CS 310: Algorithms

Lecture 7

Instructor: Naveed Anwar Bhatti

Chapter 3:
Graphs

Alqorithm Design

JON KLEINBERG * EVA TARDOS

@ BFS: Live Poll 1

Consider a complete undirected graph where every vertex V has an edge
with every other vertex. You are going to perform a Breadth-First Search
(BFS) on this graph.

Which of the following expressions give equivalent time complexity in
terms of the Big O notation of the BFS for this graph?

4 vz=ow?) VvV

B. 2E=V(V—1)=V2—V =0(?%) V g

C. Vs2E =V+ V(1) =V2=0W?) V &
D.

E.

Vi =V + (V- 1)/2=V + V2 -V)2=0?) vV &
All of Above

F. None of Above

@ Breadth First Search: Analysis

Theorem: The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Read the book
* Proof:

 Easy to prove O(n2) running time:
e at most n lists L[i]

* each node occurs on at most one list; for loop runs < n times

 when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

DHE

1 Jesign

JON_KlEINBERG - EVA TARDOS

|

e Actually, runsin O(m + n) time:
 when we consider node u, there are deg(u) incident edges (u, v)
* total time processing edgesis 2, _,, deg(u) =2m =

ueV

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

4

@ Connected Component

* Connected component. Find all nodes reachable from s.

Loy

* Connected component containingnode1={1, 2,3,4,5,6,7,8}.

@ Flood Fill

* Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
* Node: pixel.
e Edge: two neighboring lime pixels. recolor lime green blob to blue
* Blob: connected component of lime pixels:

88 o Tux Paint

(Tools)
(2=

a

b Flood Fil

* Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.

* Node: pixel.
e Edge: two neighboring lime pixels. recolor lime green blob o blue
* Blob: connected component of lime pixels:

88o Tux Paint

jé

Abc

g//a
"@

€oord™®) AE
ﬁ Click in the picture to fill that area with color.

‘ Connected Component

e Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile "
it's safe to add v

* Theorem. Upon termination, R is the connected component containing s.
* BFS =explore in order of distance from s.
* DFS = explore in a different way.

Section 3.4:
Testing Bipartiteness

@ Administrivia

* Assignment 1 — Released
* Quiz 2 on Wednesday 27t

10

@ Bipartite Graphs

* Def: An undirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue
end.

* Applications.
* Stable matching: courses = blues, TAs = red.
* Scheduling: jobs = blue, machines = red

a bipartite graph

1

@ Testing Bipartiteness

Given a graph G1 and G2,
which one is bipartite?

61

12

@ Testing Bipartiteness

@ Testing Bipartiteness

@ Testing Bipartiteness

@ Testing Bipartiteness

6l another drawing of G1

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

17

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

18

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

19

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

20

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

21

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

22

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

23

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

24

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

25

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

26

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

27

@ Testing Bipartiteness

Before attempting to design an algorithm, we need to understand structure of bipartite
graphs

28

@ Testing Bipartiteness

Observation: A graph G without cycles is always bipartite.

29

@ Testing Bipartiteness

What about Cycles? Let explore even cycles

30

@ Testing Bipartiteness

What about Cycles? Let explore even cycles

31

@ Testing Bipartiteness

What about Cycles? Let explore even cycles

32

@ Testing Bipartiteness

What about Cycles? Let explore even cycles

33

@ Testing Bipartiteness

What about odd cycles?

e <]

34

@ Testing Bipartiteness

Lemma 1: If a graph G is bipartite, it cannot contain an odd length cycle.

a1 A

35

Level O

Level 1

Level 2

Level 3

Level O

Level 1

Level 2

Level 3

Level O

Level 1

Level 2

Level 3

@ Bipartite Graphs and BFS

Hence...

* Lemma 2. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following
holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii)) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Level O

Level 1

Level 2

Level 3

Proof:

@ Bipartiteness and BFS

Proof:
* Suppose (x, y) is an edge with x, y in same level L,

Level O

Level 1

Level 2

Level 3

@ Bipartiteness and BFS

Proof:
* Suppose (x, y) is an edge with x, y in same level L,
 Letz=Ica(x, y) = lowest common ancestor.

Level O

Level 1

Level 2

Level 3

@ Bipartiteness and BFS

Proof:

* Suppose (x, y) is an edge with x, y in same level L,
 Letz=Ica(x, y) = lowest common ancestor.

* LetL, be level containing z

Level O

Level 1

Level 2

Level 3

@ Bipartiteness and BFS

Proof:

* Suppose (x, y) is an edge with x, y in same level L,

 Letz=Ica(x, y) = lowest common ancestor.

* LetL, be level containing z

* Consider cycle that takes edge from x to y, then path
fromy to z, then path from z to x.

Level O

Level 1

Level 2

Level 3

@ Bipartiteness and BFS

Proof:
Z * Suppose (x, y) is an edge with x, y in same level L,

Level i Letz=Ica(x, y) = lowest common ancestor.

