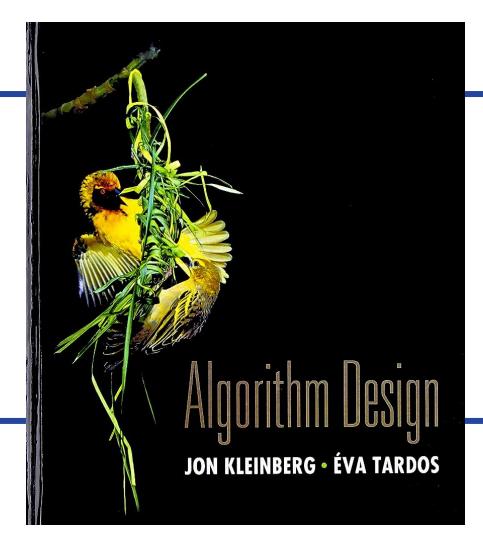


CS 310: Algorithms

Lecture 9

Instructor: Naveed Anwar Bhatti

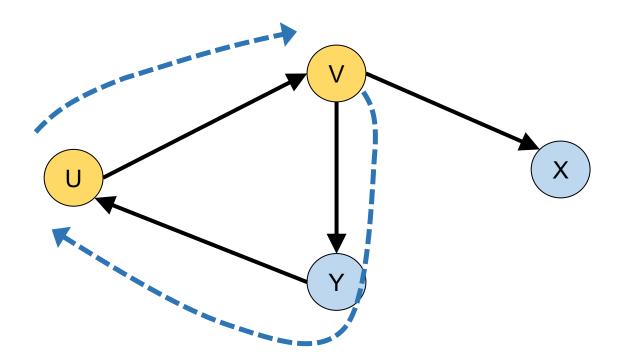


Chapter 3: **Graphs**

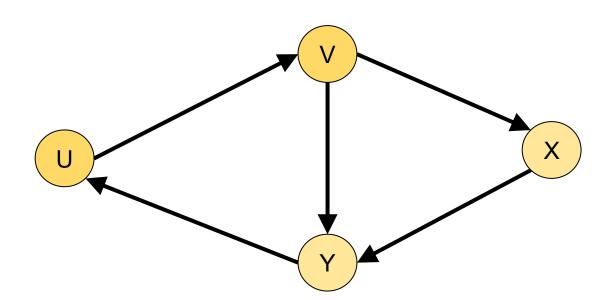
Slides by Kevin Wayne (heavily modified by Naveed Bhatti). Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Section 3.5: Connectivity in Directed Graphs

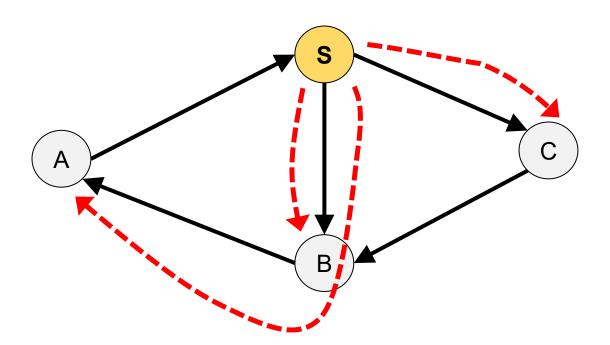
Def: Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.



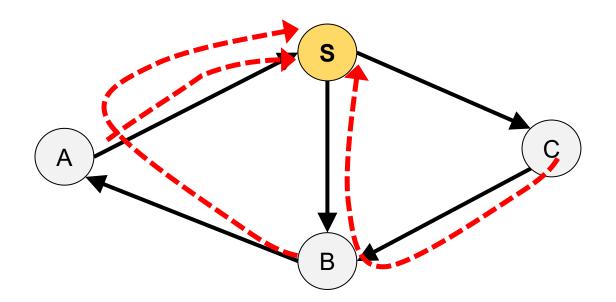
- Def: Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.
- **Def:** A graph is strongly connected if every pair of nodes is mutually reachable.



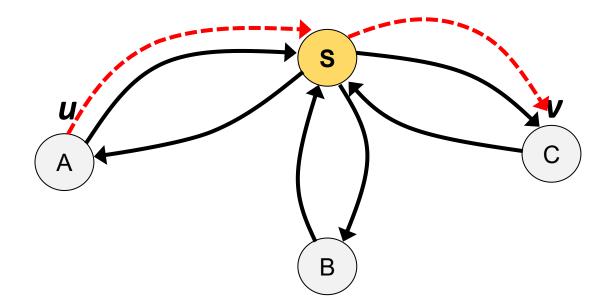
• Lemma. Let s be any node in graph G. G is strongly connected iff every node is reachable from s, and s is reachable from every node.



• Lemma. Let s be any node in graph G. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

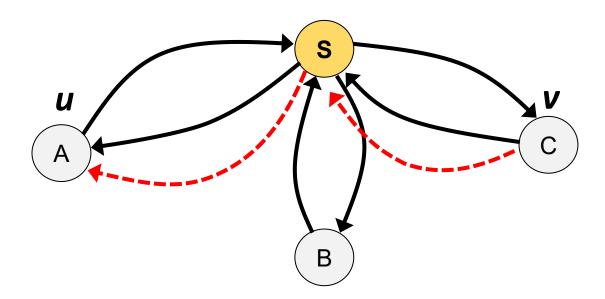


- **Proof.** If every node is reachable from **s** and **s** is reachable from every node, then for any two nodes **u** and **v** in **G**:
 - There is a path from **u** to **s**
 - And another from s to v
 - Combining these, **u** can reach **v** through **s**



- **Proof.** If every node is reachable from **s** and **s** is reachable from every node, then for any two nodes **u** and **v** in **G**:
 - There is a path from **u** to **s**
 - And another from s to v
 - Combining these, u can reach v through s

Similarly, v can reach u through s

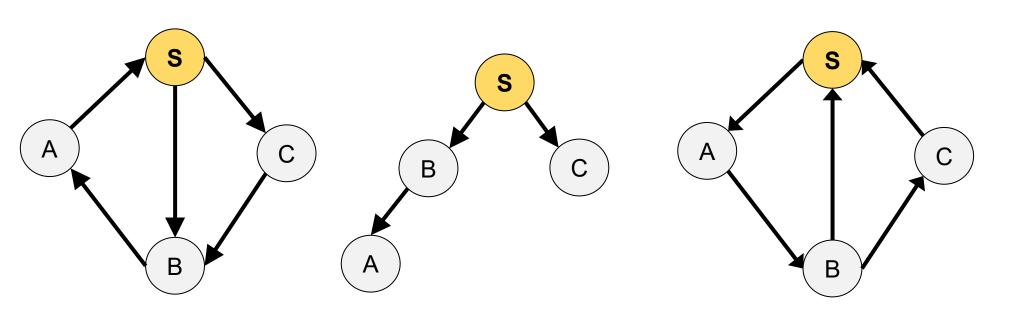


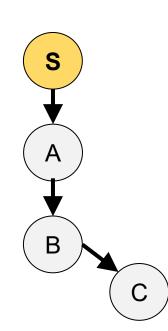
Strong Connectivity: Algorithm

- Pick any node s.
- Run BFS from s in G.

reverse orientation of every edge in **G**

- Run BFS from s in Grev
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.





Strong Connectivity: Live Poll 1

What is the complexity of this algo?

- A. O(n)
- B. O(n+m)
- C. $O(n^2)$
- D. $O(m^2)$
- E. None of above

Scan the QR code to vote or go to https://forms.office.co m/r/Ne2tEuqWXa

Strong Connectivity: Live Poll 1

Only people in my organization can respond, Record name

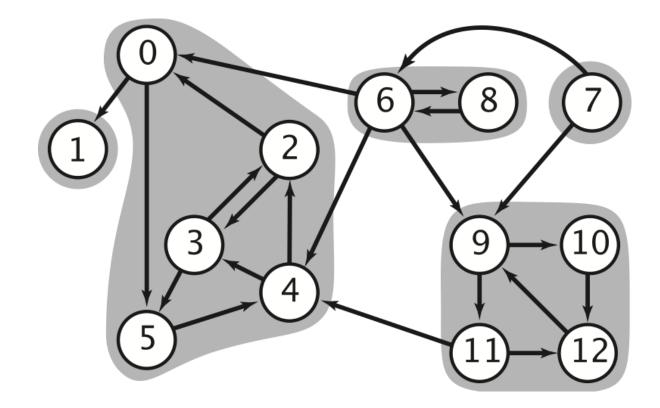
1. What is the complexity of this algo?

$\mathbb{O}(n)$	4%
O(n + m)	64%
O(n^2)	16%
O(m^2)	4%
None of above	12%

Scan the QR code to vote or go to https://forms.office.com/r/ Ne2tEuqWXa

25 respenses (1/1)

Def: A strong component is a maximal subset of mutually reachable nodes.

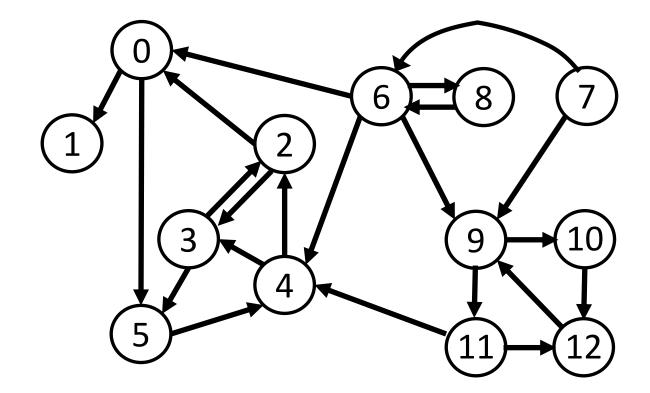


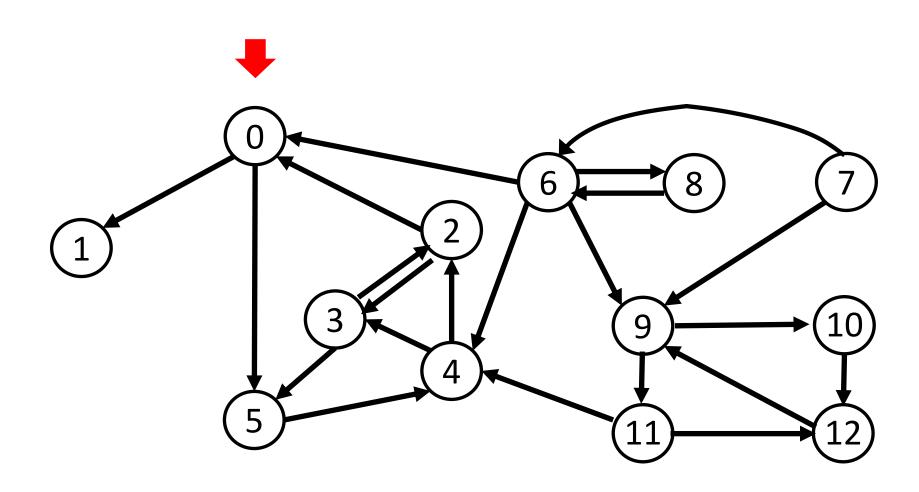
Algorithm for finding strong components in a directed graph

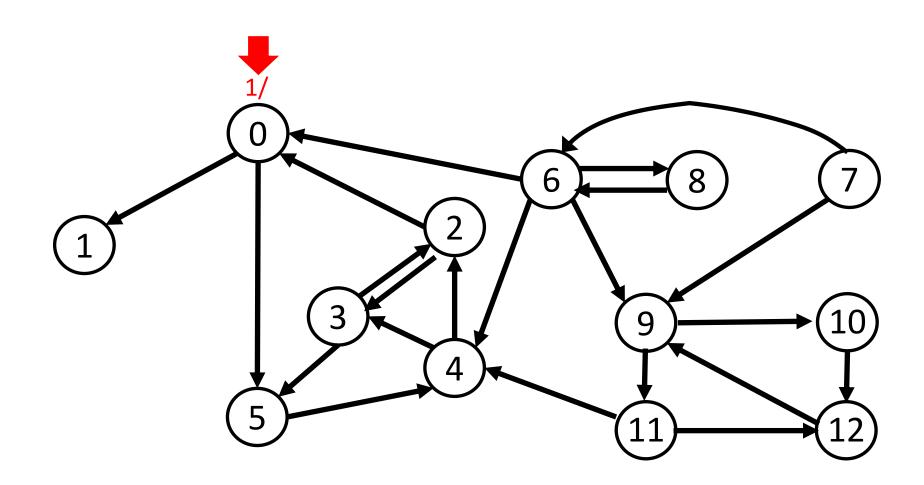
STRONG-COMPONENTS(G)

