CS 310: Algorithms

Lecture 10

Instructor: Naveed Anwar Bhatti

@ Administrivia

Quiz 3 on Monday
3 grace days

@ Topological Ordering: Live Poll 1

Select the correct topological order:

Topological Order is: 1-2-3-4-5-6-7
Topological Order is: 2-3-1-4-5-6-7
Topological Order is: 5-1-4-3-6-7-2
. Topological Order is: 2-3-6-5-1-4-7
Topological Order does not exist

Scan the QR code to
vote or go to
https://forms.office.co
m/r/Rh8UH9t7PB

Mmoo WP

Topological Ordering: Live Poll 1

Cnly pecple in my organization can respond, Record name

1. Select the correct topological order:

Topological Order is: 1-2-3-4-5-6-7 0%
Topological Order is: 2-3-1-4-5-6-7 0%
Topological Order is: 2-3-6-5-1-4-7 0%
Topological Order does not exist 0%

32 responses 11

Scan the QR code to
vote or go to

https://forms.office.co
m/r/RhaUHS7PE

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7
Topological Order is: 2-3-1-4-5-6-7
Topological Order is: 5-1-4-3-6-7-2
. Topological Order is: 2-3-6-5-1-4-7
Topological Order does not exist

mooOwmry

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7
Topological Order is: 2-3-1-4-5-6-7
Topological Order is: 5-1-4-3-6-7-2
. Topological Order is: 2-3-6-5-1-4-7
Topological Order does not exist

mooOwmry

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7
Topological Order is: 2-3-1-4-5-6-7
Topological Order is: 5-1-4-3-6-7-2 @
. Topological Order is: 2-3-6-5-1-4-7
Topological Order does not exist

mooOwmry

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7

Topological Order is: 2-3-1-4-5-6-7

Topological Order is: 5-1-4-3-6-7-2 @ @
. Topological Order is: 2-3-6-5-1-4-7

Topological Order does not exist

mooOwmry

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7

Topological Order is: 2-3-1-4-5-6-7

Topological Order is: 5-1-4-3-6-7-2 @ @ @
. Topological Order is: 2-3-6-5-1-4-7

Topological Order does not exist

mooOwmry

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7

Topological Order is: 2-3-1-4-5-6-7

Topological Order is: 5-1-4-3-6-7-2 @ @ @ @
. Topological Order is: 2-3-6-5-1-4-7

Topological Order does not exist

mooOwmry

10

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7

Topological Order is: 2-3-1-4-5-6-7

Topological Order is: 5-1-4-3-6-7-2 @ @ @ @ @
. Topological Order is: 2-3-6-5-1-4-7

Topological Order does not exist

mooOwmry

11

@ Topological Ordering: Live Poll 1

mooOwmry

Select the correct option:

@

Topological Order is: 1-2-3-4-5-6-7
Topological Order is: 2-3-1-4-5-6-7
Topological Order is: 5-1-4-3-6-7-2

. Topological Order is: 2-3-6-5-1-4-7

Topological Order does not exist

OOOOO®

12

@ Topological Ordering: Live Poll 1

Select the correct option:

Topological Order is: 1-2-3-4-5-6-7

Topological Order is: 2-3-1-4-5-6-7

Topological Order is: 5-1-4-3-6-7-2 @ @ @ @ @ @ @
. Topological Order is: 2-3-6-5-1-4-7

Topological Order does not exist

mooOwmry

13

@ DFS: Live Poll 2

Mmoo WP

B,EFC CB,F Scan the QR code to

B,C,C,FCFC vote or go to

B,C,B,FC FC https://forms.office.co
. BCFCCB,C m/r/MRrtZ1bsbn

B,C,FB,CFC

14

DFS: Live Poll 2

Cnly pecple in my organization can respond, Record name

1. Label the numbered edges as Back, Forward, or

Cross edges

lB, CBFCFC

B.CFCCEBC

.,C, F.B.CFC

41 responses

24%

22%

2%

46%

5%

i1

4

Scan the QR code to
vote or go to
https://forms.office.co
m/r/MRrtZ1bsbn

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

\ 4

16

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

\ 4

17

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

18

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

19

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

20

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

21

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

22

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

23

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

24

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

25

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

26

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

27

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

28

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

29

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

30

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

31

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

32

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

33

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

14/

34

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

35

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

36

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

37

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

38

@ DFS: Live Poll 2

Label the numbered edges as Back, Forward, or Cross edges

5

123 456 7 8 9101 1213141516

39

Chapter 5:
Divide and Conquer

Alqorithm Design

JON KLEINBERG * EVA TARDOS

40

@ Divide-and-conquer

* Many algorithms are recursive in structure

Call themselves recursively one or more times to solve smaller sub-problems
efficiently

* Divide-and-conquer paradigm — 3 steps
1. Divide the problem into a number of sub-problems that are smaller

instances of the original problem

2. Conquer the sub-problems by solving them recursively. If the subproblem

sizes are small enough, solve the subproblems in a straight-forward manner
(in constant number of steps)

3.

