
CS 310: Algorithms

Instructor: Naveed Anwar Bhatti

Lecture 4

2

Chapter 2:
Basics of Algorithm Analysis

Reasons to analyze algorithms

• Predict performance

• Compare algorithms

• Provide guarantees

• Improve performance

• Understand theoretical basis

3

Primary practical reason: avoid performance bugs.

A strikingly modern thought

4

“ As soon as an Analytic Engine exists, it will necessarily guide the

future course of the science. Whenever any result is sought by its aid, the

question will arise—By what course of calculation can these results be

arrived at by the machine in the shortest time? ” — Charles Babbage

(1864)

Analytic Engine

how many times do you
have to turn the crank?

in the shortest time

Efficiency?

https://www.youtube.com/watch?v=0anIyVGeWOI

How can we define efficiency?

5

“An algorithm is efficient if, when implemented, it runs quickly

on real input instances.”
runs quickly

How can we measure efficiency? (Running Time)

6

Empirical Analysis
Mathematical

Models
Asymptotic Models

Asymptotic Order of
Growth

Empirical Analysis

7

Problem: Find a triplet in an array whose sum is Zero

Solution:

Experimental Setup:

1K array 2K array

4K array

Empirical Analysis

8

System independent effects.
• Algorithm.
• Input data.

System dependent effects.
• Hardware: CPU, memory, cache, …
• Software: compiler, operating system,
 garbage collector, …

Bad News: Sometimes difficult to get precise measurements.

We are interested in measuring this

But we are also measuring this

Good News: We can generate accurate mathematical models

Mathematical Model: Examples

10

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0)
 count++;

Find a index in an array
whose value is Zero

Problem Algorithm Mathematical Model

Find a twins in an array
whose value is Zero

int count = 0;
for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

Find a triplet in an array
whose sum is Zero

for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

𝒏 𝒏 − 𝟏

𝒏 𝒏 − 𝟏 𝒏 − 𝟐

𝒏

= 𝒏𝟐 −𝒏

= 𝒏𝟑 −𝟑𝒏𝟐 + 𝟐𝒏

Mathematical Model: We need Simplification

11

In principle, accurate mathematical models are available.

In practice,
• Formulas can be complicated.
• Advanced mathematics might be required.
• Exact models best left for experts.

Last option left: Use Asymptotic models

Section 2.2:
Asymptotic Order of Growth

Asymptotic Model:

13

Estimate running time (or memory) as a function of input size N.
• Ignore lower order terms.
• Ignore constants
• when N is large, terms are negligible
• when N is small, we don't care

Asymptotic Model: Examples

14

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0)
 count++;

Find a index in an array
whose value is Zero

Problem Algorithm Mathematical Model

Find a twins in an array
whose value is Zero

int count = 0;
for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

Find a triplet in an array
whose sum is Zero

for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

𝒏 𝒏 − 𝟏

𝒏 𝒏 − 𝟏 𝒏 − 𝟐

𝒏

= 𝒏𝟐 −𝒏

= 𝒏𝟑 −𝟑𝒏𝟐 + 𝟐𝒏

Asymptotic Model

~𝒏

~𝒏𝟐

~𝒏𝟑

Common Asymptotic order-of-growth classifications

15

Good News: The set of functions

𝟏, 𝐥𝐨𝐠 𝑵, 𝑵, 𝑵 𝐥𝐨𝐠 𝑵, 𝑵𝟐, 𝑵𝟑, 𝟐𝑵 and
𝑵!

suffice to describe the order of growth
of most common algorithms

Common Asymptotic order-of-growth classifications

16

Algorithm Analysis: Live Poll 1

17

Suppose you have algorithms with the running time of n² (Assume
these are the exact number of operations performed as a function of
the input size n) and you have a computer that can perform
𝟏𝟎𝟏𝟎 operations per second. You need to compute a result in at
most an hour of computation.

What is the largest input size n for which you would be able to get
the result within an hour?