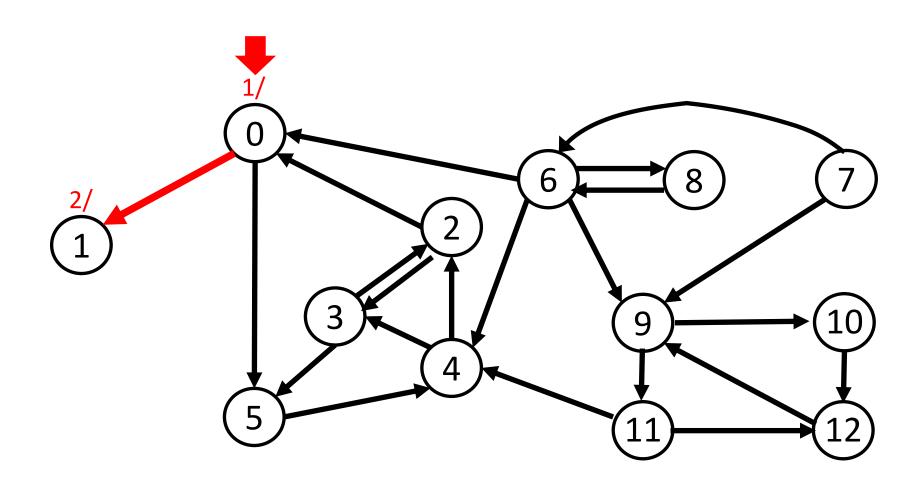
- Call DFS(G) to compute finishing times u. f for each vertex u
- 2 Compute *Greverse*
- Call DFS($G^{reverse}$), but in the main loop of DFS, consider the vertices in order of decreasing u.f
- Output the vertices of each tree in the depth-first forest formed in line 3 as a separate strong component

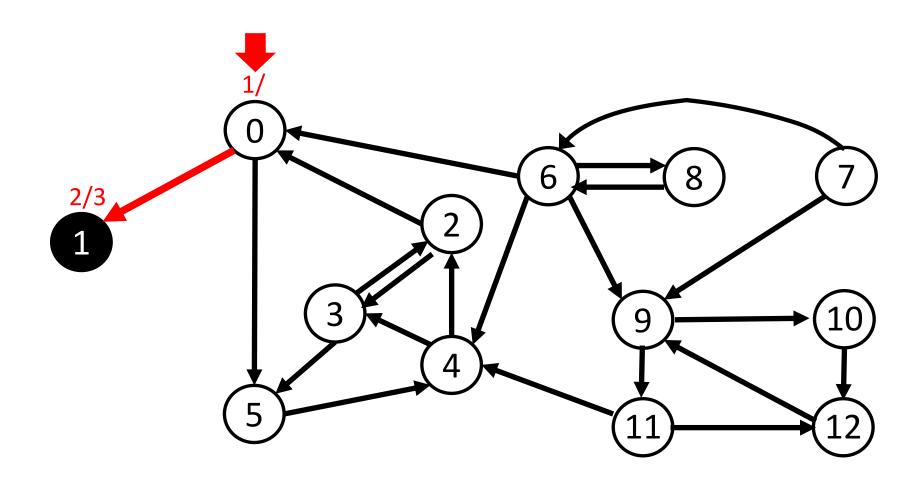
Def: A strong component is a maximal subset of mutually reachable nodes.

