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Chapter 3:
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@ BFS: Live Poll 1

Consider a complete undirected graph where every vertex V has an edge
with every other vertex. You are going to perform a Breadth-First Search
(BFS) on this graph.

Which of the following expressions give equivalent time complexity in
terms of the Big O notation of the BFS for this graph?
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@ Breadth First Search: Analysis

Theorem: The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Read the book
* Proof:

 Easy to prove O(n2) running time:
e at most n lists L[i]

* each node occurs on at most one list; for loop runs < n times

 when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge
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e Actually, runsin O(m + n) time:
 when we consider node u, there are deg(u) incident edges (u, v)
* total time processing edgesis 2, _,, deg(u) =2m =

ueV

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)
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@ Connected Component

* Connected component. Find all nodes reachable from s.

Loy

* Connected component containingnode1={1, 2,3,4,5,6,7,8}.



@ Flood Fill

* Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
* Node: pixel.
e Edge: two neighboring lime pixels. recolor lime green blob to blue
* Blob: connected component of lime pixels:

88 o Tux Paint
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b Flood Fil

* Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.

* Node: pixel.
e Edge: two neighboring lime pixels. recolor lime green blob o blue
* Blob: connected component of lime pixels:
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‘ Connected Component

e Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile "
it's safe to add v

* Theorem. Upon termination, R is the connected component containing s.
* BFS =explore in order of distance from s.
* DFS = explore in a different way.



Section 3.4:
Testing Bipartiteness



@ Administrivia

* Assignment 1 — Released
* Quiz 2 on Wednesday 27t
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@ Bipartite Graphs

* Def: An undirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue
end.

* Applications.
* Stable matching: courses = blues, TAs = red.
* Scheduling: jobs = blue, machines = red

a bipartite graph

1



@ Testing Bipartiteness

Given a graph G1 and G2,
which one is bipartite?

61
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@ Testing Bipartiteness
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@ Testing Bipartiteness

6l another drawing of G1




@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs
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@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs
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@ Testing Bipartiteness

Observation: A graph G without cycles is always bipartite.
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@ Testing Bipartiteness

What about Cycles? Let explore even cycles
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@ Testing Bipartiteness

What about odd cycles?

e <]
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@ Testing Bipartiteness

Lemma 1: If a graph G is bipartite, it cannot contain an odd length cycle.

a1 A
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@ Bipartite Graphs and BFS

Hence...

* Lemma 2. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following
holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii)) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).
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@ Bipartiteness and BFS

Proof:
* Suppose (x, y) is an edge with x, y in same level L,
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@ Bipartiteness and BFS

Proof:
* Suppose (x, y) is an edge with x, y in same level L,
 Letz=Ica(x, y) = lowest common ancestor.
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@ Bipartiteness and BFS

Proof:

* Suppose (x, y) is an edge with x, y in same level L,
 Letz=Ica(x, y) = lowest common ancestor.

* LetL, be level containing z
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@ Bipartiteness and BFS

Proof:

* Suppose (x, y) is an edge with x, y in same level L,

 Letz=Ica(x, y) = lowest common ancestor.

* LetL, be level containing z

* Consider cycle that takes edge from x to y, then path
fromy to z, then path from z to x.
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@ Bipartiteness and BFS

Proof:
Z * Suppose (x, y) is an edge with x, y in same level L,

Level i  Letz=Ica(x, y) = lowest common ancestor.

* LetL, be level containing z
(i-) o %, () « Consider cycle that takes edge from x to y, then path
) * fromy to z, then path from z to x.
Level j
Level k

Level /




@ Bipartiteness and BFS

Level i

Level j

Level k

Level /
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(j-i) 9% (j-i)

Proof:

Suppose (x, y) is an edge with x, y in same level L;.
Let z = lca(x, y) = lowest common ancestor.

Let L, be level containing z

Consider cycle that takes edge from x to y, then path
fromy to z, then path from z to x.

Its lengthis 1 + (j-i) + (j-i).



@ Bipartiteness and BFS

Level i

Level j

Level k

Level /

Z

(j-i) 9% (j-i)

Proof:

Suppose (x, y) is an edge with x, y in same level L;.
Let z = lca(x, y) = lowest common ancestor.
Let L, be level containing z
Consider cycle that takes edge from x to y, then path
fromy to z, then path from z to x.
Its lengthis 1 + (j-i) + (j-i).
1 + 2 (j-i) Which always gives Odd length
“—~—

Any number
multiplied
by 2 is even



@ Bipartite Graphs

Corollary (Based on Lemma 1 and 2): A graph G is bipartite iff it contain
no odd length cycle.



@ Testing Bipartite Graphs — Designing the Algorithm

procedure BFS(G,s)

for each vertex v € V[G] do
explored[v] + false

ALV] 4 00 < ———————————— Replace it with color[v] = Black

end for
explored[s] <+ true
dls] « 0 ——————————————————————————————— Replace it with color[s] = Red

():= a queue data structure, initialized with s
while () # ¢ do
u + remove vertex from the front of ()
for each v adjacent to u do
if not explored[v] then
explored[v] + true
dlv] «— du] + 1 G ————— color it with the opposite color of ‘U’
insert v to the end of ()
end 1if

end for e ———————— Add new if block. If v is already explored
end while and has the same color as u, then the
graph is not bipartite. Exit.

end procedure



@ Testing Bipartite Graphs — Designing the Algorithm

procedure BFS(G,s)

for each vertex v € V[G] do
explored[v] + false
dlv] +
end for
explored[s] <+ true
d[s] < 0
():= a queue data structure, initialized with s . .
while Q # ¢ do Same Time Complexity
u + remove vertex from the front of ()
for each v adjacent to u do
if not explored[v] then
explored[v] + true
dlv] « d[u] + 1
insert v to the end of ()
end 1if
end for
end while

end procedure



Thanks a lot

Lecture Over
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