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Section 3.5;
Connectivity in Directed Graphs



@ Strong Connectivity

* Def: Node u and v are mutually reachable if there is a path from u to
v and also a path from v to u.
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@ Strong Connectivity

* Def: Node u and v are mutually reachable if there is a path from u to
v and also a path from v to u.

* Def: A graphis strongly connected if every pair of nodes is mutually
reachable.




@ Strong Connectivity

* Lemma. Lets be any node in graph G. G is strongly connected iff
every node is reachable from s, and s is reachable from every node.




@ Strong Connectivity
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@ Strong Connectivity

* Proof. If every node is reachable from s and s is reachable from every
node, then for any two nodes u and v in G:
* Thereis apathfromutos
 And another fromstov

 Combining these, u can reach v through s
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@ Strong Connectivity

* Proof. If every node is reachable from s and s is reachable from every
node, then for any two nodes u and v in G:

* Thereis apathfromutos
e And another from s to v * Similarly, v can reach u through s

 Combining these, u can reach v through s




@ Strong Connectivity: Algorithm

Pick any node s.
Run BFS from s in G.
Run BFS from s in G"ev

reverse orientation
of every edge in G

Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma.




@ Strong Connectivity: Live Poll 1

What is the complexity of this algo?

A. O(n)

B. O(n+m)

C. 0O(n?)

D. O(m?)

E. None of above

Scan the QR code to
vote or go to
https://forms.office.co
m/r/Ne2tbuqWxa



Strong Connectivity: Live Poll 1
Only people in my organization can respond, Record name

1. What is the complexity of this algo?

'l[n) 4%
owem o

'j(mh 2) A% Scan the QR code to vote
or go to
hitps://forms.office.com/r/
-Df above 12% Ne2tEugWXa
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@ Strong components

Def: A strong component is a maximal subset of mutually reachable
nodes.
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@ Algorithm for finding strong components in a directed graph

STRONG-COMPONENTS(G)
1 Call DFS(G) to compute finishing times u. f for each vertex u
2 Compute G"¢veérs€

3 Call DFS(G"¢7€"*€), but in the main loop of DFS, consider the
vertices in order of decreasing u. f

4 Output the vertices of each tree in the depth-first forest formed in
line 3 as a separate strong component



@ Strong components

Def: A strong component is a maximal subset of mutually reachable
nodes.
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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@ Strong components
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‘ Strong components

Theorem: [Tarjan 1972] Can find all strong components in O(m + n)

time.

11

SIAM J. CompuT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN{t

Abstract. The value of depth-first search or “backtracking’ as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k,, k,, and k4, where V is the number of vertices and E is the number
of edges of the graph being examined.
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Section 3.6:
DAGs and Topological Ordering



@ Directed acyclic graphs

* Def: A DAG is a directed graph that contains no directed cycles.
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@ Directed acyclic graphs

* Def: A DAG is a directed graph that contains no directed cycles.

* Def: A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v, v,, ..., v, so that for every edge (v, v;) we have i <}.

Topological Orderirgg

5



@ Precedence constraints

* Precedence constraints: Edge (v;, v;) means task v; must occur
before v,

* Applications.
* Course prerequisite graph: course v; must be taken before v;.

* Pipeline of computing jobs: output of job v; needed to determine input
of job v,



@ Topological sorting algorithm: DFS, the boy savior

Remember, last time:

Back Edge Three colors

Back edges are those edges (u,v)
connecting a vertex u to an ancestor
vertex v in a depth-first tree. Self-
loop (edge (u, u)), is also considered
as Back edge




@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1 —time—=tme+I1-

2 u.color = WHITE 2 —wd—=time——

3 wr="N{L 3 u.color = GRAY

4 —time—=-0 4 foreachv € Adj|u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 —vR=t——

7 DFS-VISIT(G,u) 7 DFS-VISIT(G, v)
3 color——=BLACK New if block to check if it
: _ e a BACK Edge



@ Topological sorting algorithm: DFS, the boy savior

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3  u.color = GRAY

4 L=[] 4  foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)
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@ Topological sorting algorithm: DFS, the boy savior

L @

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3  u.color = GRAY

4 L=[] 4  foreachv € Adj[u]
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6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)
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@ Topological sorting algorithm: DFS, the boy savior

L OO
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@ Topological sorting algorithm: DFS, the boy savior

LO00

DFS(G) DFS-VISIT(G, u)

1 foreachvertexu €V 1

2 u.color = WHITE 2

3 3  u.color = GRAY

4 L=[] 4  foreachv € Adj[u]

5 foreachvertexu €V 5 if v.color == WHITE

6 if u.color == WHITE 6 DFS-VISIT(G, v)

7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
9 L->additto the front (u)

10
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@ Topological sorting algorithm: DFS, the boy savior

L O00000

DFS(G) DFS-VISIT(G, u)
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@ Topological sorting algorithm: DFS, the boy savior

L 0000000

DFS(G) DFS-VISIT(G, u) ‘
1 foreachvertexu €V 1
2 u.color = WHITE 2
3 3  u.color = GRAY
4 L=[] 4  foreachv € Adj[u]
5 foreachvertexu €V 5 if v.color == WHITE
6 if u.color == WHITE 6 DFS-VISIT(G, v)
7 DFS-VISIT(G, u) 7 if v.color == GRAY
8 Break
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@ Topological sorting algorithm: DFS, the boy savior




@ Directed acyclic graphs

 Lemma. If G has a topological order, then G is a DAG.

* Pf. [by contradiction]

e Suppose that G has a topological order, and that G also has a directed cycle C. Let’s see what
happens.

* By definition, every edge (v;, v;) in topological order, i <.
* Onthe other hand, since (v;, v5) is an edge, we must have j < i, a contradiction.



@ Directed acyclic graphs

* Lemma. If Gis a DAG, then G has a node with no entering edges.

* Pf. [by contradiction]

» Suppose that G is a DAG and every node has at least one entering edge. Let’s see what
happens.

* Graph G will have a cycle



@ Another Topological Ordering Algorithm: Example

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of G-{v}

and append this order after v

Topological order:



@ Topological Ordering Algorithm: Example

Topological order: v,



@ Topological Ordering Algorithm: Example

Topological order: v, v,



@ Topological Ordering Algorithm: Example

Topological order: vy, v,, v,



@ Topological Ordering Algorithm: Example

Topological order: vy, v,, v5, v,



@ Topological Ordering Algorithm: Example

Topological order: vy, v,, v3, v,, Vs



@ Topological Ordering Algorithm: Example

Topological order: vy, v,, V3, V,, Vs, Vg



@ Topological Ordering Algorithm: Example

Topological order: vy, v,, V3, v,, Vg, Vg, V5.



Thanks a lot

Lecture Over
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