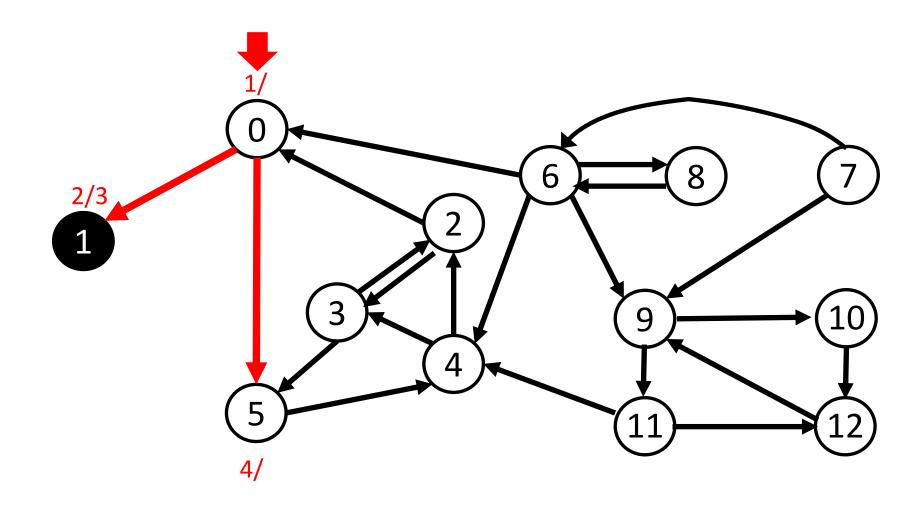


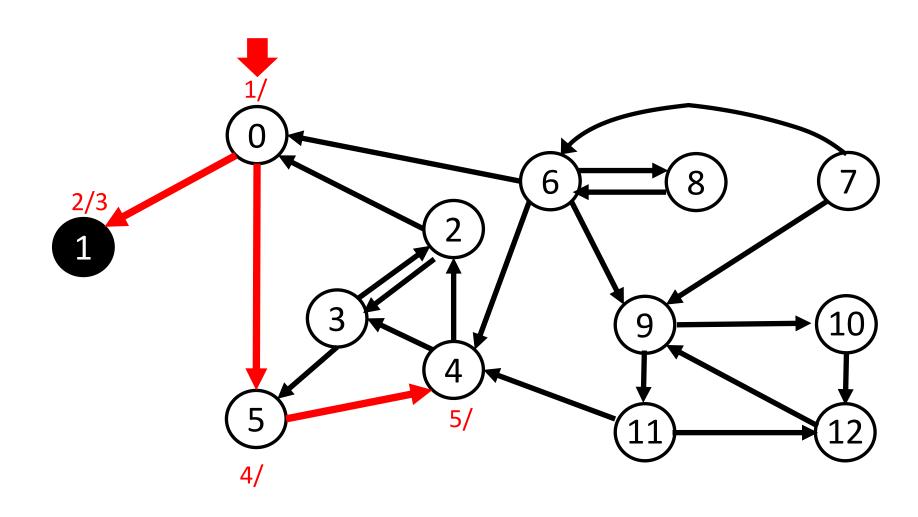


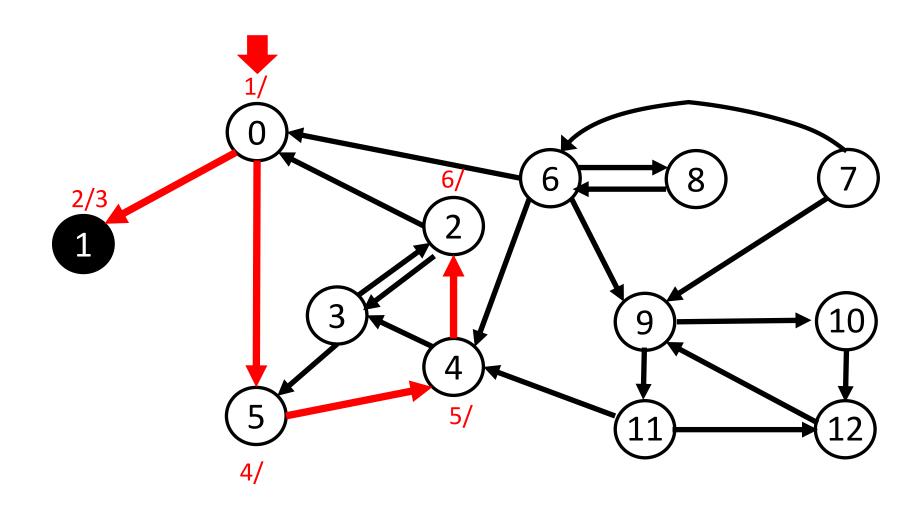


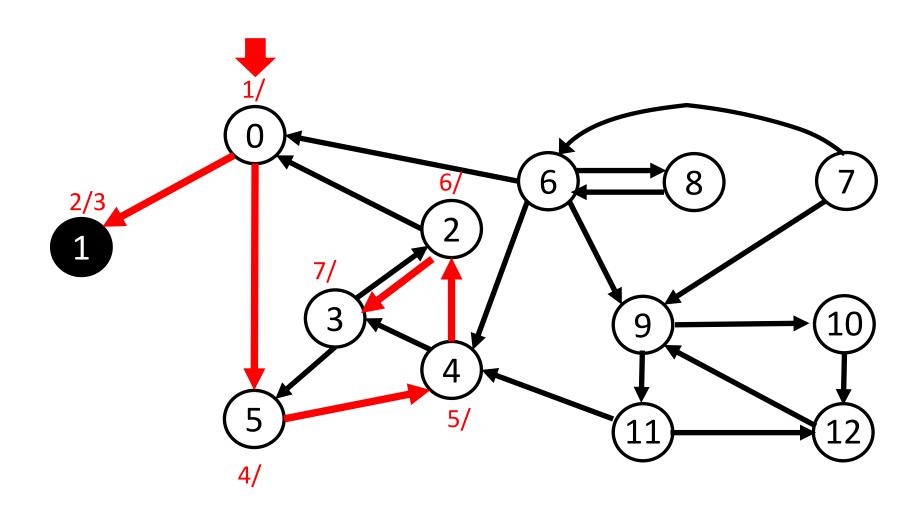


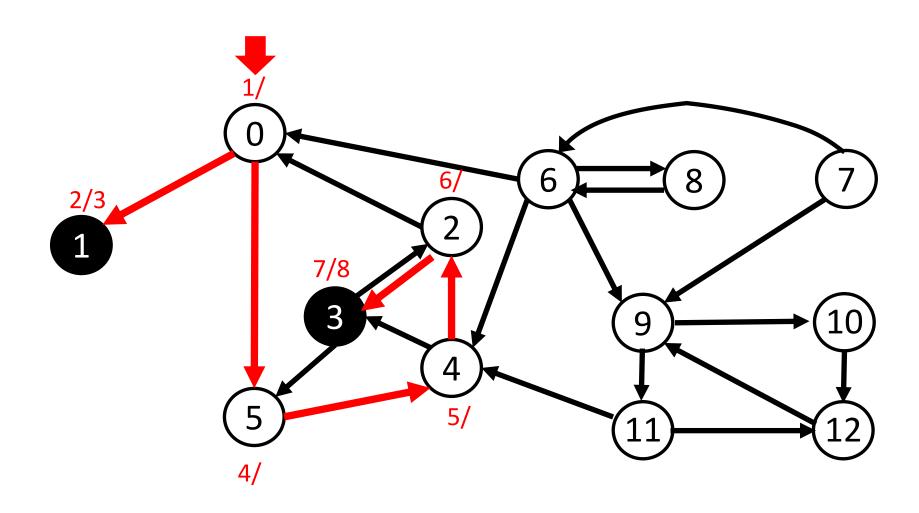


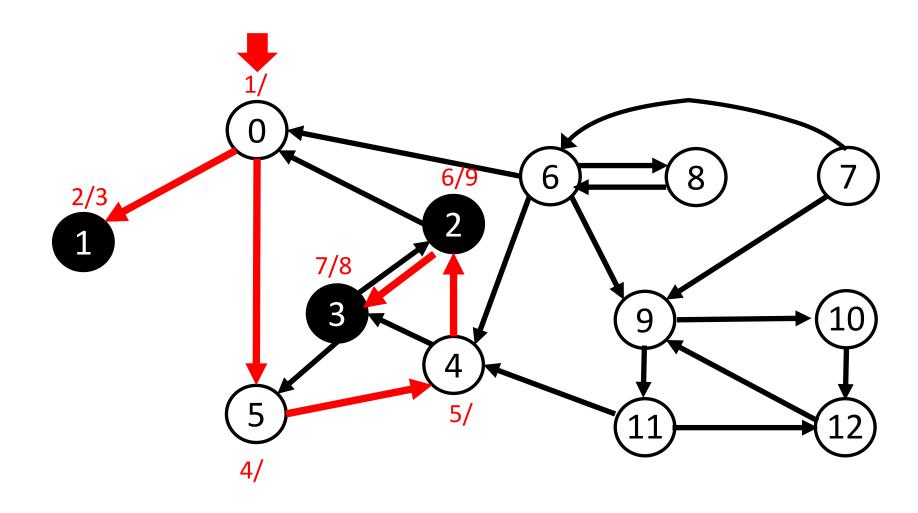


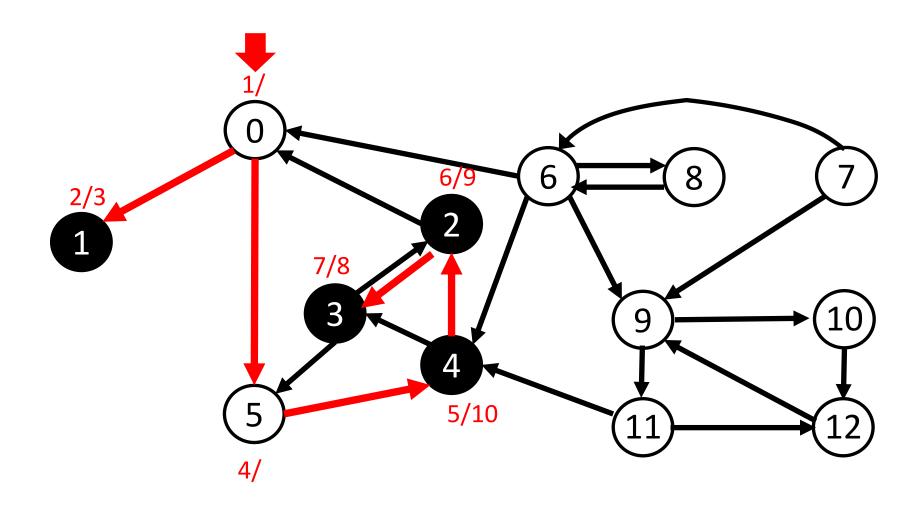


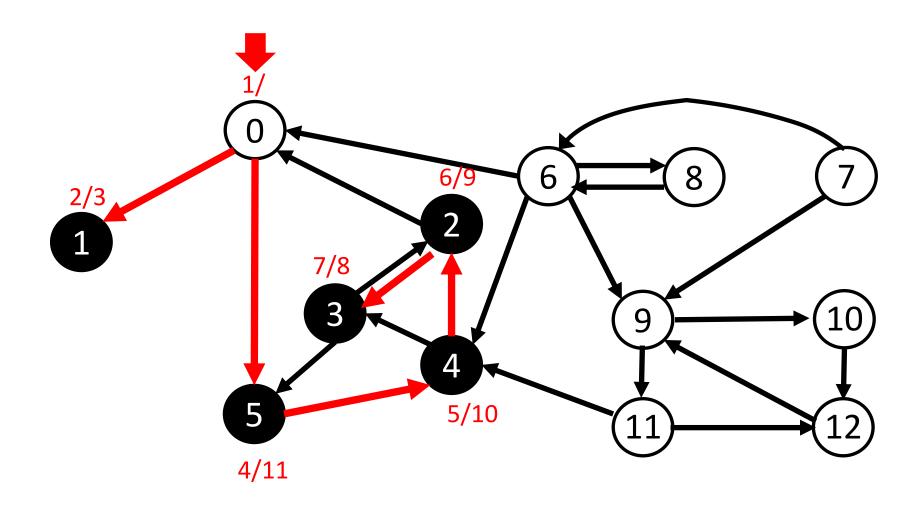


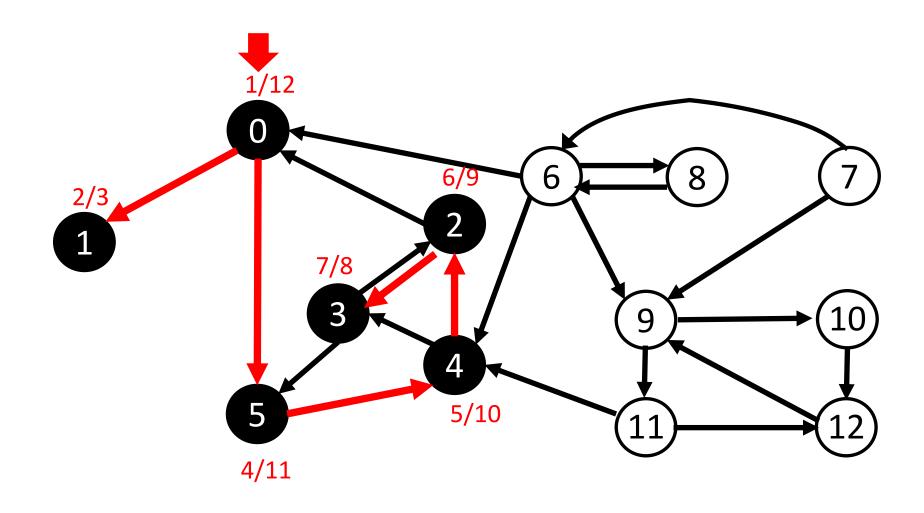


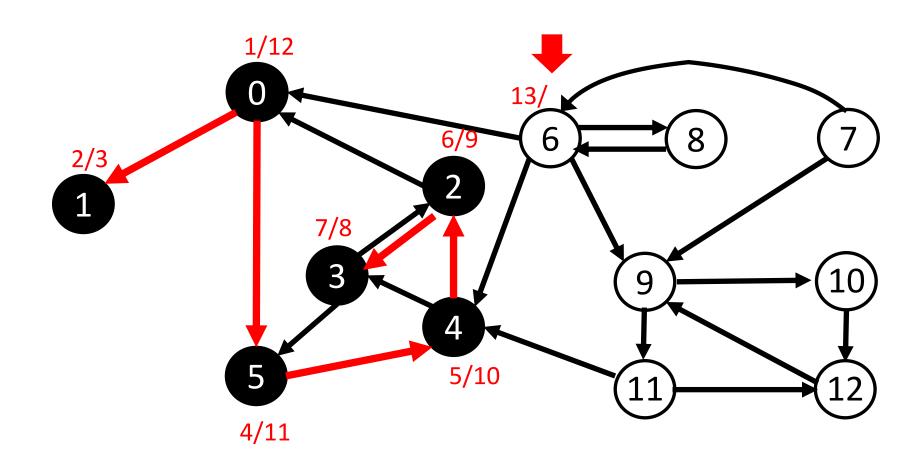


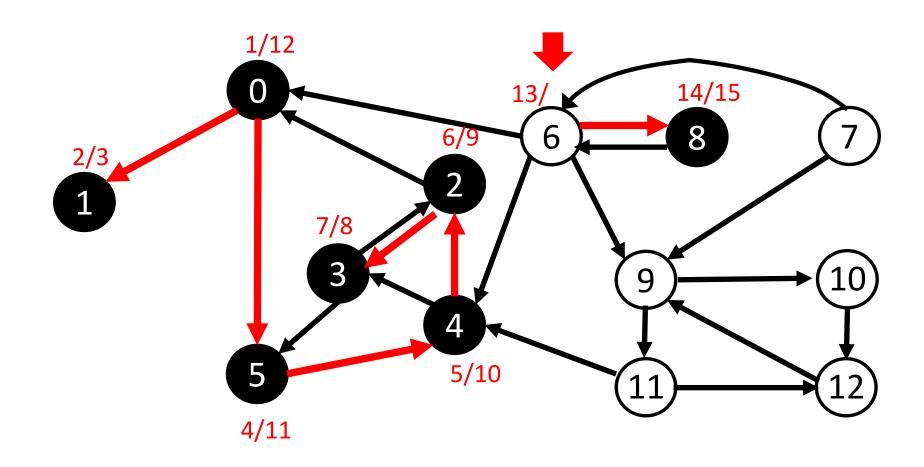


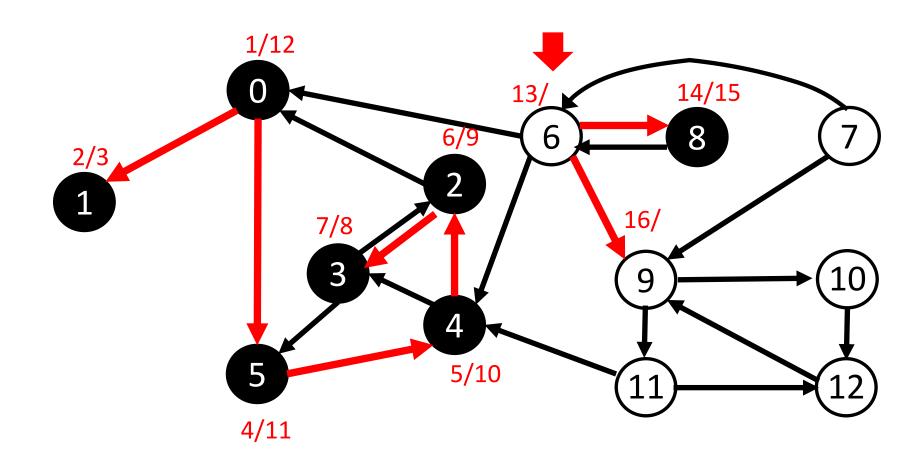


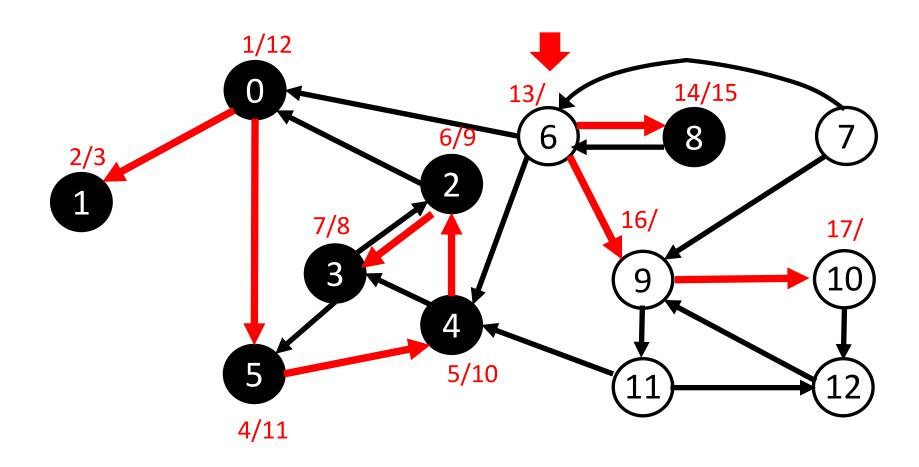


