CS 310: Algorithms

Lecture 9

Instructor: Naveed Anwar Bhatti

PEARSON Slides by Kevin Wayne (heavily modified by Naveed Bhatti).
T Copyright ©.2005 Pearson-Addison Wesley.
Add

=Rl All rights reserved.

Chapter 3:
Graphs

1 Uesion

Alqoritin

JON KLEINBERG EVA TARDOS

PEARSON Slides by Kevin Wayne (heavily modified by Naveed Bhatti).
Copyright ©® 2005 Pearson-Addison Wesley.

"““'%mw All rights reserved.

Section 3.5;
Connectivity in Directed Graphs

@ Strong Connectivity

* Def: Node u and v are mutually reachable if there is a path from u to
v and also a path from v to u.

~_-_—-—,

@ Strong Connectivity

* Def: Node u and v are mutually reachable if there is a path from u to
v and also a path from v to u.

* Def: A graphis strongly connected if every pair of nodes is mutually
reachable.

@ Strong Connectivity

* Lemma. Lets be any node in graph G. G is strongly connected iff
every node is reachable from s, and s is reachable from every node.

@ Strong Connectivity

* Lemma. Lets be any node in graph G. G is strongly connected iff
every node is reachable from s, and s is reachable from every node.

@ Strong Connectivity

* Proof. If every node is reachable from s and s is reachable from every
node, then for any two nodes u and v in G:
* Thereis apathfromutos
 And another fromstov

 Combining these, u can reach v through s

-
——————— * "— S

@ Strong Connectivity

* Proof. If every node is reachable from s and s is reachable from every
node, then for any two nodes u and v in G:

* Thereis apathfromutos
e And another from s to v * Similarly, v can reach u through s

 Combining these, u can reach v through s

@ Strong Connectivity: Algorithm

Pick any node s.
Run BFS from s in G.
Run BFS from s in G"ev

reverse orientation
of every edge in G

Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma.

@ Strong Connectivity: Live Poll 1

What is the complexity of this algo?

A. O(n)

B. O(n+m)

C. 0O(n?)

D. O(m?)

E. None of above

Scan the QR code to
vote or go to
https://forms.office.co
m/r/Ne2tbuqWxa

Strong Connectivity: Live Poll 1
Only people in my organization can respond, Record name

1. What is the complexity of this algo?

'l[n) 4%
owem o

'j(mh 2) A% Scan the QR code to vote
or go to
hitps://forms.office.com/r/
-Df above 12% Ne2tEugWXa

L 1 4 /4

b

@ Strong components

Def: A strong component is a maximal subset of mutually reachable
nodes.

—

@ Algorithm for finding strong components in a directed graph

STRONG-COMPONENTS(G)
1 Call DFS(G) to compute finishing times u. f for each vertex u
2 Compute G"¢veérs€

3 Call DFS(G"¢7€"*€), but in the main loop of DFS, consider the
vertices in order of decreasing u. f

4 Output the vertices of each tree in the depth-first forest formed in
line 3 as a separate strong component

@ Strong components

Def: A strong component is a maximal subset of mutually reachable
nodes.