Combine the solutions to the sub-problems into the solution to the original
problem

41

Section 5.1:
Merge Sort

@ Divide-and-conquer

Sorting: Given an array of n elements, sort the array in ascending order

Merge Sort

1. Divide: Divide the n elements array into two subarrays of n/2
elements each

2. Conquer: Sort the two subarrays recursively

3. Combine: Merge the two sorted subarrays to produce the sorted
answer

43

@ Mergesort

MERGESORT (A)

1 if (length(4) > 1)

2 Ay < A1 - |n/2]]

3 A, <« A[ln/2]+1 ---n]
4 A, « MERGESORT(A;)
5 A, « MERGESORT(A,)
6 A « MERGE (A1, A,)

7

return A

Levels
. (n/2)
2 (n/4)
V)

4 (n/16)

Levels

M| S 1

C G TIHM|S 2
C G H M| S 3

(n/2)

(n/2%)

(n/2%)

(n/2%)

Levels

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom
if A1[i] < A, [Jj]
Alk] « Aq[i]
[<—1+1
else Alk] « A,[j]
jej+1
return 4

(0]

48

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom
if A1[i] < A, [Jj]
Alk] « Aq[i]
[<—1+1
else Alk] « A,[j]
jej+1
return 4

49

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom l
if A1[i] < A, [Jj]
Alk] « Aq[i]
l<1+1
else Alk] « A,[j]
jej+1

return 4

50

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)

e 1«1 |
fork=1tom i i
it 4, [i] < 4,)] G|1 [o|R H m[s [T
Alk] « Aq[i]
i —i+1 i
else Alk] « A,[j] TuT,
jej+1

return 4

51

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)

i1« 1 j
fork =1tom i [l
it 4, [i] < 4,)] G|1 [o|R H m[s [T
i—i+1 i
else Alk] « A,[j] o T T
jej+1

return 4

52

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom
if A1[i] < A, [Jj]
Alk] « Aq[i]
[<—1+1
else Alk] « A,[j]
jej+1
return 4

53

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom
if A1[i] < A, [Jj]
Alk] « Aq[i]
[<—1+1
else Alk] « A,[j]
jej+1
return 4

54

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom
if A1[i] < A, [Jj]
Alk] « Aq[i]
[<—1+1
else Alk] « A,[j]
jej+1
return 4

55

@ Mergesort

MERGE (A4, A,)

O 00 N O Ul p W N B

m < length(A,) + length(4,)
P11
fork=1tom
if A1[i] < A, [Jj]
Alk] « Aq[i]
[<—1+1
else Alk] « A,[j]
jej+1
return 4

56

@ Mergesort (Recursion Tree Method)

MERGE () iterations @

each level Levels
8 8
16 cl|s|3|1/0/-|A|L G|O|R|I|T|H|M|S 1
4 4 A 4
16 cls|3|1 ol-|A|L G|O|R| I TIH M|S 2
2 2 2 2 2 2 2 2
16 Cls| [3]1 0| - AlL G|O| |R|I TIH| [M|S 3

16 C|S| |31 [0||-||Al|L G (O |R(|I| |[T||H [M|[S| 4

@ Mergesort (Recursion Tree Method)

(@]
(%]
w
[T
o
>
-
(0]
o
X
-
=
<
(%]

MERGE () iterations @

each level o o Levels Time complexity will be:
16 cls|3(1|0/-|A|L G|O|R|I|T|H|M|S 1
MERGE () iterations @
7 n n 7 O X Levels
each level
16 cls|3|1 0ol-|A|L G|O|R|I TIHM|S 2
2 2 2 2 2 2 2 2 n X |0g2n
16 cls| |3]|1 0|- AlL G|O| |[R]|I TIH |M|S 3

16 (| [s] [3] [a] [o[-] [l[t] [q|[o] [r][1] [1][H [m][s] - nlog,n

58

@ Mergesort: Proof of correctness [induction]

Proposition. Mergesort sorts any list of n elements.

Pf. [by strong induction on n |
* Base case: n=1.
* Inductive hypothesis: assume trueforl, 2, ..., n—1.

* By inductive hypothesis, mergesort sorts both left and right
halves.

* Merging operation combines two sorted lists into a sorted
whole.

Slide credit: Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Background on “Proof by Induction”

Base Case:

e The base case serves as the
foundation for the induction.

* You start by proving that the
statement is true for a specific
value, usually the smallest value
n=0 or n=1.

Inductive Step:

* The inductive step is where you
assume that the statement
holds for some arbitrary value k
where k<n (this assumption is
called the "inductive
hypothesis").