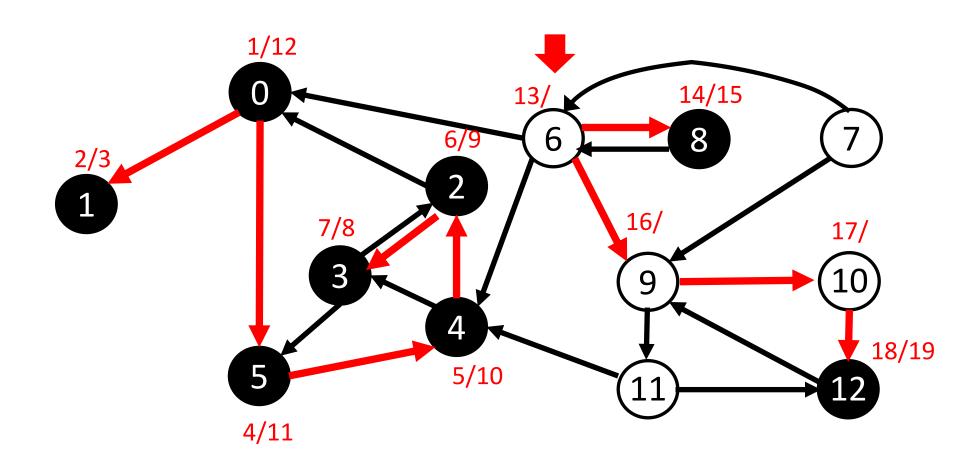


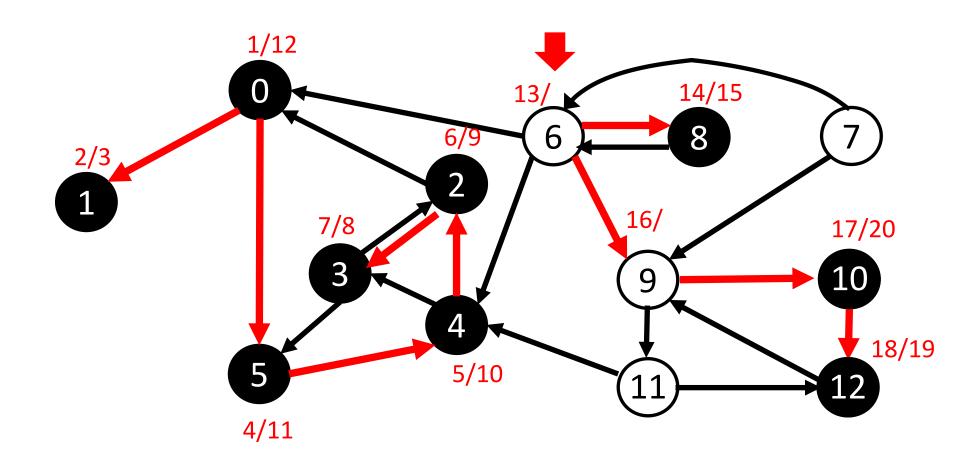


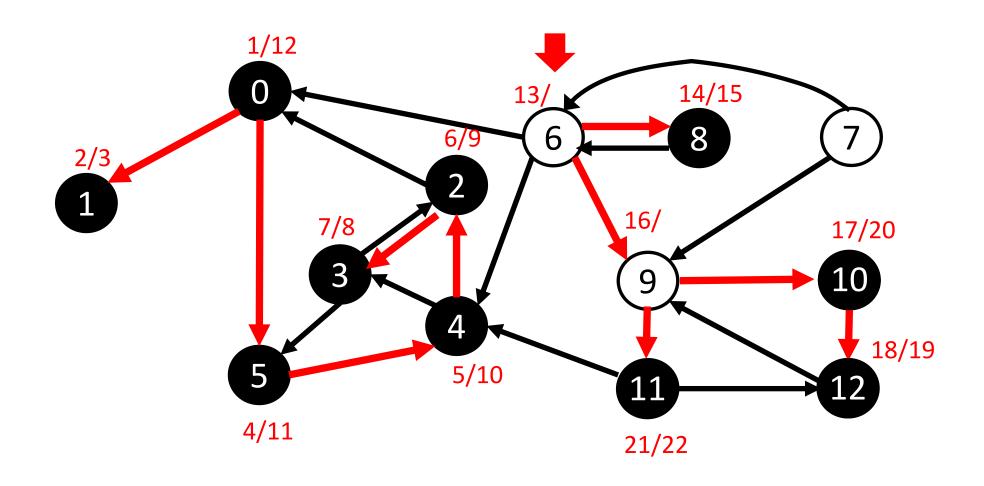


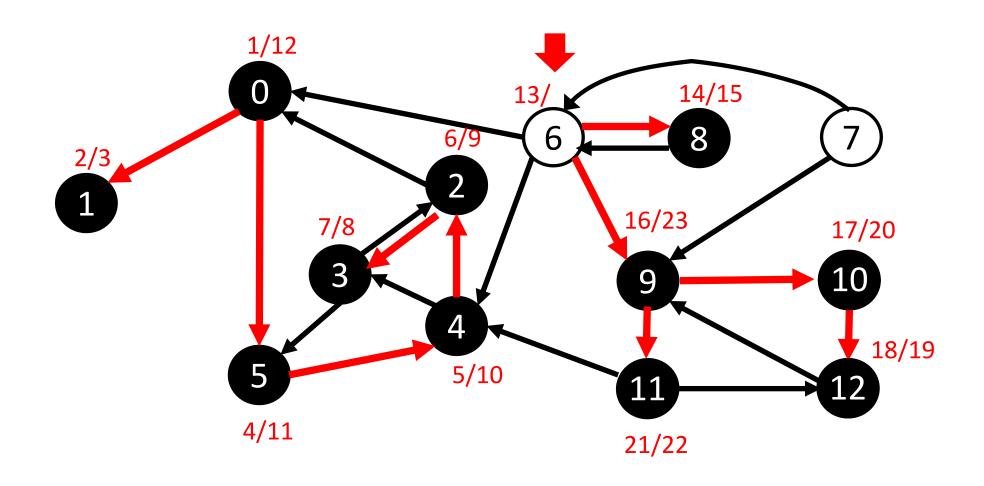


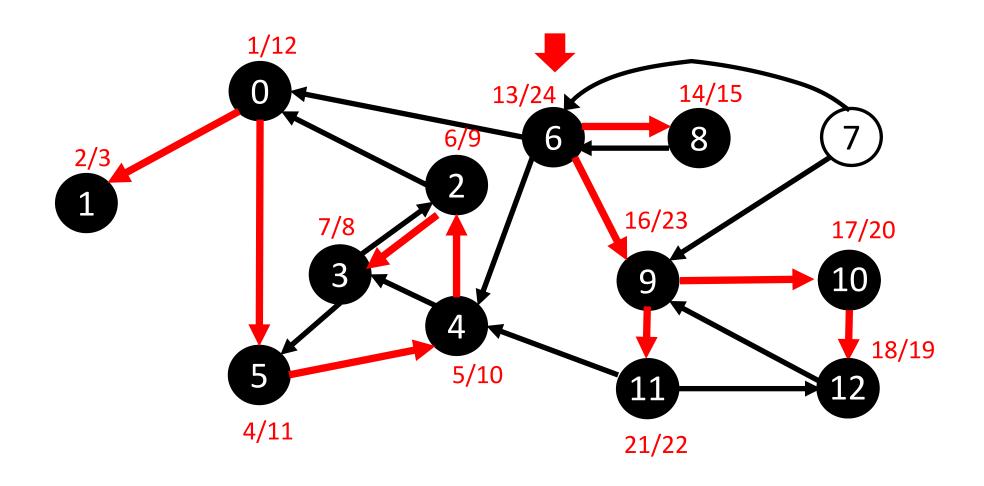


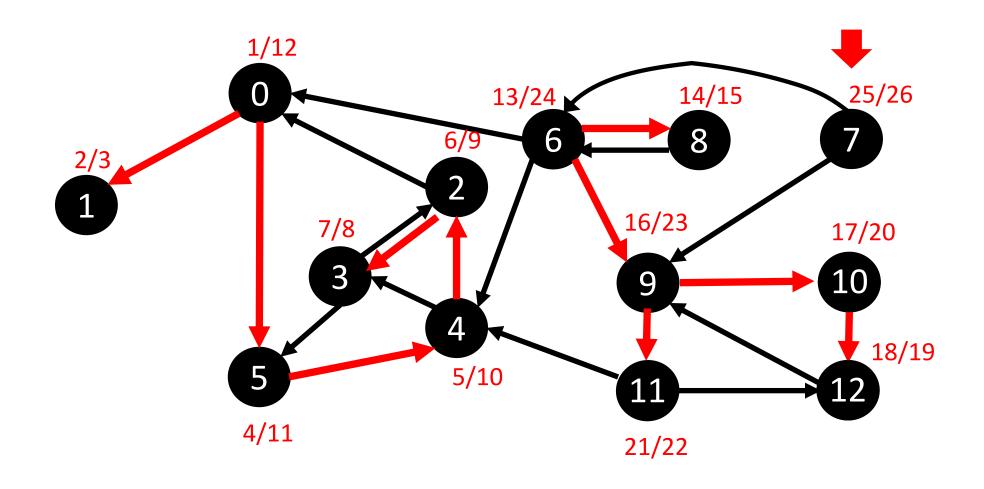


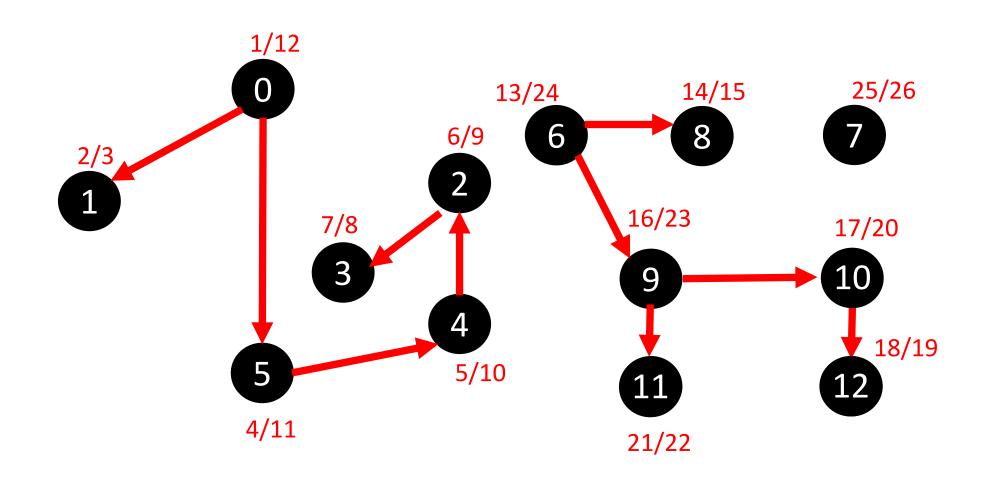


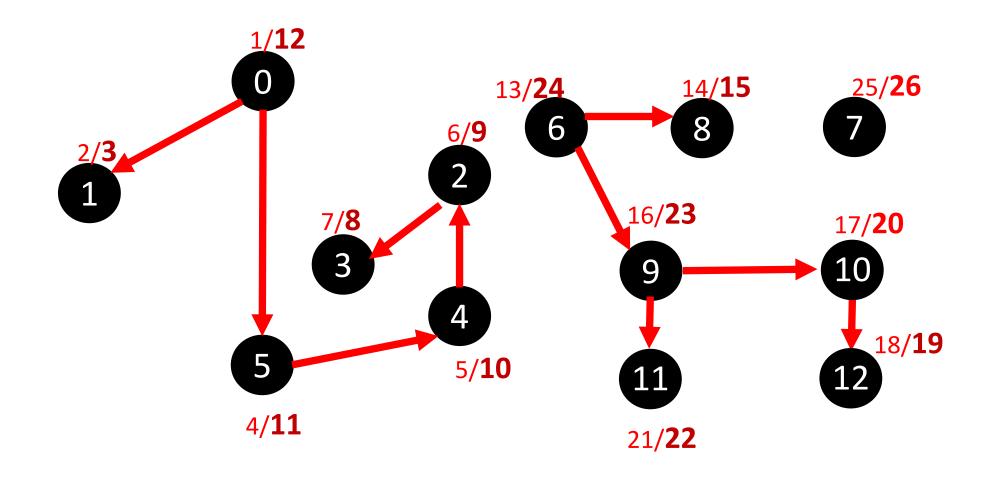






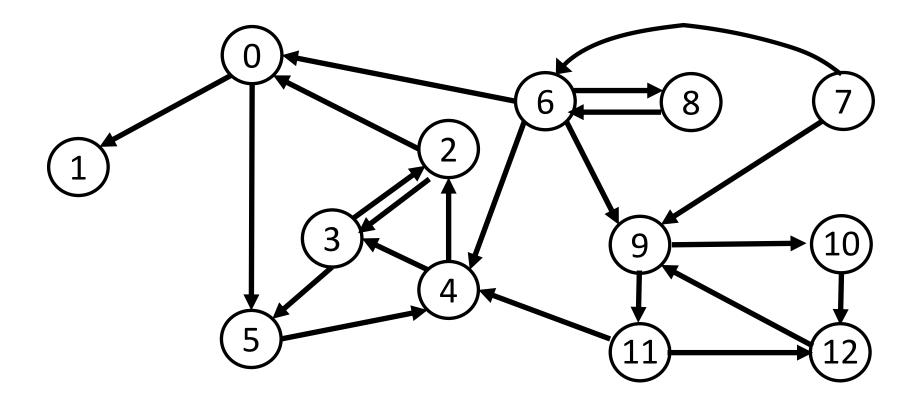


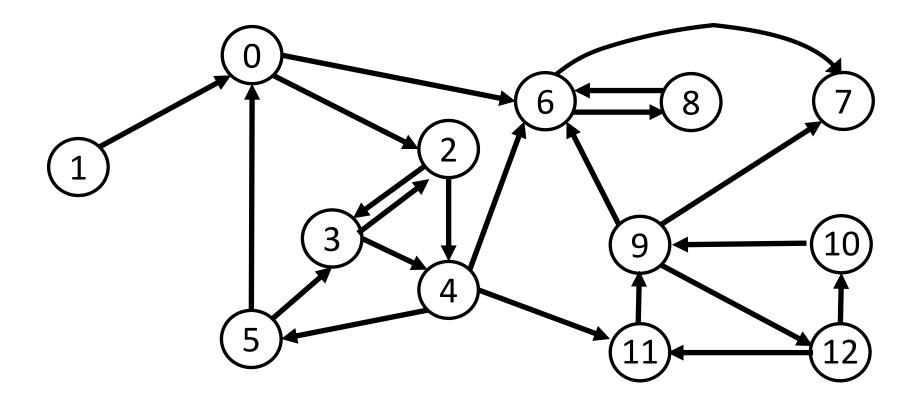


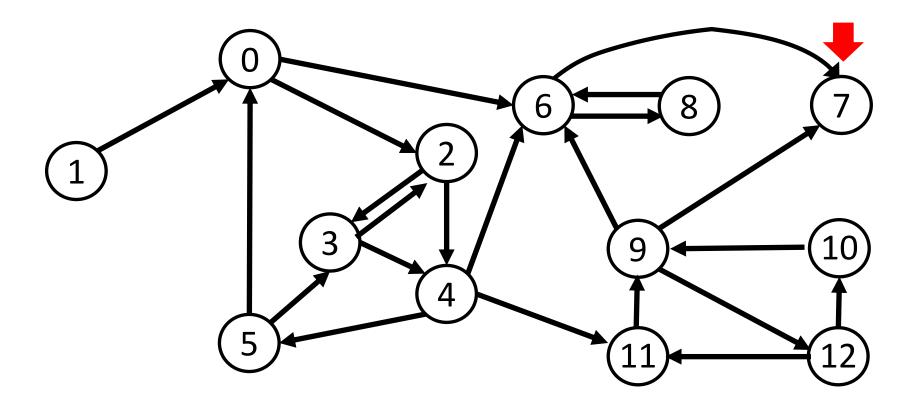


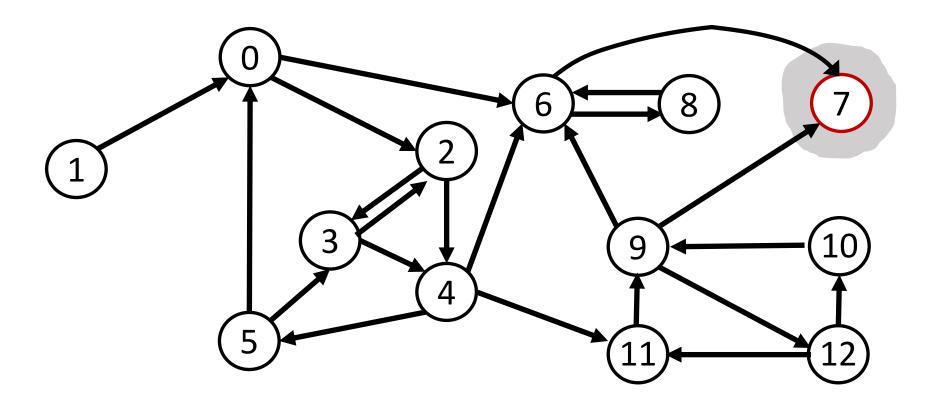
 26
 24
 23
 22
 20
 19
 15
 12
 11
 10
 9
 8
 3