* LetL, be level containing z
(i-) o %, () « Consider cycle that takes edge from x to y, then path
) * fromy to z, then path from z to x.
Level j
Level k

Level /

@ Bipartiteness and BFS

Level i

Level j

Level k

Level /

Z

(j-i) 9% (j-i)

Proof:

Suppose (x, y) is an edge with x, y in same level L;.
Let z = lca(x, y) = lowest common ancestor.

Let L, be level containing z

Consider cycle that takes edge from x to y, then path
fromy to z, then path from z to x.

Its lengthis 1 + (j-i) + (j-i).

@ Bipartiteness and BFS

Level i

Level j

Level k

Level /

Z

(j-i) 9% (j-i)

Proof:

Suppose (x, y) is an edge with x, y in same level L;.
Let z = lca(x, y) = lowest common ancestor.
Let L, be level containing z
Consider cycle that takes edge from x to y, then path
fromy to z, then path from z to x.
Its lengthis 1 + (j-i) + (j-i).
1 + 2 (j-i) Which always gives Odd length
“—~—

Any number
multiplied
by 2 is even

@ Bipartite Graphs

Corollary (Based on Lemma 1 and 2): A graph G is bipartite iff it contain
no odd length cycle.

@ Testing Bipartite Graphs — Designing the Algorithm

procedure BFS(G,s)

for each vertex v € V[G] do
explored[v] + false

ALV] 4 00 < ———————————— Replace it with color[v] = Black

end for
explored[s] <+ true
dls] « 0 ——————————————————————————————— Replace it with color[s] = Red

():= a queue data structure, initialized with s
while () # ¢ do
u + remove vertex from the front of ()
for each v adjacent to u do
if not explored[v] then
explored[v] + true
dlv] «— du] + 1 G ————— color it with the opposite color of ‘U’
insert v to the end of ()
end 1if

end for e ———————— Add new if block. If v is already explored
end while and has the same color as u, then the
graph is not bipartite. Exit.

end procedure

@ Testing Bipartite Graphs — Designing the Algorithm

procedure BFS(G,s)

for each vertex v € V[G] do
explored[v] + false
dlv] +
end for
explored[s] <+ true
d[s] < 0
():= a queue data structure, initialized with s . .
while Q # ¢ do Same Time Complexity
u + remove vertex from the front of ()
for each v adjacent to u do
if not explored[v] then
explored[v] + true
dlv] « d[u] + 1
insert v to the end of ()
end 1if
end for
end while

end procedure

Thanks a lot

Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Chapter 3: Graphs
	Slide 3: BFS: Live Poll 1
	Slide 4: Breadth First Search: Analysis
	Slide 5: Connected Component
	Slide 6: Flood Fill
	Slide 7: Flood Fill
	Slide 8: Connected Component
	Slide 9: Section 3.4: Testing Bipartiteness
	Slide 10: Administrivia
	Slide 11: Bipartite Graphs
	Slide 12: Testing Bipartiteness
	Slide 13: Testing Bipartiteness
	Slide 14: Testing Bipartiteness
	Slide 15: Testing Bipartiteness
	Slide 16: Testing Bipartiteness
	Slide 17: Testing Bipartiteness
	Slide 18: Testing Bipartiteness
	Slide 19: Testing Bipartiteness
	Slide 20: Testing Bipartiteness
	Slide 21: Testing Bipartiteness
	Slide 22: Testing Bipartiteness
	Slide 23: Testing Bipartiteness
	Slide 24: Testing Bipartiteness
	Slide 25: Testing Bipartiteness
	Slide 26: Testing Bipartiteness
	Slide 27: Testing Bipartiteness
	Slide 28: Testing Bipartiteness
	Slide 29: Testing Bipartiteness
	Slide 30: Testing Bipartiteness
	Slide 31: Testing Bipartiteness
	Slide 32: Testing Bipartiteness
	Slide 33: Testing Bipartiteness
	Slide 34: Testing Bipartiteness
	Slide 35: Testing Bipartiteness
	Slide 36: Bipartiteness and BFS
	Slide 37: Bipartiteness and BFS
	Slide 38: Bipartiteness and BFS
	Slide 39: Bipartite Graphs and BFS
	Slide 40: Bipartiteness and BFS
	Slide 41: Bipartiteness and BFS
	Slide 42: Bipartiteness and BFS
	Slide 43: Bipartiteness and BFS
	Slide 44: Bipartiteness and BFS
	Slide 45: Bipartiteness and BFS
	Slide 46: Bipartiteness and BFS
	Slide 47: Bipartiteness and BFS
	Slide 48: Bipartite Graphs
	Slide 49: Testing Bipartite Graphs – Designing the Algorithm
	Slide 50: Testing Bipartite Graphs – Designing the Algorithm
	Slide 57: Thanks a lot

