CS 310: Algorithms

Lecture 12

Instructor: Naveed Anwar Bhatti

@ Quiz 3 - Solutions

Question 1:
Design an algorithm (pseudo or just steps) to check if a directed graph is strongly
connected. Your algorithm should only use Breadth-First Search (BFS) and should

not calculate the reverse (or transpose) of the graph G. After describing your
algorithm, state its time complexity.

@ Quiz 3 - Solutions

Question 1:
Design an algorithm (pseudo or just steps) to check if a directed graph is strongly
connected. Your algorithm should only use Breadth-First Search (BFS) and should

not calculate the reverse (or transpose) of the graph G. After describing your
algorithm, state its time complexity.

@ Quiz 3 - Solutions

Question 3:
Proof through contradiction that Directed Acyclic Graph (DAG) cannot be a strongly
connected graph.

* Assume for the sake of contradiction that there exists a DAG which is also strongly connected.

* Let's take any two vertices, u and v. Since the graph is assumed to be strongly connected, there
exists a path from u to v and also from v to u.

e Since there exists a path from u to vand from v to u, it implies that we can start at vertex u, travel to
vertex v, and then come back to vertex u, forming a directed cycle.

e This contradicts our initial assumption that the graph is a DAG (as DAGs don't have directed cycles).

* Therefore, our initial assumption is wrong.

12

@ Administrivia

Midterm Exam on Monday, October 23"

13

Chapter 5:
Divide and Conquer

Lower Bound on Sorting
Algorithms

- Mlgorithm Design

JON KLEINBERG * EVA TARDOS

14

_ ;/_\LGORITH‘M_S'+”___ e

@ Scenario # 1

Google

_—

You, implement a sorting

algorithm with worst-case
runtime O(n log log n) by
next week.

Okay Boss, | will
try to do that ~

&

@@ Ali — (LUMS)

0 Q@

16

@ Scenario # 1

G I @ @ Ali try it for one
0 g e month... can’t do it
Boss,
| can’t do it

Thankyou, &

You are FIRED

s

17

@ Scenario # 2

Google

_—

You, implement a sorting

algorithm with worst-case
runtime O(n log log n) by
next week.

6 6 Jaffer — (LUMS)

-"4

No, Boss. O(n log log n) is
below the lower bound on
sorting algorithm complexity , |
can’t do it, nobody can do it!

L

18

@ Lower bounds on sorting algorithms

Know your limit
we always try to make algorithms faster, but if there is a
limit that you cannot exceed, you want to know

Is O(n log n) the best we can do?

Actually, yes, because the lower bound on
sorting algorithms is Q(n log n), i.e., a sorting
algorithm needs at least cn log n time to finish
In worst-case.

19

@ Lower bounds on sorting algorithms

actually, more precisely ...

The lower bound n log n applies to only all
comparison based sorting algorithms

Prove it

/4;2;,/» Challenge

Accepted
y 4

&

@ Comparison tree (for 3 distinct keys a, b, and c)

a<b

[%]
(]
| .
©
Q.
code between compares £
o
(&)
(e.g., sequence of exchanges) 5
| -
(]
b<c < 2
€
>
[
]
yes &
no yes no ©
o
2
o
abec bac 3
a<c b<c I
Q
(V)
S
)
Y
o
)
es no S
yes no y)
()
N -

ach cab bca chba

Slide credit: Kevin Wayne.
Copyright © 2005 Pearson-Addis
Wesley. All rights reserved.

2
1

each reachable leaf corresponds to one (and only one) ordering;
exactly one reachable leaf for each possible ordering

@ Sorting lower bound

Theorem. Any deterministic compare-based sorting algorithm must make
Q(n log n) compares in the worst-case.

Pf. [information theoretic]
* Assume array consists of n distinct values a1 through ax.
e Worst-case number of compares = height /# of pruned comparison tree.
« Binary tree of height / has < 2" leaves.
» n! different orderings = n! reachable leaves.

2" > # reachable leaves = n !
= h > logz2(n!)

> nlogon—In(e) =

| e
Stirling’s formula A g
& f Slide credit: Kevin Wayne.

Copyright © 2005 Pearson-Addison
Wesley. All rights reserved.

Chapter 5:
Divide and Conquer

Master Theorem

- Mlgorithm Design

JON KLEINBERG * EVA TARDOS

 Use of Master Theorem
* Proof of Master Theorem (Next Lecture)

24

@ What is Master Theorem?