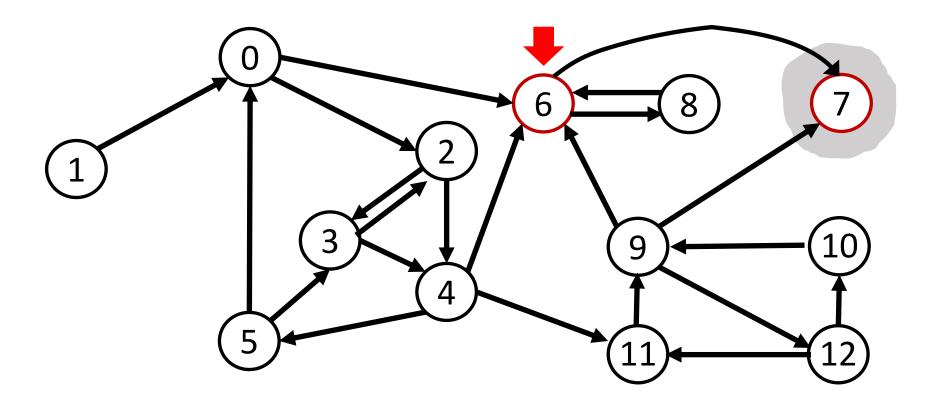
 7
 6
 9
 11
 10
 12
 8
 0
 5
 4
 2
 3
 1