59

@ Mergsort: Recurrence Relation

A L G 0 R I T H M S T(n)
A L G 0 R I T H M S divide O(1)
T(n/2) T(n/2)
A G L o) R H I M S T sort 2T(n/2)
A G H I L M O R S T merge O(n)

Slide credit: Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

60

@ Mergsort: Recurrence Relation

MERGESORT (A)

1 if (length(4) > 1)

2 Ay < Al - [n/2]]

3 A, <« A[In/2]|+1 ---n]
4 A « MERGESORT (A,)
5 A, « MERGESORT (A,)
6 A <« MERGE(A4,A,)

7 return A

" (0(1)
n) = 12T (g) +0(n)
(C
T(n) = 12T (g) + cn

ifn=1
ifn>1

ifn=1
ifn>1

61

@ Mergsort: Recurrence Relation

(0(1)

T(n) = A« n
ol 5

fC
T(n) = <2T(
\

n

2

) +0n)

)+cn

ifn=1
ifn>1

ifn=1
ifn>1

Any algorithm satisfying this
recurrence equation is
bounded by O (n log, n),
whenn > 1

62

@ Proof by induction

* Proposition. If T'(n) satisfies the following recurrence, then T'(n) = n log: n.

0 itn=1 assuming n
T(n) = _ is a power of 2
2T(n/2) + n ifn>1

e Pf. [by inductiononn]
* Base case: whenn=1,7(1)= 0=nlog: n.
* Inductive hypothesis: assume 7(n) = n log, n.
* Goal: show that 7(2n) = 2n log, (2n).

recurrence

/
1(2n) = 2T(2n/2) +2n =21T(n) +2n
inductive hypothesis —> = 2 p logzn +2n
= 2nlog2(2n/2) +2n
= 2n (log2(2n) —log2(2)) + 2n
= 2n(log2(2n)—1) +2n

Slide credit: Kevin Wayne.
= 2nlog2(2n).

Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
63

Thanks a lot

Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Administrivia
	Slide 3: Topological Ordering: Live Poll 1
	Slide 4
	Slide 5: Topological Ordering: Live Poll 1
	Slide 6: Topological Ordering: Live Poll 1
	Slide 7: Topological Ordering: Live Poll 1
	Slide 8: Topological Ordering: Live Poll 1
	Slide 9: Topological Ordering: Live Poll 1
	Slide 10: Topological Ordering: Live Poll 1
	Slide 11: Topological Ordering: Live Poll 1
	Slide 12: Topological Ordering: Live Poll 1
	Slide 13: Topological Ordering: Live Poll 1
	Slide 14: DFS: Live Poll 2
	Slide 15: DFS: Live Poll 2
	Slide 16: DFS: Live Poll 2
	Slide 17: DFS: Live Poll 2
	Slide 18: DFS: Live Poll 2
	Slide 19: DFS: Live Poll 2
	Slide 20: DFS: Live Poll 2
	Slide 21: DFS: Live Poll 2
	Slide 22: DFS: Live Poll 2
	Slide 23: DFS: Live Poll 2
	Slide 24: DFS: Live Poll 2
	Slide 25: DFS: Live Poll 2
	Slide 26: DFS: Live Poll 2
	Slide 27: DFS: Live Poll 2
	Slide 28: DFS: Live Poll 2
	Slide 29: DFS: Live Poll 2
	Slide 30: DFS: Live Poll 2
	Slide 31: DFS: Live Poll 2
	Slide 32: DFS: Live Poll 2
	Slide 33: DFS: Live Poll 2
	Slide 34: DFS: Live Poll 2
	Slide 35: DFS: Live Poll 2
	Slide 36: DFS: Live Poll 2
	Slide 37: DFS: Live Poll 2
	Slide 38: DFS: Live Poll 2
	Slide 39: DFS: Live Poll 2
	Slide 40: Chapter 5: Divide and Conquer
	Slide 41: Divide-and-conquer
	Slide 42: Section 5.1: Merge Sort
	Slide 43: Divide-and-conquer
	Slide 44: Mergesort
	Slide 45: Mergesort
	Slide 46: Mergesort
	Slide 47: Mergesort
	Slide 48: Mergesort
	Slide 49: Mergesort
	Slide 50: Mergesort
	Slide 51: Mergesort
	Slide 52: Mergesort
	Slide 53: Mergesort
	Slide 54: Mergesort
	Slide 55: Mergesort
	Slide 56: Mergesort
	Slide 57: Mergesort (Recursion Tree Method)
	Slide 58: Mergesort (Recursion Tree Method)
	Slide 59: Mergesort: Proof of correctness [induction]
	Slide 60: Mergsort: Recurrence Relation
	Slide 61: Mergsort: Recurrence Relation
	Slide 62: Mergsort: Recurrence Relation
	Slide 63: Proof by induction
	Slide 68: Thanks a lot

