
CS 310: Algorithms

Instructor: Naveed Anwar Bhatti

Lecture 12



Quiz 3 - Solutions
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Question 1:

Design an algorithm (pseudo or just steps) to check if a directed graph is strongly 
connected. Your algorithm should only use Breadth-First Search (BFS) and should 
not calculate the reverse (or transpose) of the graph G. After describing your 
algorithm, state its time complexity. 
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Question 2:

Find topological order.
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Question 3:

Proof through contradiction that Directed Acyclic Graph (DAG) cannot be a strongly 
connected graph.

• Assume for the sake of contradiction that there exists a DAG which is also strongly connected.

• Let's take any two vertices, u and v. Since the graph is assumed to be strongly connected, there 
exists a path from u to v and also from v to u.

• Since there exists a path from u to v and from v to u, it implies that we can start at vertex u, travel to 
vertex v, and then come back to vertex u, forming a directed cycle.

• This contradicts our initial assumption that the graph is a DAG (as DAGs don't have directed cycles).

• Therefore, our initial assumption is wrong.



Administrivia
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Midterm Exam on Monday, October 23rd 



14

Chapter 5:
Divide and Conquer 

Lower Bound on Sorting 
Algorithms



The return of
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O, , and 



Scenario # 1
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Ali – (LUMS)



Scenario # 1
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Ali try it for one 
month… can’t do it



Scenario # 2
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Jaffer – (LUMS)



Lower bounds on sorting algorithms
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Know your limit
we always try to make algorithms faster, but if there is a 
limit that you cannot exceed, you want to know 



Lower bounds on sorting algorithms
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Comparison tree (for 3 distinct keys a, b, and c)
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code between compares

(e.g., sequence of exchanges)

each reachable leaf corresponds to one (and only one) ordering;
exactly one reachable leaf for each possible ordering

Slide credit: Kevin Wayne.
Copyright © 2005 Pearson-Addison 
Wesley. All rights reserved.



Sorting lower bound

Theorem.  Any deterministic compare-based sorting algorithm must make 
Ω(n log n) compares in the worst-case.

Pf.  [ information theoretic ]
• Assume array consists of n distinct values a1 through an.
• Worst-case number of compares = height h of pruned comparison tree.
• Binary tree of height h has ≤ 2h leaves.
• n! different orderings    n! reachable leaves.

2
3

2h   ≥  # reachable leaves  =  n !

⇒   h  ≥  log2 (n!)

          ≥  n log2 n − ln (e)  ▪

Stirling’s formula
Slide credit: Kevin Wayne.
Copyright © 2005 Pearson-Addison 
Wesley. All rights reserved.
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Chapter 5:
Divide and Conquer 

Master Theorem

• Use of Master Theorem
• Proof of Master Theorem (Next Lecture)



Theorem

What is Master Theorem?
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If  𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 (for constants a>0, b> 1)

Then let 𝑇(𝑛)  has the following asymptotic bounds:

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖  for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 𝑙𝑔 𝑛

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  for some constant 𝜖 > 0, and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 , for 

some constant 𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))



Master Method – Example 1

• Using Master Theorem, find the asymptotic bounds of:

𝑇 𝑛 = 9𝑇
𝑛

3
+ 𝑛

Master Theorem
𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖  for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 𝑙𝑔 𝑛

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  for some constant 𝜖 > 0, and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 , for some constant 
𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))
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Master Method – Example 2

• Using Master Theorem, find the asymptotic bounds of:

𝑇 𝑛 = 𝑇
2𝑛

3
+ 1

Master Theorem
𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖  for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 𝑙𝑔 𝑛

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  for some constant 𝜖 > 0, and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 , for some constant 
𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))
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Master Method – Example 3

• Using Master Theorem, find the asymptotic bounds of:

𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑛𝑙𝑔𝑛

Master Theorem
𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖  for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 𝑙𝑔 𝑛

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  for some constant 𝜖 > 0, and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 , for some constant 
𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))

29



Master Method – Example 4

• Using Master Theorem, find the asymptotic bounds of:

𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ(𝑛)

Master Theorem
𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖  for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 𝑙𝑔 𝑛

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  for some constant 𝜖 > 0, and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 , for some constant 
𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))
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Master Method – Example 5

• Using Master Theorem, find the asymptotic bounds of:

𝑇 𝑛 = 8𝑇
𝑛

2
+ Θ(𝑛2)

Master Theorem
𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛

1. If 𝑓 𝑛 = 𝑂 𝑛log𝑏 𝑎−𝜖  for some constant 𝜖 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

2. If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 𝑙𝑔 𝑛

3. If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜖  for some constant 𝜖 > 0, and if 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 , for some constant 
𝑐 < 1 and all sufficiently large 𝑛, then 𝑇 𝑛 = Θ(𝑓(𝑛))
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Thanks a lot

If you are taking a Nap, wake up........Lecture Over
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