Theorem

If T(n) = aT (g) + f(n) (for constants a>0, b> 1)

Then let T(n) has the following asymptotic bounds:

1. Iff(n) = O(nlogb “‘6) for some constant € > 0, then T(n) = O(n!'°8» ¢)

2. Iff(n) = @(nlogb “), thenT(n) = @(nlogb g n)

3. Iff(n) = Q(nlogb “+6) for some constant € > 0, and if af (n/b) < cf(n), for
some constant ¢ < 1 and all sufficiently large n, then T(n) = 0(f (n))

26

@ Master Method — Example 1

* Using Master Theorem, find the asymptotic bounds of:
n
T(n) = 9T(§)+n
Master Theorem
T(n) =aT(n/b) + f(n)
1. If f(n) = 0(n'8» 7€) for some constant € > 0, then T(n) = 0(n!°8» %)
2. Iff(n) = @(nlogb a), then T(n) = @(nlogb Y1g n)

3. Iff(n)= Q(nlogb “+6) for some constant € > 0, and if af (n/b) < cf(n), for some constant
c < 1 and all sufficiently large n, then T(n) = 0(f(n))

27

@ Master Method — Example 2

* Using Master Theorem, find the asymptotic bounds of:

T(n)=T<2?n)+1

Master Theorem

T(n) =aT(n/b) + f(n)

1. Iff(n) = O(nlogb a‘e) for some constant € > 0, then T(n) = 0(n!°8 %)
2. Iff(n) = @(nlogb a), thenT(n) = @(nlogb g n)

3. Iff(n)= Q(nlogb a+€) for some constant € > 0, and if af (n/b) < cf(n), for some constant
¢ < 1 and all sufficiently large n, then T(n) = 0(f(n))

28

@ Master Method — Example 3

* Using Master Theorem, find the asymptotic bounds of:

T(n) =3T (g) + nign

Master Theorem

T(n) = aT(n/b) + f(n)

1. Iff(n) = O(nlogb a‘e) for some constant € > 0, then T(n) = 0(n'°8 %)
2. Iff(n) = @(nlogb a), thenT(n) = @(nlogb Y1g n)

3. Iff(n)= Q(nlogb “+6) for some constant € > 0, and if af (n/b) < cf(n), for some constant
c < 1 and all sufficiently large n, then T(n) = 0(f(n))

29

@ Master Method — Example 4

* Using Master Theorem, find the asymptotic bounds of:
n
T(n) = 2T (E) +o(n)

Master Theorem

T(n) =aT(n/b) + f(n)

1. Iff(n) = O(nlogb a‘e) for some constant € > 0, then T(n) = 0(n'°8» %)
2. Iff(n) = @(nlogb “), thenT(n) = @(nlogb g n)

3. Iff(n)= Q(nlogb “+€) for some constant € > 0, and if af (n/b) < cf(n), for some constant
c < 1 and all sufficiently large n, then T(n) = 0(f(n))

30

@ Master Method — Example 5

* Using Master Theorem, find the asymptotic bounds of:
n
T(n) = 8T (E) + 0(n?)
Master Theorem
T(n) =aT(n/b) + f(n)
1. If f(n) = 0(n'8» 7€) for some constant € > 0, then T(n) = 0(n!°8» %)
2. Iff(n) = @(nlogb a), then T(n) = @(nlogb Y1g n)

3. Iff(n)= Q(nlogb “+6) for some constant € > 0, and if af (n/b) < cf(n), for some constant
c < 1 and all sufficiently large n, then T(n) = 0(f(n))

31

Thanks a lot

Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Quiz 3 - Solutions
	Slide 3: Quiz 3 - Solutions
	Slide 4: Quiz 3 - Solutions
	Slide 5: Quiz 3 - Solutions
	Slide 6: Quiz 3 - Solutions
	Slide 7: Quiz 3 - Solutions
	Slide 8: Quiz 3 - Solutions
	Slide 9: Quiz 3 - Solutions
	Slide 10: Quiz 3 - Solutions
	Slide 11: Quiz 3 - Solutions
	Slide 12: Quiz 3 - Solutions
	Slide 13: Administrivia
	Slide 14: Chapter 5: Divide and Conquer
	Slide 15: The return of
	Slide 16: Scenario # 1
	Slide 17: Scenario # 1
	Slide 18: Scenario # 2
	Slide 19: Lower bounds on sorting algorithms
	Slide 20: Lower bounds on sorting algorithms
	Slide 21: Comparison tree (for 3 distinct keys a, b, and c)
	Slide 23: Sorting lower bound
	Slide 24: Chapter 5: Divide and Conquer
	Slide 26: What is Master Theorem?
	Slide 27: Master Method – Example 1
	Slide 28: Master Method – Example 2
	Slide 29: Master Method – Example 3
	Slide 30: Master Method – Example 4
	Slide 31: Master Method – Example 5
	Slide 34: Thanks a lot