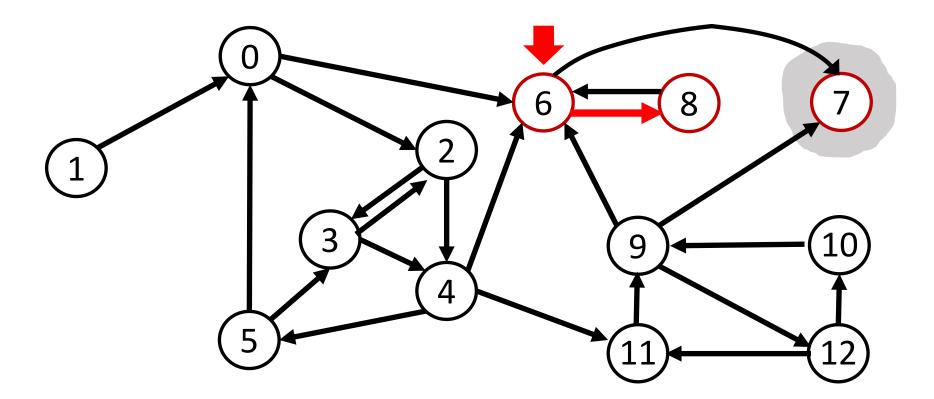


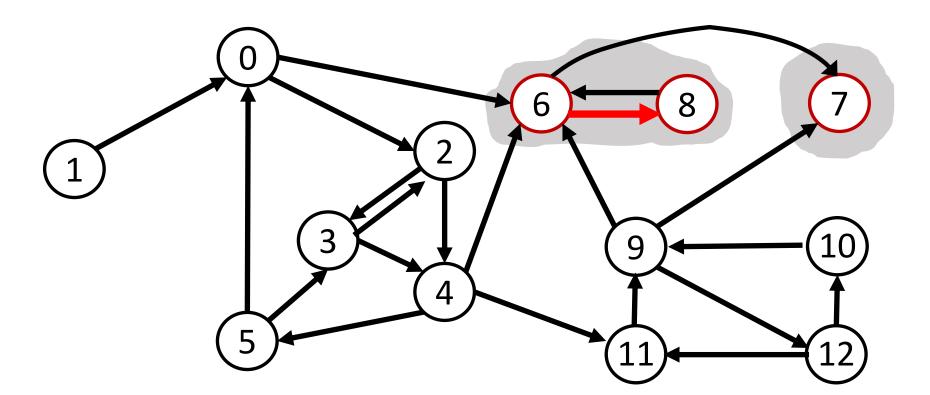


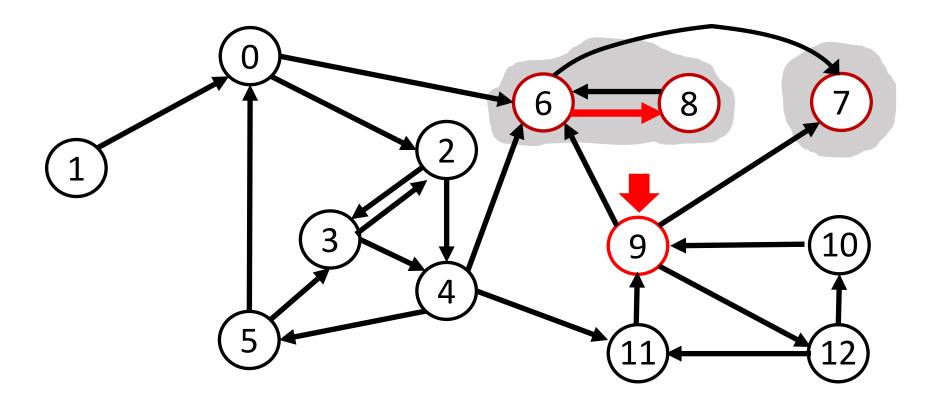


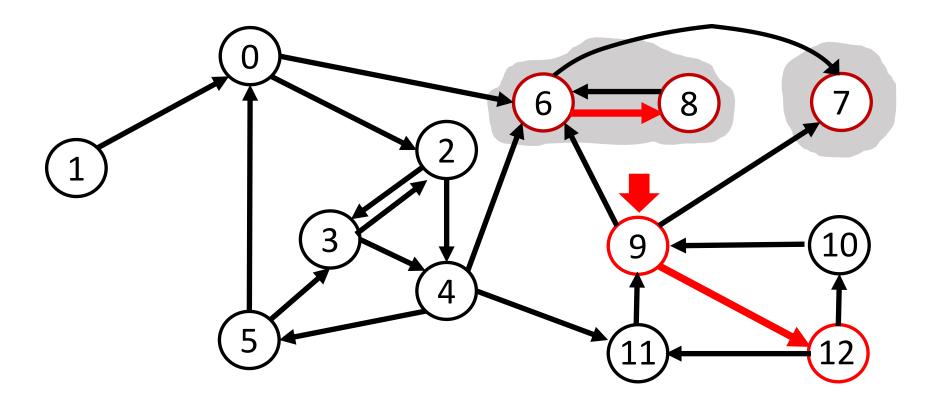


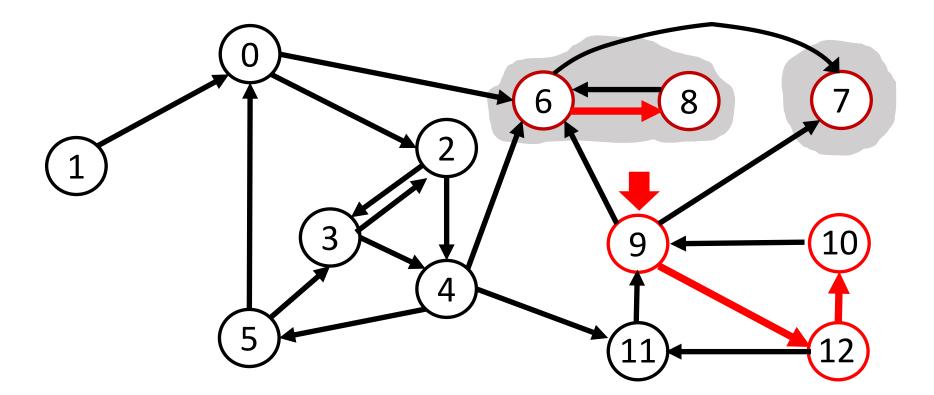


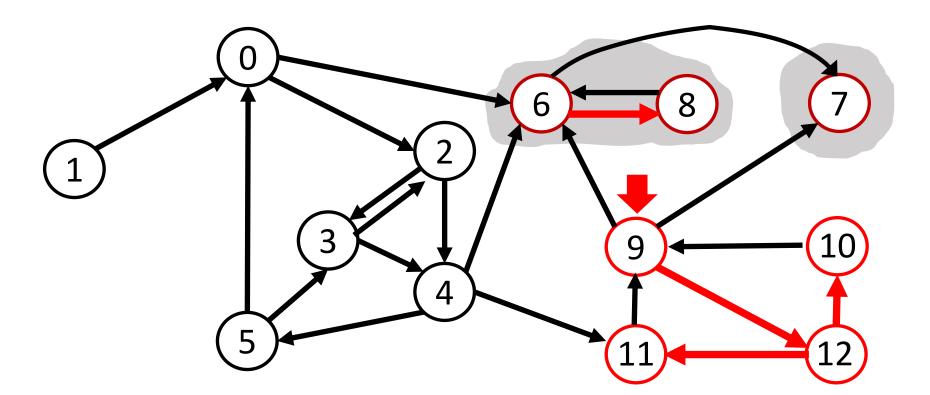


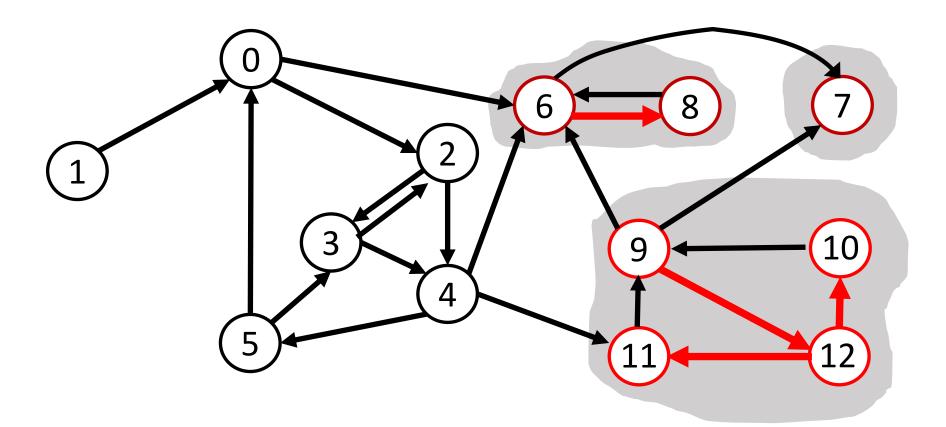


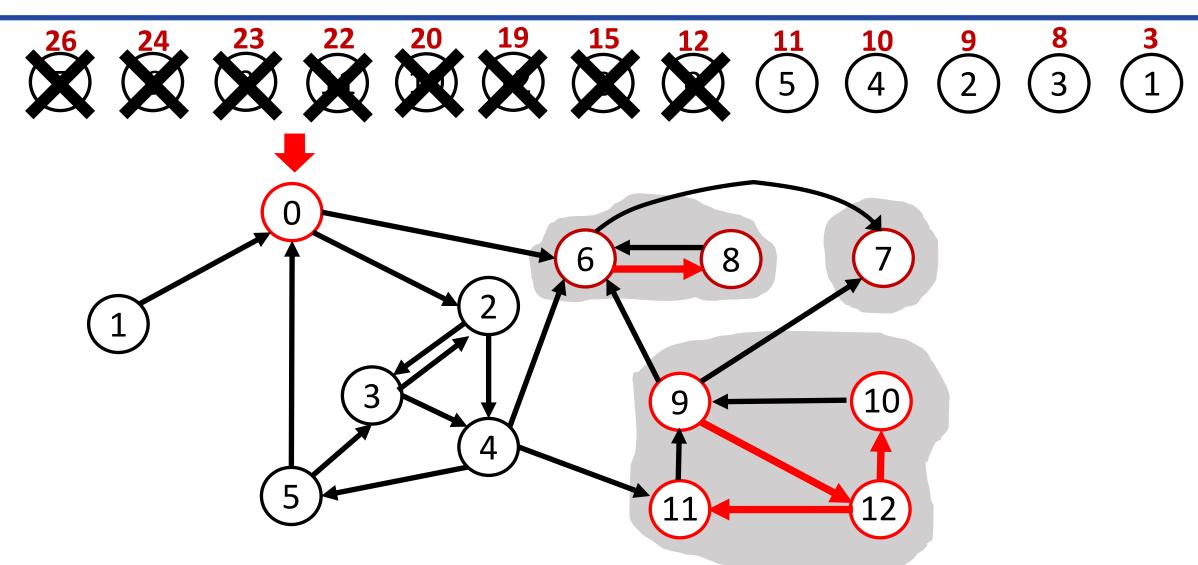


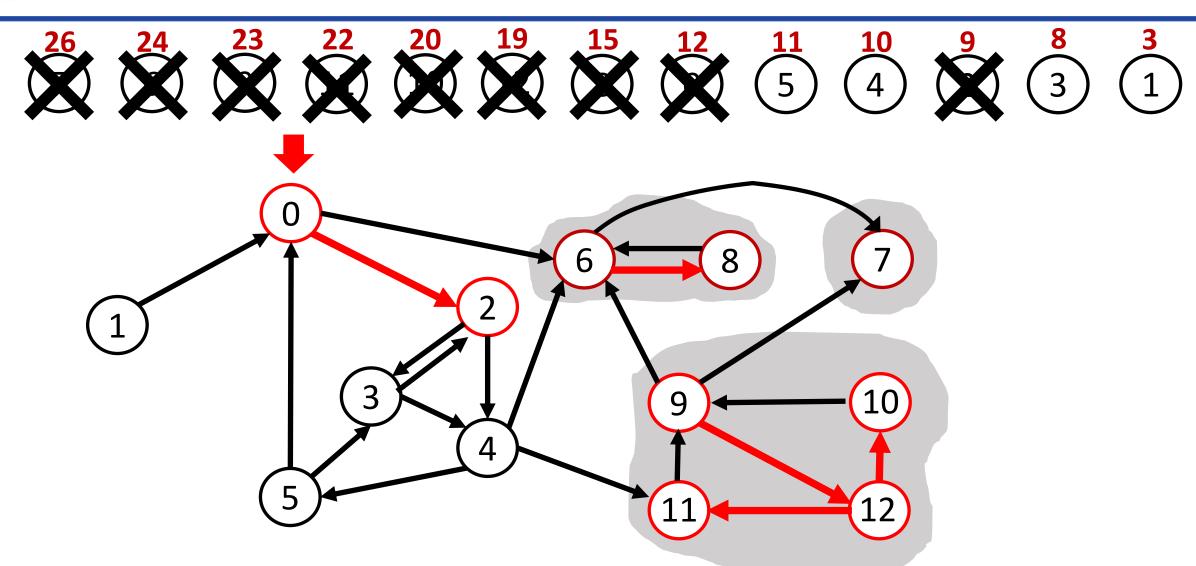


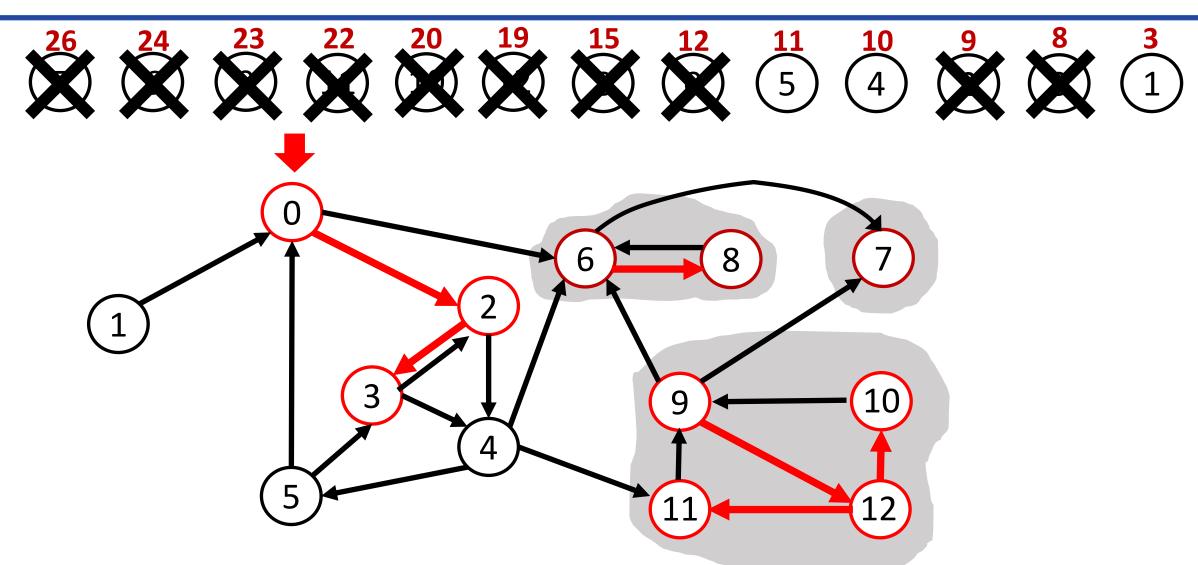


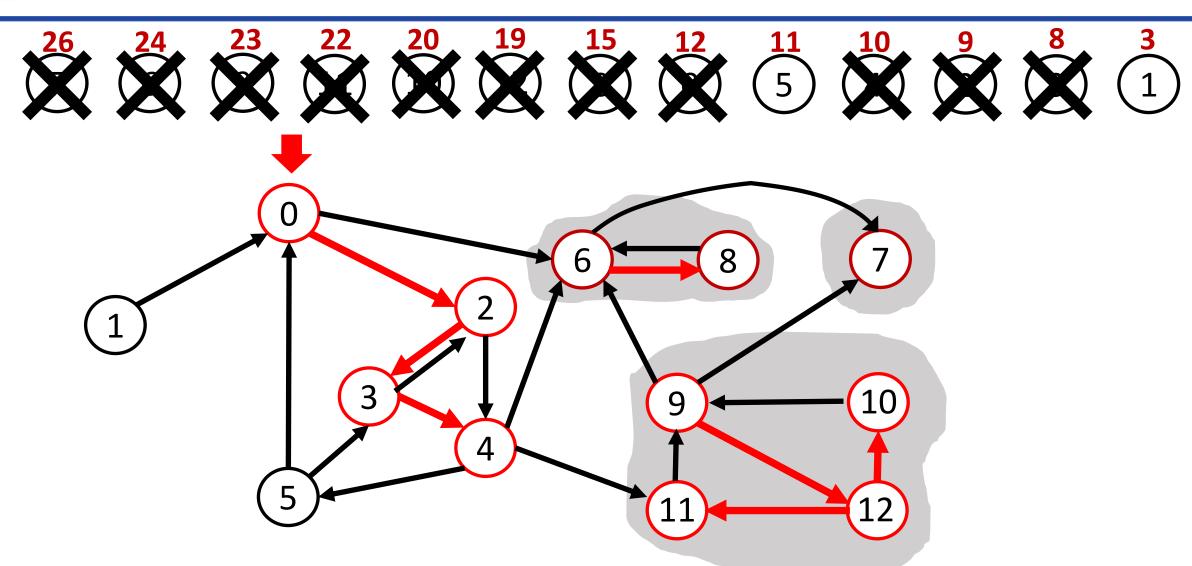


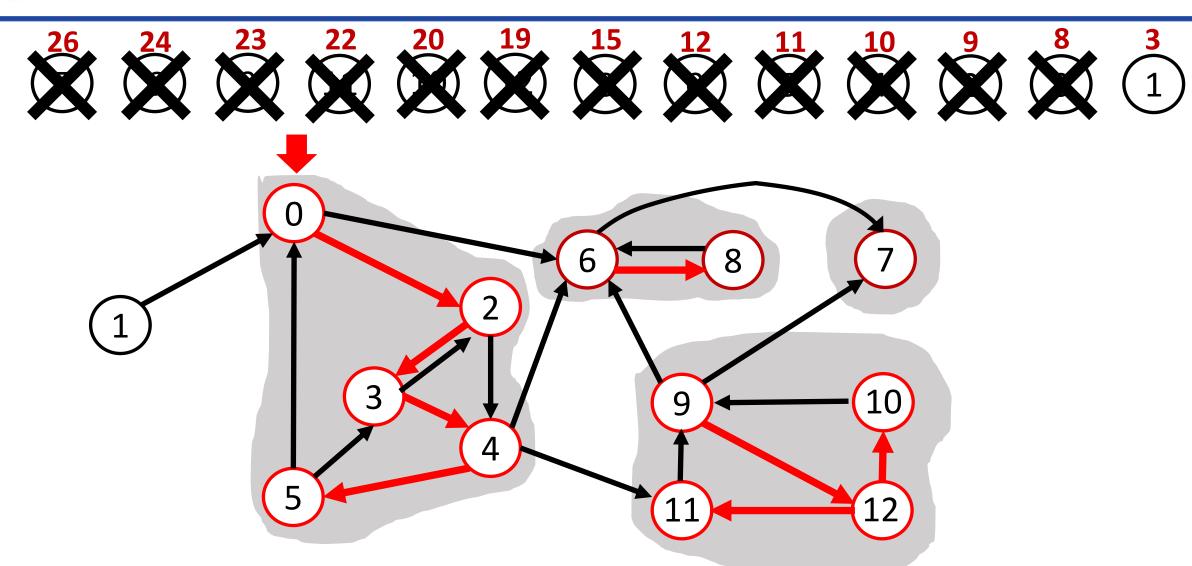


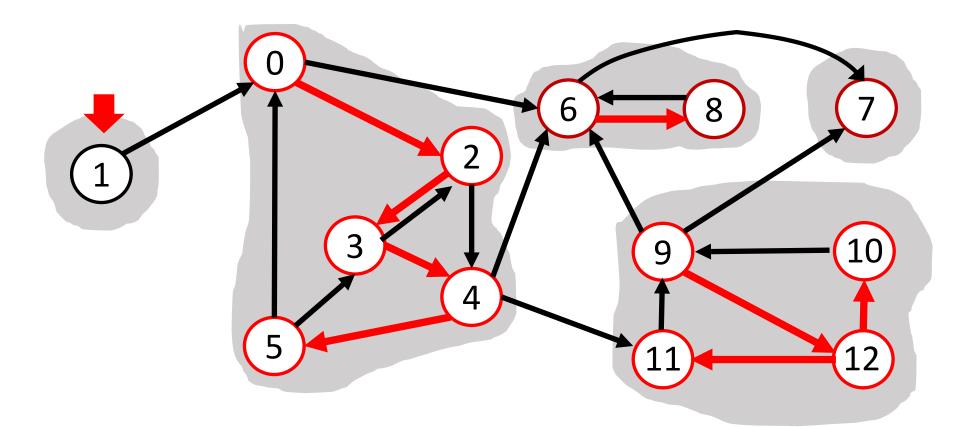


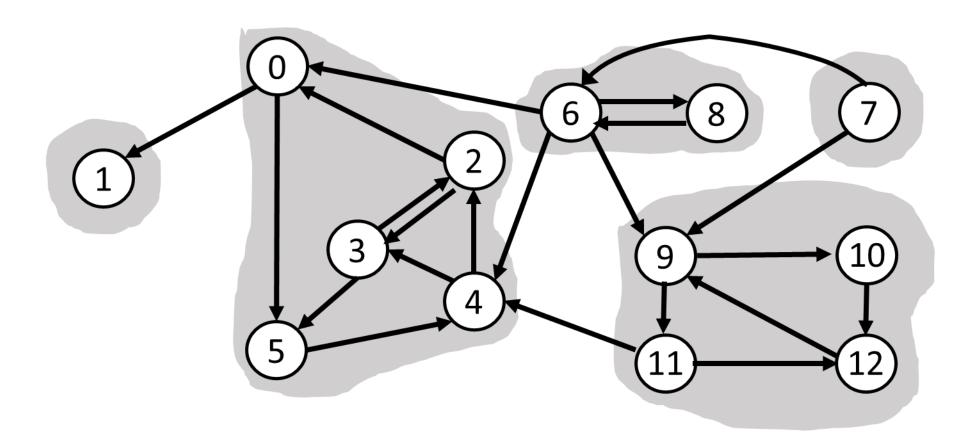


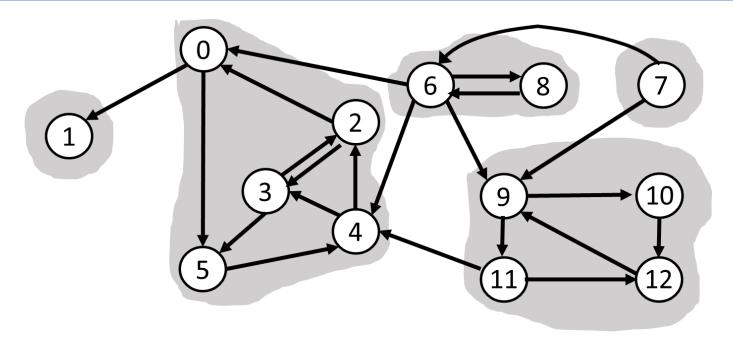












Theorem: [Tarjan 1972] Can find all strong components in O(m + n) time.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

