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Chapter 2:
Basics of Algorithm Analysis



Reasons to analyze algorithms

• Predict performance

• Compare algorithms

• Provide guarantees

• Improve performance

• Understand theoretical basis
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Primary practical reason: avoid performance bugs.



A strikingly modern thought

4

“ As soon as an Analytic Engine exists, it will necessarily guide the 

future course of the science.  Whenever any result is sought by its aid, the 

question will arise—By what course of calculation can these results be 

arrived at by the machine in the shortest time? ” —  Charles Babbage 

(1864)

Analytic Engine

how many times do you 
have to turn the crank?

in the shortest time

Efficiency?

https://www.youtube.com/watch?v=0anIyVGeWOI


How can we define efficiency? 
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“An algorithm is efficient if, when implemented, it runs quickly 

on real input instances.”
runs quickly



How can we measure efficiency? (Running Time) 
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Empirical Analysis
Mathematical 

Models
Asymptotic Models

Asymptotic Order of 
Growth



Empirical Analysis

7

Problem: Find a triplet in an array whose sum is Zero

Solution: 

Experimental Setup: 

1K array 2K array

4K array



Empirical Analysis
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System independent effects.
• Algorithm.
• Input data.

System dependent effects.
• Hardware: CPU, memory, cache, …
• Software: compiler, operating system, 
     garbage collector, …

Bad News: Sometimes difficult to get precise measurements.

We are interested in measuring this

But we are also measuring this

Good News: We can generate accurate mathematical models



Mathematical Model: Examples
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int count = 0;
for (int i = 0; i < N; i++)
      if (a[i] == 0)
          count++;

Find a index in an array 
whose value is Zero

Problem Algorithm Mathematical Model

Find a twins in an array 
whose value is Zero

int count = 0;
for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)
           if (a[i] + a[j] == 0)
               count++;

Find a triplet in an array 
whose sum is Zero

for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)

      for (int k = j+1; k < N; k++)
          if (a[i] + a[j] + a[k] == 0)
               count++;

𝒏 𝒏 − 𝟏

𝒏 𝒏 − 𝟏 𝒏 − 𝟐

𝒏

= 𝒏𝟐 −𝒏

= 𝒏𝟑 −𝟑𝒏𝟐 + 𝟐𝒏



Mathematical Model: We need Simplification
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In principle, accurate mathematical models are available.

In practice,
• Formulas can be complicated.
• Advanced mathematics might be required.
• Exact models best left for experts.

Last option left: Use Asymptotic models



Section 2.2:
Asymptotic Order of Growth



Asymptotic Model:
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Estimate running time (or memory) as a function of input size N.
• Ignore lower order terms.
• Ignore constants
• when N is large, terms are negligible
• when N is small, we don't care



Asymptotic Model: Examples
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int count = 0;
for (int i = 0; i < N; i++)
      if (a[i] == 0)
          count++;

Find a index in an array 
whose value is Zero

Problem Algorithm Mathematical Model

Find a twins in an array 
whose value is Zero

int count = 0;
for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)
           if (a[i] + a[j] == 0)
               count++;

Find a triplet in an array 
whose sum is Zero

for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)

      for (int k = j+1; k < N; k++)
          if (a[i] + a[j] + a[k] == 0)
               count++;

𝒏 𝒏 − 𝟏

𝒏 𝒏 − 𝟏 𝒏 − 𝟐

𝒏

= 𝒏𝟐 −𝒏

= 𝒏𝟑 −𝟑𝒏𝟐 + 𝟐𝒏

Asymptotic Model

~𝒏

~𝒏𝟐

~𝒏𝟑



Common Asymptotic order-of-growth classifications
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Good News: The set of functions

𝟏, 𝐥𝐨𝐠 𝑵, 𝑵, 𝑵 𝐥𝐨𝐠 𝑵, 𝑵𝟐, 𝑵𝟑, 𝟐𝑵 and 
𝑵!

suffice to describe the order of growth 
of most common algorithms



Common Asymptotic order-of-growth classifications
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Algorithm Analysis: Live Poll 1
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Suppose you have algorithms with the running time of n² (Assume 
these are the exact number of operations performed as a function of 
the input size n) and you have a computer that can perform 
𝟏𝟎𝟏𝟎 operations per second. You need to compute a result in at 
most an hour of computation. 