—

@ Strong components

z,e

—) (T
9@

—

@ Strong components

P,e

—) (T
9@

@ Strong components

P,e

—) (T
9@

—

@ Strong components

P,e

—) (T
9@

@ Strong components

P,e

—) (T
9@

@ Strong components

F,e

—) (T
9@

N

@ Strong components

P?e

—) (T
9@

@ Strong components

Pv?e

—) (T
9@

@ Strong components

—) (T
9@

N

N

@ Strong components

1/

o

4/11

(=) (T
O ®

DS

2/3

2/3

2/3

w

2/3

33

2/3

34

2/3

35

2/3

36

2/3

37

2/3

38

2/3

21/22

39

@ Strong components

1/12

4/11

13/24

5/10

14/15

21/22

25/26

17/20

40

4/11

21/22

41

@ Strong components
23

@ Strong components
24 23 22 20 19 15

HOOOWOEOEOOO®OE O

PT’ZZ

@ Strong components
24 23 22 20 19 15 12

oJoJolelolelololololeloxe

TR

@ Strong components
23 22 20 19 15 10 9 8 3

MOOODODOOO®OE W

¥

T

@ Strong components
23 22 20 19 15 12

MOOODODOOO®OE W

g

@ Strong components
26, .24, 23 22 20 19 15 12

MEODODOOO®EOEO®

- Q\?-—@ 7

@ Strong components
26, .24, 23 22 20 19 15

XXX

- Q\?—-@ 7

oJoJoJoJole

@ Strong components
26, .24, 23 22 20 19 15

XXX

L

oJoJoJoJole

@ Strong components
26, .24, 23 22 20 19 15

XXX w0 X

- Q\Q?e@ 7

oJoJoJoJole

@ Strong components
26, .24, 23 22 20 .19 15

X XX @ w0 M X

- Q\Q?e@ 7

oJoJoJoJole

@ Strong components
26, .24, 23 22 20, ,19 1

MEXOMYXOOO® OO

- Q\Q?e@ 7

@ Strong components
26, .24, 23 22 20, .19 1

MEXXHEXYXOOO®OO O

- Q\Q?e@ 7

@ Strong components
26, .24, 23 22 20, .19 1

MEXXHEXYXOOO®OO O

T

@ Strong components
26, .24, .23 22 20

MRYYXNYXXOO®O OO

¥

g

@ Strong components
26, .24, .23 22 20

XXX X XX

¥

g

11 10

OOXO O

@ Strong components
26, .24, .23 22 20

XXX X XX

¥

S

11 10

®® XX O

@ Strong components

g

@ Strong components

e

@ Strong components

Bttt +3]

@‘?e—-@ (7

‘ Strong components

Theorem: [Tarjan 1972] Can find all strong components in O(m + n)

time.

11

SIAM J. CompuT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN{t

Abstract. The value of depth-first search or “backtracking’ as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k,, k,, and k4, where V is the number of vertices and E is the number
of edges of the graph being examined.

62

Section 3.6:
DAGs and Topological Ordering

@ Directed acyclic graphs

* Def: A DAG is a directed graph that contains no directed cycles.

)]

@ Directed acyclic graphs

* Def: A DAG is a directed graph that contains no directed cycles.

* Def: A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v, v,, ..., v, so that for every edge (v, v;) we have i <}.

Topological Orderirgg

5

@ Precedence constraints

* Precedence constraints: Edge (v;, v;) means task v; must occur
before v,

* Applications.
* Course prerequisite graph: course v; must be taken before v;.

* Pipeline of computing jobs: output of job v; needed to determine input
of job v,

@ Topological sorting algorithm: DFS, the boy savior

Remember, last time:

Back Edge Three colors

Back edges are those edges (u,v)
connecting a vertex u to an ancestor
vertex v in a depth-first tree. Self-
loop (edge (u, u)), is also considered
as Back edge

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1 —time—=tme+I1-

2 u.color = WHITE 2 —wd—=time——

3 wr="N{L 3 u.color = GRAY

4 —time—=-0 4 foreachv € Adj|u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 —vR=t——

7 DFS-VISIT(G,u) 7 DFS-VISIT(G, v)
3 color——=BLACK New if block to check if it
: _ e a BACK Edge

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

L @

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

[EEY
o

@ Topological sorting algorithm: DFS, the boy savior

L OO

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

LO00

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

LOO000

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

L 00000

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

L 00000

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

L 00000

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

L O00000

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3 u.color = GRAY

4 L=[] 4 foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10

@ Topological sorting algorithm: DFS, the boy savior

L 0000000

DFS(G) DFS-VISIT(G, u) ‘
1 foreachvertexu €V 1
2 u.color = WHITE 2
3 3 u.color = GRAY
4 L=[] 4 foreachv € Adj[u]
5 foreachvertexu €V 5 if v.color == WHITE
6 if u.color == WHITE 6 DFS-VISIT(G, v)
7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

@ Topological sorting algorithm: DFS, the boy savior

@ Directed acyclic graphs

 Lemma. If G has a topological order, then G is a DAG.

* Pf. [by contradiction]

e Suppose that G has a topological order, and that G also has a directed cycle C. Let’s see what
happens.

* By definition, every edge (v;, v;) in topological order, i <.
* Onthe other hand, since (v;, v5) is an edge, we must have j < i, a contradiction.

@ Directed acyclic graphs

* Lemma. If Gis a DAG, then G has a node with no entering edges.

* Pf. [by contradiction]

» Suppose that G is a DAG and every node has at least one entering edge. Let’s see what
happens.