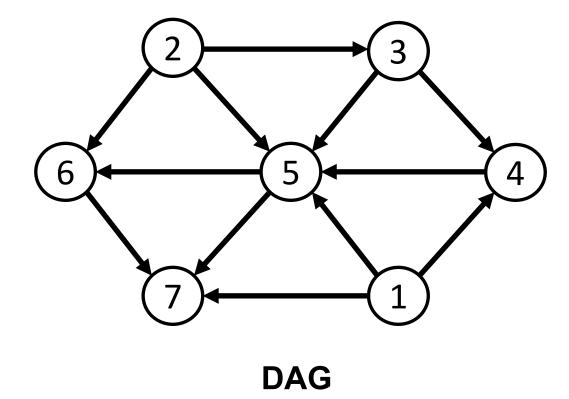
DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

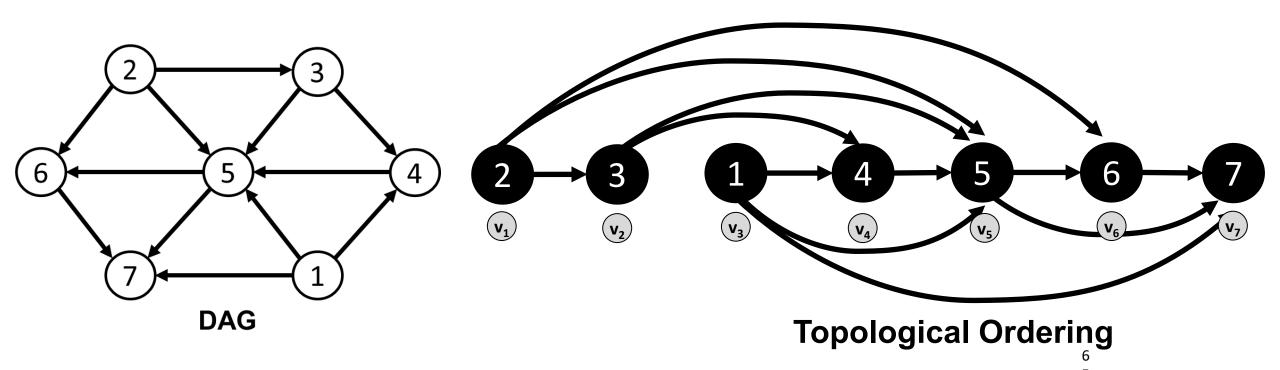
Section 3.6: **DAGs and Topological Ordering**

• Def: A DAG is a directed graph that contains no directed cycles.



Directed acyclic graphs

- Def: A DAG is a directed graph that contains no directed cycles.
- **Def:** A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

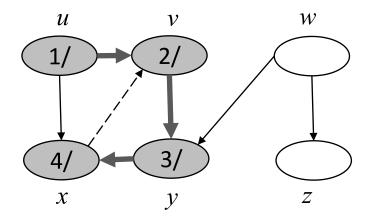


Precedence constraints

- Precedence constraints: Edge (v_i, v_j) means task v_i must occur before v_j .
- Applications.
 - Course prerequisite graph: course v_i must be taken before v_j .
 - **Pipeline of computing jobs**: output of job v_i needed to determine input of job v_i .

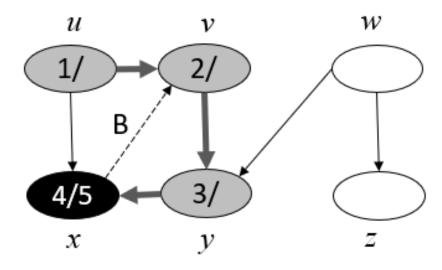
Remember, last time:

Back Edge



Back edges are those edges (u, v) connecting a vertex u to an ancestor vertex v in a depth-first tree. Self-loop (edge (u, u)), is also considered as Back edge

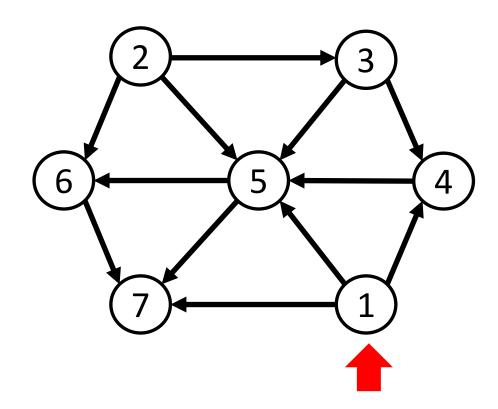
Three colors



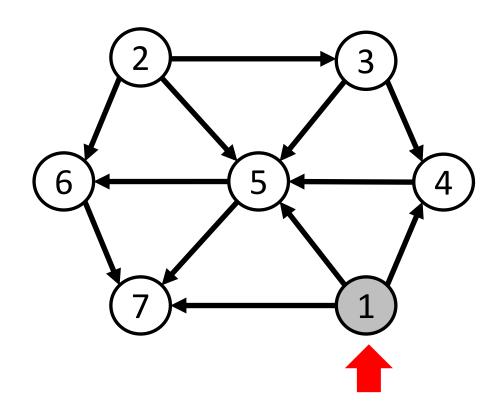
```
DFS(G)
                                   \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
                                   1 \frac{time = time + 1}{}
                                   2 \quad u.d = time
        u.color = WHITE
     u.\pi = NIL
                                   3 u.color = GRAY
                                       for each v \in Adj[u]
   time = 0
                                              if v.color == WHITE
    for each vertex u \in V
6
         if u.color == WHITE
                                                    v_{\cdot}\pi = u
               \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                    DFS-VISIT(G, v)
                                                                              New if block to check if it
                                      u.color = BLACK
                                                                                     a BACK Edge
                                      time = time + 1
                                   10 \quad u.f = time
```



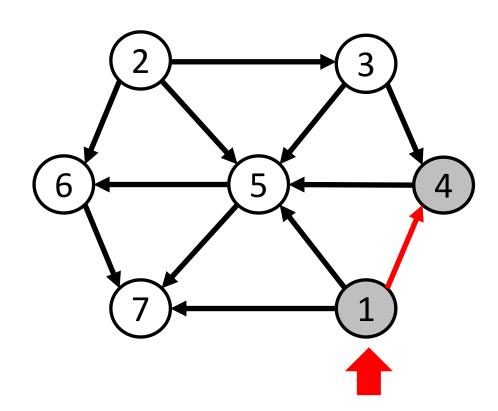
```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```



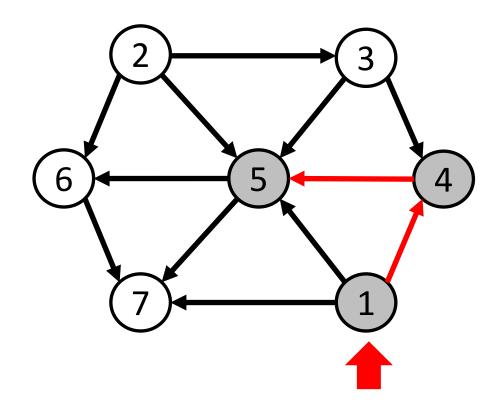

```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```



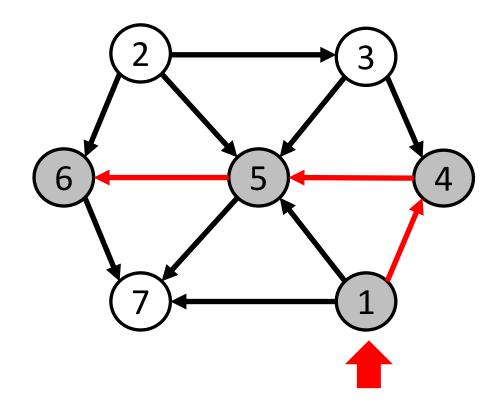

```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```



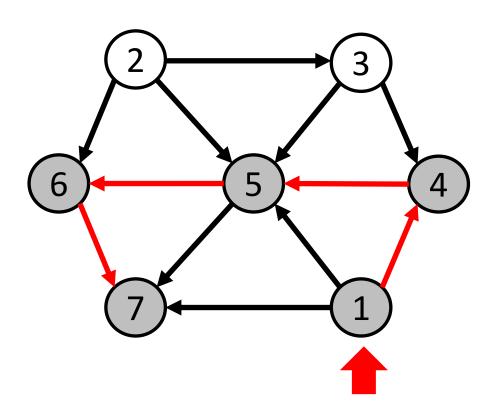

```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```




```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```

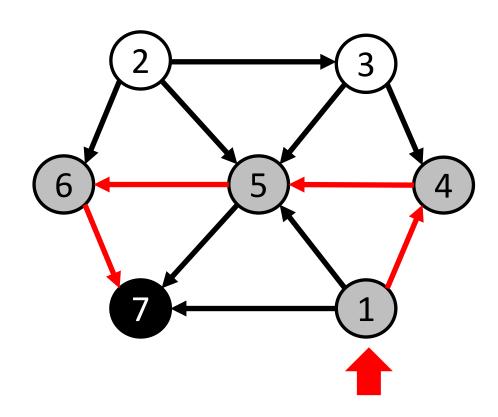



```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```



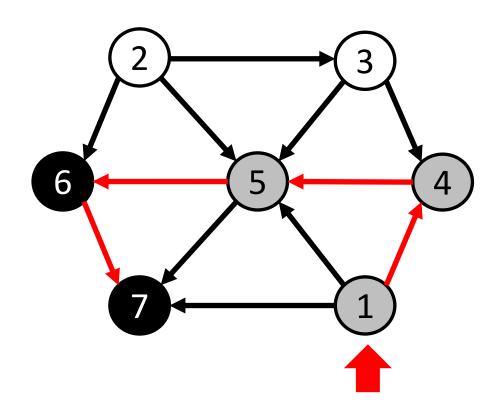
L 7

```
DFS(G)
                                           \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
     for each vertex u \in V
          u.color = WHITE
                                                u.color = GRAY
3
                                                for each v \in Adj[u]
     L=[ ]
                                                         if v_{\cdot}color == WHITE
     for each vertex u \in V
                                                                \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                        if v.color == GRAY
                                           8
                                                                Break
                                                L-> add it to the front (u)
                                           10
```



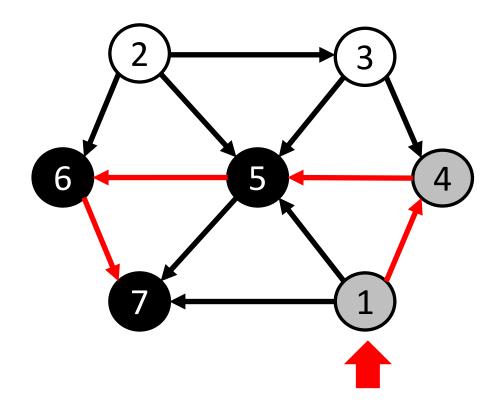
L 6 7

```
DFS(G)
                                       \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
         u.color = WHITE
3
                                           u.color = GRAY
                                           for each v \in Adj[u]
    L=[ ]
                                                   if v.color == WHITE
    for each vertex u \in V
                                                          DFS-VISIT(G, v)
          if u.color == WHITE
6
                 \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                   if v.color == GRAY
                                       8
                                                          Break
                                           L-> add it to the front (u)
                                       10
```



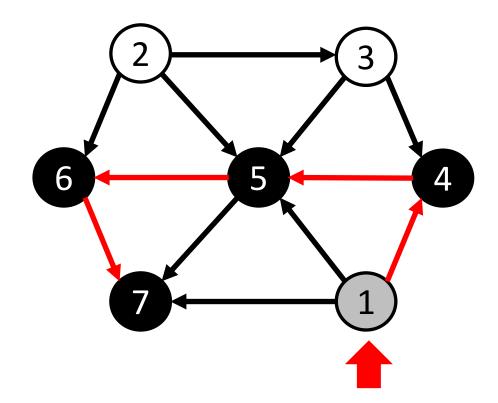
L 5 6 7

```
\mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
DFS(G)
    for each vertex u \in V
          u.color = WHITE
3
                                               u.color = GRAY
                                               for each v \in Adj[u]
     L=[ ]
                                                       if v.color == WHITE
     for each vertex u \in V
                                                              \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
           if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                       if v.color == GRAY
                                          8
                                                              Break
                                               L-> add it to the front (u)
                                          9
                                          10
```