A. 𝟔 × 𝟏𝟎𝟔

B. 𝟑𝟔 × 𝟏𝟎𝟏𝟐

C. 𝟔 × 𝟏𝟎𝟏𝟎

D. 𝟏𝟎𝟎 × 𝟏𝟎𝟏𝟎

18

Asymptotic Order of Growth : Live Poll 1

19

First, let's find out the total number of operations the computer can
perform in an hour:

1 hour = 60 minutes = 3600 seconds

Total operations in an hour = 3600 x 𝟏𝟎𝟏𝟎

Operations per second= 𝟏𝟎𝟏𝟎

We need 𝒏𝟐 ≤ 3600 x 𝟏𝟎𝟏𝟎

Taking the square root of both sides,

𝒏 ≤ 60 x 𝟏𝟎𝟓

20

O, , and 

20

Asymptotic Order of Growth – Big O notation

• Upper bounds: f(n) is O(g(n)) if there exist constants c > 0 and n0  0
such that for all n  n0 we have f(n)  c · g(n).

• Ex: f(n) = 32n2 + 17n + 1
• f(n) is O(n2)
• Can we say f(n) is O(n3) ?

21

Asymptotic Order of Growth : Live Poll 1

22

We know f(n) = 32n² + 17n + 1 is O(n²). What is
the value of C and n0?

A. C=1 and n0=1

B. C=32 and n0=0

C. C=32 and n0=1

D. C=50 and n0=1

E. None of above

Asymptotic Order of Growth : Live Poll 1

23

Asymptotic Order of Growth – Big Omega notation

• Lower bounds. f(n) is (g(n)) if there exist constants c > 0 and n0  0
such that for all n  n0 we have f(n)  c · g(n).

• Ex: f(n) = 32n2 + 17n + 1
• f(n) is (n2), (n)

24

25

Asymptotic Order of Growth – Big Theta notation

• Tight bound. f(n) is (g(n)) if there exist constants c1 > 0, c2 > 0 and
n0  0 such that for all n  n0 we have c1 · g(n)  f(n)  c2 · g(n).

• Ex: f(n) = 32n2 + 17n + 1
• f(n) is (n2)

26

Asymptotic Order of Growth

27

O  

Notation

• Slight abuse of notation. T(n) = O(f(n)).
• Asymmetric:

• f(n) = 5n3; g(n) = 3n2

• f(n) = O(n3) = g(n)

• but f(n)  g(n).

• Better notation: T(n)  O(f(n)).

• Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.
• Statement doesn't "type-check."

• Use  for lower bounds.

28

Properties

• Transitivity.
• If f = O(g) and g = O(h) then f = O(h).

• If f = (g) and g = (h) then f = (h).

• If f = (g) and g = (h) then f = (h).

• Additivity.
• If f = O(h) and g = O(h) then f + g = O(h).

• If f = (h) and g = (h) then f + g = (h).

• If f = (h) and g = (h) then f + g = (h).

29

Asymptotic Bounds for Some Common Functions

• Polynomials. a0 + a1n + … + adnd is (nd) if ad > 0.

• Polynomial time. Running time is O(nd) for some constant d independent of the input size n.

• Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

• Logarithms. For every x > 0, log n = O(nx).

• Exponentials. For every r > 1 and every d > 0, nd = O(rn).

30

every exponential grows faster than every polynomial

can avoid specifying the base

log grows slower than every polynomial

Thanks a lot

If you are taking a Nap, wake up........Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Chapter 2: Basics of Algorithm Analysis
	Slide 3: Reasons to analyze algorithms
	Slide 4: A strikingly modern thought
	Slide 5: How can we define efficiency?
	Slide 6: How can we measure efficiency? (Running Time)
	Slide 7: Empirical Analysis
	Slide 8: Empirical Analysis
	Slide 10: Mathematical Model: Examples
	Slide 11: Mathematical Model: We need Simplification
	Slide 12: Section 2.2: Asymptotic Order of Growth
	Slide 13: Asymptotic Model:
	Slide 14: Asymptotic Model: Examples
	Slide 15: Common Asymptotic order-of-growth classifications
	Slide 16: Common Asymptotic order-of-growth classifications
	Slide 17: Algorithm Analysis: Live Poll 1
	Slide 18
	Slide 19: Asymptotic Order of Growth : Live Poll 1
	Slide 20: O, , and 
	Slide 21: Asymptotic Order of Growth – Big O notation
	Slide 22: Asymptotic Order of Growth : Live Poll 1
	Slide 23: Asymptotic Order of Growth : Live Poll 1
	Slide 24: Asymptotic Order of Growth – Big Omega notation
	Slide 25
	Slide 26: Asymptotic Order of Growth – Big Theta notation
	Slide 27: Asymptotic Order of Growth
	Slide 28: Notation
	Slide 29: Properties
	Slide 30: Asymptotic Bounds for Some Common Functions
	Slide 31: Thanks a lot

