J2,J3,Ja, Jk, Jk+1, = Jm, G Magic Optimal
Assume sorted: f(j;) < f(j,) < f(j3) ...

wherem > k
We need to show m £ k

52

@ Interval Scheduling: Correctness

Let A= il ’iz , i3 ’ i4’... ik
Assume sorted: f(i;) < f(i,) < f(i3) ...

Let B=J1 Jj2,J3,Ja, Jk, Jk+1, = Jm,
Assume sorted: f(j;) < f(j,) < f(j3) ...

First, we need to show that for eachr <k, f(i,) 2=f(j,)

Then, we need to show that for each m <k,

[by Induction]

[by Contradiction]

53

@ Interval Scheduling: Correctness

Proof: [by Induction]
Base Case:
* r=1: EFTF chooses booking i; with earliest overall finish time, i.e., f(i1) < f(j1)
Inductive Hypothesis:
* r>1: Assume, by induction that f(i,_1) < f(j,-1)
Then
* It must be the case that f(i,.)) < f(j,)

jr—l Jr

0 1 2 3 4 5 6 7 8 9 10 11

@ Interval Scheduling: Correctness

Proof: [by Contradiction]

We know that f(i,.) < f(j,-)
Consider ji1 in “Magic Optima
Greedy algorithms terminates only when no more jobs are left or all
remaining jobs overlaps

Contradiction

I”

55

@ Interval partitioning

* Lecturej starts at s; and finishes at f..

e Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

am time pm

56

Earliest Finish Time First

5

6 7
time

8

9

10 11 12 13 1 2 3 4

5

6 7
time

8

9

10 M

12

57

13

Earliest Finish Time First

b
a
C
d c .
4 d
e 3 C
2;a
1234567855161512131:2345:6:372;5:31:01:1152
time time 58

13

Smallest Interval First

5

6 7
time

8

9

10 11 12 13 1 2 3 4

5

6 7
time

8

9

10 M

12

59

13

Smallest Interval First

5

6 7
time

8

9

10 11 12 13 1 2 3 4

5

6 7
time

8

9

10 M

12

60

13

Earliest Start Time First

b
C
d

e 4 d
3 C g
2 b ie
1 a | f

123456789{015121312345:6:375:35:91:01:112
time time 61

13

@ Interval Partitioning: ESTF Algorithm Analysis

EARLIEST-START-TIME-FIRST (n, S1, S2, ..., Sn, f1, 2, ..., fn)

SORT lectures by start times and renumber so thats1 < s2 < ... < sn. 0 (n lo g n)

d « 1 «<— number of allocated classrooms
FOrR j=1TOn

IF (lecture j is compatible with some classroom k € {1,2,..,d})

Schedule lecture j in any such classroom k

O(n)
ELSE O(logn) O(nlogn)

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1. j
d—d+ I

RETURN schedule.

@ Interval Partitioning: ESTF Algorithm Analysis

Proposition: The earliest-start-time-first algorithm can be
implemented in O(n log n) time.

Proof:
* Sorting by start times takes O(n log n) time.

 Store classrooms in a priority queue (key = finish time of its last lecture).

* to allocate a new classroom, INSERT classroom onto priority queue.
* to schedule lecture j in classroom k, INCREASE-KEY of classroom £ to f;.

* to determine whether lecture j is compatible with any classroom,
compare s;j to FIND-MIN

* Total # of priority queue operations is O(n); each takes O(log n) time. =

Remark: This implementation chooses a classroom k& whose finish
time of its last lecture is the earliest.

63

@ Interval Partitioning: ESTF Algorithm Analysis

* Def: The depth of a set of open intervals is the maximum number of
intervals that contain any given point.

* Key observation: Number of classrooms needed > depth.
* Q. Does minimum number of classrooms needed always equal depth?

* A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule
whose number of classrooms equals the depth.

1 2 3 2 5 6 7 8 9 10 11 12 13

64

Thanks a lot

Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Administrivia
	Slide 3: Chapter 4: Greedy Algorithms
	Slide 4: Scenario: The Last of Us
	Slide 5: Scenario: The Last of Us
	Slide 6: Scenario 1
	Slide 7: Scenario 1
	Slide 8: Scenario 1
	Slide 9: Scenario 1
	Slide 10: Scenario 1
	Slide 11: Scenario 1
	Slide 12: Scenario 2
	Slide 13: Scenario 2
	Slide 14: Scenario 2
	Slide 15: Scenario 2
	Slide 16: Scenario 2
	Slide 17: Scenario 2
	Slide 18: Greedy Algorithms
	Slide 19: Interval Scheduling Problem
	Slide 20: Interval Scheduling Problem
	Slide 21: Interval Scheduling Problem
	Slide 22: Interval Scheduling Problem
	Slide 23: Interval Scheduling Problem
	Slide 24: Interval Scheduling Problem
	Slide 25: Interval Scheduling Problem
	Slide 26: Interval Scheduling Problem
	Slide 27: Interval Scheduling Problem
	Slide 28: Interval Scheduling Problem
	Slide 29: Interval Scheduling Problem
	Slide 30: Interval Scheduling Problem
	Slide 31: Interval Scheduling Problem
	Slide 32: Interval Scheduling Problem
	Slide 33: Interval Scheduling Problem
	Slide 34: Interval Scheduling Problem
	Slide 35: Interval Scheduling Problem
	Slide 36: Interval Scheduling Problem
	Slide 37: Interval Scheduling Problem
	Slide 38: Interval Scheduling Problem
	Slide 39: Interval Scheduling Problem
	Slide 40: Interval Scheduling Problem
	Slide 41: Interval Scheduling Problem
	Slide 42: Interval Scheduling Problem
	Slide 43: Interval Scheduling Problem
	Slide 44: Interval Scheduling Problem
	Slide 45: Interval Scheduling Problem
	Slide 46: Interval Scheduling Problem
	Slide 47: Interval Scheduling Problem
	Slide 48: Interval Scheduling Problem
	Slide 49: Interval Scheduling Problem
	Slide 50: Interval Scheduling: EFTF Algorithm Analysis
	Slide 51: Interval Scheduling: EFTF Algorithm Analysis
	Slide 52: Interval Scheduling: Correctness
	Slide 53: Interval Scheduling: Correctness
	Slide 54: Interval Scheduling: Correctness
	Slide 55: Interval Scheduling: Correctness
	Slide 56: Interval partitioning
	Slide 57: Earliest Finish Time First
	Slide 58: Earliest Finish Time First
	Slide 59: Smallest Interval First
	Slide 60: Smallest Interval First
	Slide 61: Earliest Start Time First
	Slide 62: Interval Partitioning: ESTF Algorithm Analysis
	Slide 63: Interval Partitioning: ESTF Algorithm Analysis
	Slide 64: Interval Partitioning: ESTF Algorithm Analysis
	Slide 66: Thanks a lot