What is the largest input size n for which you would be able to get 
the result within an hour?

A. 𝟔 × 𝟏𝟎𝟔 

B. 𝟑𝟔 × 𝟏𝟎𝟏𝟐

C. 𝟔 × 𝟏𝟎𝟏𝟎

D. 𝟏𝟎𝟎 × 𝟏𝟎𝟏𝟎
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Asymptotic Order of Growth : Live Poll 1
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First, let's find out the total number of operations the computer can 
perform in an hour:

1 hour = 60 minutes = 3600 seconds

Total operations in an hour = 3600 x 𝟏𝟎𝟏𝟎 

Operations per second= 𝟏𝟎𝟏𝟎  

We need 𝒏𝟐  ≤ 3600 x 𝟏𝟎𝟏𝟎 

Taking the square root of both sides,

𝒏  ≤ 60 x 𝟏𝟎𝟓 
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O, , and 
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Asymptotic Order of Growth – Big O notation 

• Upper bounds:  f(n) is O(g(n)) if there exist constants c > 0 and n0  0 
such that for all n  n0 we have f(n)  c · g(n).

• Ex:   f(n) = 32n2 + 17n + 1
• f(n) is O(n2)
• Can we say   f(n) is O(n3) ?
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Asymptotic Order of Growth : Live Poll 1
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We know f(n) = 32n² + 17n + 1 is O(n²). What is 
the value of C and n0?

A. C=1 and n0=1

B. C=32 and n0=0

C. C=32 and n0=1

D. C=50 and n0=1

E. None of above



Asymptotic Order of Growth : Live Poll 1
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Asymptotic Order of Growth – Big Omega notation 

• Lower bounds.  f(n) is (g(n)) if there exist constants c > 0 and n0  0 
such that for all n  n0 we have f(n)  c · g(n).

• Ex:   f(n) = 32n2 + 17n + 1
• f(n) is (n2), (n)
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Asymptotic Order of Growth – Big Theta notation 

• Tight bound.  f(n) is (g(n)) if there exist constants c1 > 0, c2 > 0 and 
n0  0 such that for all n  n0 we have c1 · g(n)   f(n)  c2 · g(n).

• Ex:   f(n) = 32n2 + 17n + 1
• f(n) is (n2)
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Asymptotic Order of Growth 
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O  



Notation

• Slight abuse of notation.  T(n) = O(f(n)).
• Asymmetric:

• f(n) = 5n3;  g(n) = 3n2

• f(n) = O(n3) = g(n)

• but f(n)  g(n).

• Better notation:  T(n)  O(f(n)).

• Meaningless statement.  Any comparison-based sorting algorithm 
requires at least O(n log n) comparisons.
• Statement doesn't "type-check."

• Use  for lower bounds.
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Properties

• Transitivity.
• If f = O(g) and g = O(h) then f = O(h).

• If f = (g) and g = (h) then f = (h). 

• If f = (g) and g = (h) then f = (h).

• Additivity.
• If f = O(h) and g = O(h) then f + g = O(h). 

• If f = (h) and g = (h) then f + g = (h).

• If f = (h) and g = (h) then f + g = (h).
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Asymptotic Bounds for Some Common Functions

• Polynomials.  a0 + a1n + … + adnd  is (nd) if ad > 0. 

• Polynomial time.  Running time is O(nd) for some constant d independent of the input size n.

• Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0.

• Logarithms.  For every x > 0,  log n = O(nx).

• Exponentials.  For every r > 1 and every d > 0,  nd = O(rn).

30

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial



Thanks a lot

If you are taking a Nap, wake up........Lecture Over
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