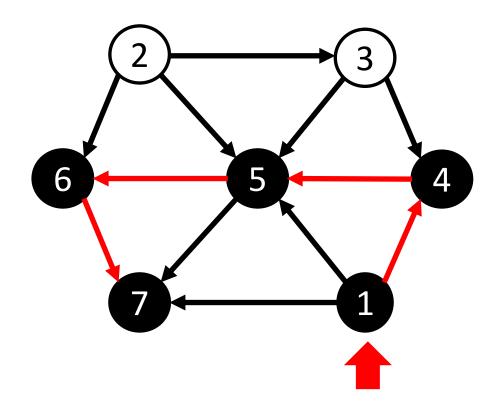
L 4 5 6 7

```
DFS(G)
                                         \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
          u.color = WHITE
                                               u.color = GRAY
3
                                              for each v \in Adj[u]
     L=[ ]
                                                       if v.color == WHITE
     for each vertex u \in V
          if u.color == WHITE
                                                              \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                       if v.color == GRAY
                                          8
                                                              Break
                                               L-> add it to the front (u)
                                         9
                                         10
```



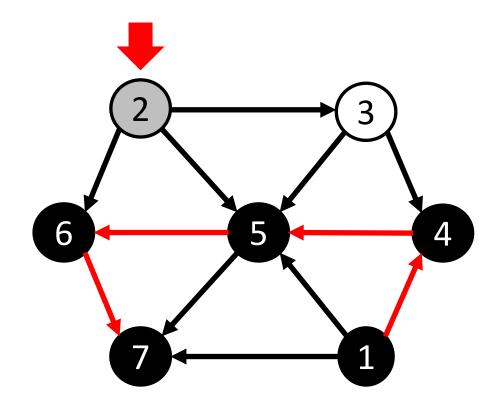
L 1 4 5 6 7

```
\mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
DFS(G)
    for each vertex u \in V
          u.color = WHITE
                                               u.color = GRAY
3
                                               for each v \in Adj[u]
     L=[ ]
                                                       if v.color == WHITE
     for each vertex u \in V
                                                              \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
          if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                       if v.color == GRAY
                                          8
                                                              Break
                                               L-> add it to the front (u)
                                          9
                                          10
```



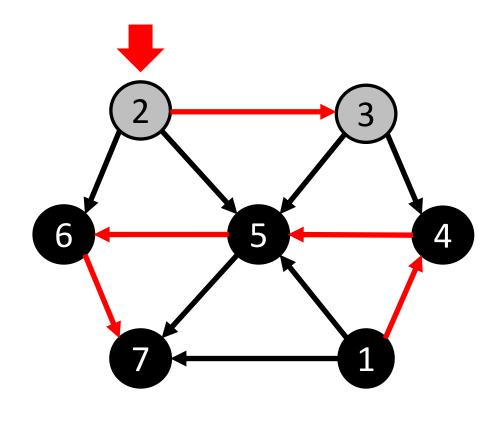
L 1 4 5 6 7

```
DFS(G)
                                       \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
         u.color = WHITE
3
                                           u.color = GRAY
                                           for each v \in Adj[u]
    L=[ ]
                                                   if v.color == WHITE
    for each vertex u \in V
                                                          DFS-VISIT(G, v)
6
          if u, color == WHITE
                 \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                   if v.color == GRAY
                                       8
                                                          Break
                                           L-> add it to the front (u)
                                       9
                                       10
```



L 1 4 5 6 7

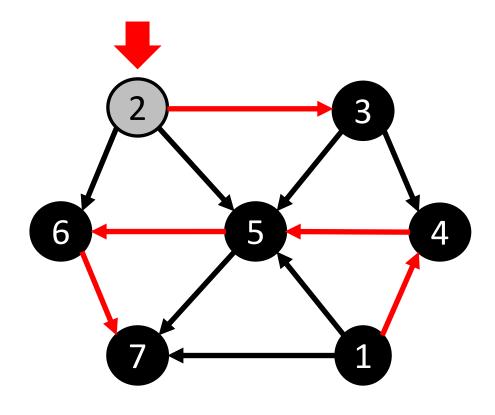
```
DFS(G)
                                       \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
         u.color = WHITE
3
                                           u.color = GRAY
                                           for each v \in Adj[u]
    L=[ ]
                                                   if v.color == WHITE
    for each vertex u \in V
                                                          DFS-VISIT(G, v)
6
          if u, color == WHITE
                 \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                   if v.color == GRAY
                                       8
                                                          Break
                                           L-> add it to the front (u)
                                       9
                                       10
```



L 3 1 4 5 6 7

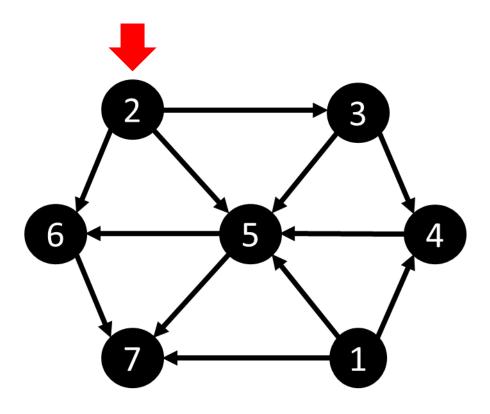
```
DFS(G)
                                       \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
         u.color = WHITE
3
                                           u.color = GRAY
                                           for each v \in Adj[u]
    L=[ ]
                                                   if v.color == WHITE
    for each vertex u \in V
                                                          DFS-VISIT(G, v)
6
          if u, color == WHITE
                 \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                   if v.color == GRAY
                                       8
                                                          Break
                                           L-> add it to the front (u)
                                       9
```

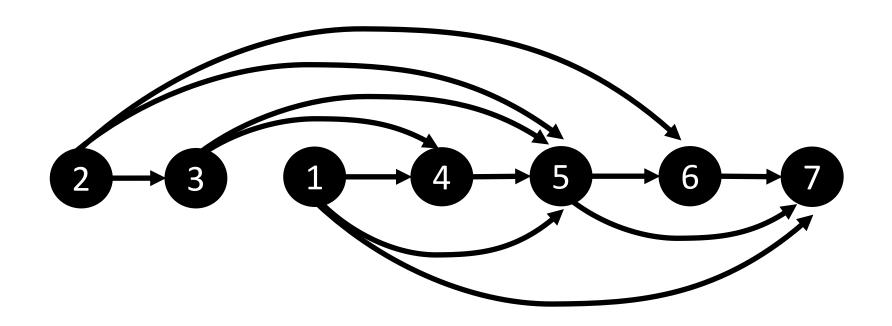
10



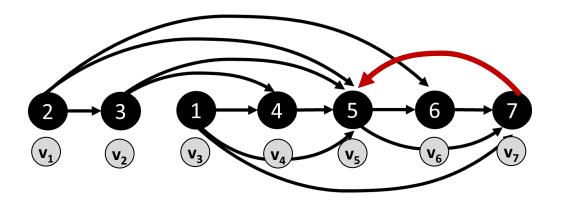
L 2 3 1 4 5 6 7

```
DFS(G)
                                          \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
    for each vertex u \in V
          u.color = WHITE
                                               u.color = GRAY
3
                                               for each v \in Adj[u]
     L=[ ]
                                                       if v.color == WHITE
     for each vertex u \in V
                                                              \mathsf{DFS}\text{-}\mathsf{VISIT}(G,v)
6
          if u, color == WHITE
                  \mathsf{DFS}\text{-}\mathsf{VISIT}(G,u)
                                                       if v.color == GRAY
                                          8
                                                              Break
                                               L-> add it to the front (u)
                                          9
                                          10
```



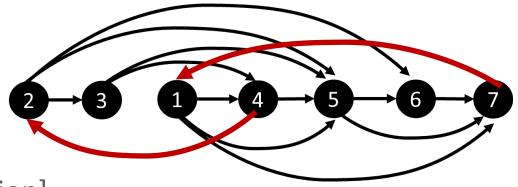


• **Lemma.** If G has a topological order, then G is a DAG.



- **Pf.** [by contradiction]
 - Suppose that G has a topological order, and that G also has a directed cycle C. Let's see what happens.
 - By definition, every edge (v_i, v_j) in topological order, i < j.
 - On the other hand, since (v_7, v_5) is an edge, we must have j < i, a contradiction.

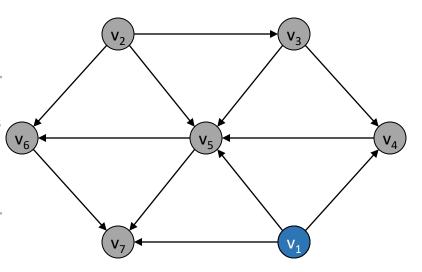
• Lemma. If G is a DAG, then G has a node with no entering edges.



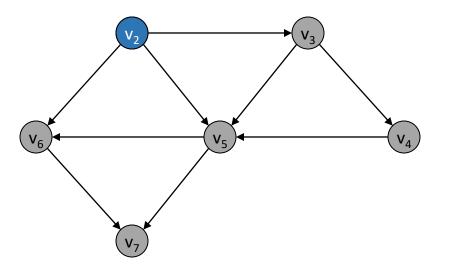
- Pf. [by contradiction]
 - Suppose that G is a DAG and every node has at least one entering edge. Let's see what happens.
 - Graph **G** will have a **cycle**

To compute a topological ordering of G:

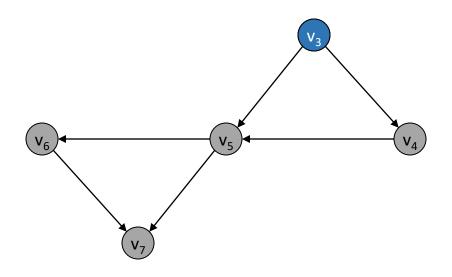
Find a node v with no incoming edges and order it first Delete v from GRecursively compute a topological ordering of $G-\{v\}$ and append this order after v



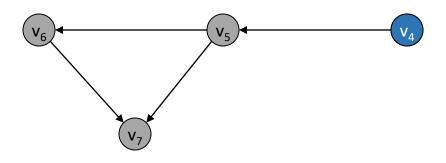
Topological order:



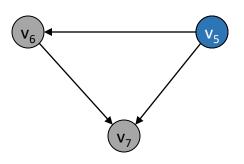
Topological order: v₁



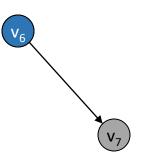
Topological order: v_1 , v_2



Topological order: v_1 , v_2 , v_3

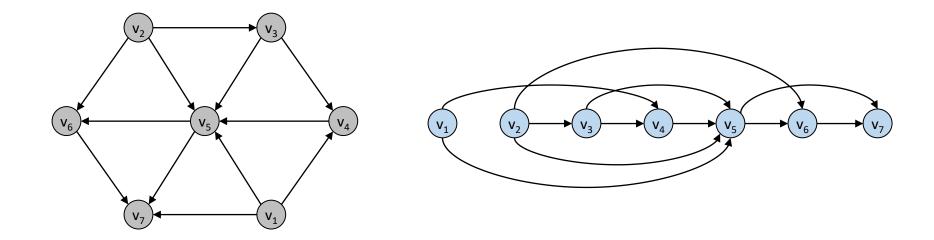


Topological order: v₁, v₂, v₃, v₄



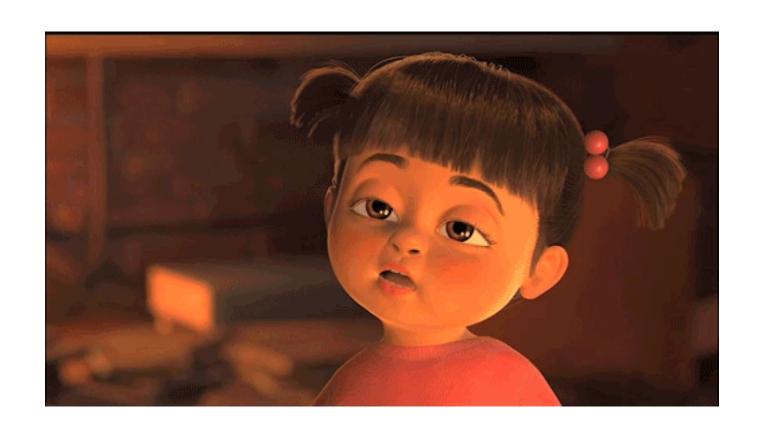
Topological order: v₁, v₂, v₃, v₄, v₅

Topological order: v₁, v₂, v₃, v₄, v₅, v₆



Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .

Thanks a lot



If you are taking a Nap, wake up.....Lecture Over