* Graph G will have a cycle

@ Another Topological Ordering Algorithm: Example

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of G-{v}

and append this order after v

Topological order:

@ Topological Ordering Algorithm: Example

Topological order: v,

@ Topological Ordering Algorithm: Example

Topological order: v, v,

@ Topological Ordering Algorithm: Example

Topological order: vy, v,, v,

@ Topological Ordering Algorithm: Example

Topological order: vy, v,, v5, v,

@ Topological Ordering Algorithm: Example

Topological order: vy, v,, v3, v,, Vs

@ Topological Ordering Algorithm: Example

Topological order: vy, v,, V3, V,, Vs, Vg

@ Topological Ordering Algorithm: Example

Topological order: vy, v,, V3, v,, Vg, Vg, V5.

Thanks a lot

Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Chapter 3: Graphs
	Slide 3: Section 3.5: Connectivity in Directed Graphs
	Slide 4: Strong Connectivity
	Slide 5: Strong Connectivity
	Slide 6: Strong Connectivity
	Slide 7: Strong Connectivity
	Slide 8: Strong Connectivity
	Slide 9: Strong Connectivity
	Slide 11: Strong Connectivity: Algorithm
	Slide 12: Strong Connectivity: Live Poll 1
	Slide 13
	Slide 14: Strong components
	Slide 15: Algorithm for finding strong components in a directed graph
	Slide 16: Strong components
	Slide 17: Strong components
	Slide 18: Strong components
	Slide 19: Strong components
	Slide 20: Strong components
	Slide 21: Strong components
	Slide 22: Strong components
	Slide 23: Strong components
	Slide 24: Strong components
	Slide 25: Strong components
	Slide 26: Strong components
	Slide 27: Strong components
	Slide 28: Strong components
	Slide 29: Strong components
	Slide 30: Strong components
	Slide 31: Strong components
	Slide 32: Strong components
	Slide 33: Strong components
	Slide 34: Strong components
	Slide 35: Strong components
	Slide 36: Strong components
	Slide 37: Strong components
	Slide 38: Strong components
	Slide 39: Strong components
	Slide 40: Strong components
	Slide 41: Strong components
	Slide 42: Strong components
	Slide 43: Strong components
	Slide 44: Strong components
	Slide 45: Strong components
	Slide 46: Strong components
	Slide 47: Strong components
	Slide 48: Strong components
	Slide 49: Strong components
	Slide 50: Strong components
	Slide 51: Strong components
	Slide 52: Strong components
	Slide 53: Strong components
	Slide 54: Strong components
	Slide 55: Strong components
	Slide 56: Strong components
	Slide 57: Strong components
	Slide 58: Strong components
	Slide 59: Strong components
	Slide 60: Strong components
	Slide 61: Strong components
	Slide 62: Strong components
	Slide 63: Section 3.6: DAGs and Topological Ordering
	Slide 64: Directed acyclic graphs
	Slide 65: Directed acyclic graphs
	Slide 66: Precedence constraints
	Slide 67: Topological sorting algorithm: DFS, the boy savior
	Slide 68: Topological sorting algorithm: DFS, the boy savior
	Slide 69: Topological sorting algorithm: DFS, the boy savior
	Slide 70: Topological sorting algorithm: DFS, the boy savior
	Slide 71: Topological sorting algorithm: DFS, the boy savior
	Slide 72: Topological sorting algorithm: DFS, the boy savior
	Slide 73: Topological sorting algorithm: DFS, the boy savior
	Slide 74: Topological sorting algorithm: DFS, the boy savior
	Slide 75: Topological sorting algorithm: DFS, the boy savior
	Slide 76: Topological sorting algorithm: DFS, the boy savior
	Slide 77: Topological sorting algorithm: DFS, the boy savior
	Slide 78: Topological sorting algorithm: DFS, the boy savior
	Slide 79: Topological sorting algorithm: DFS, the boy savior
	Slide 80: Topological sorting algorithm: DFS, the boy savior
	Slide 81: Topological sorting algorithm: DFS, the boy savior
	Slide 82: Topological sorting algorithm: DFS, the boy savior
	Slide 83: Topological sorting algorithm: DFS, the boy savior
	Slide 84: Topological sorting algorithm: DFS, the boy savior
	Slide 85: Directed acyclic graphs
	Slide 87: Directed acyclic graphs
	Slide 89: Another Topological Ordering Algorithm: Example
	Slide 90: Topological Ordering Algorithm: Example
	Slide 91: Topological Ordering Algorithm: Example
	Slide 92: Topological Ordering Algorithm: Example
	Slide 93: Topological Ordering Algorithm: Example
	Slide 94: Topological Ordering Algorithm: Example
	Slide 95: Topological Ordering Algorithm: Example
	Slide 96: Topological Ordering Algorithm: Example
	Slide 98: Thanks a lot

