CS 310: Algorithms

Lecture 4

Instructor: Naveed Anwar Bhatti

Chapter 2:
Basics of Algorithm Analysis

Alqorithm Design

JON KLEINBERG * EVA TARDOS

@ Reasons to analyze algorithms

* Predict performance
 Compare algorithms
* Provide guarantees

* Improve performance

e Understand theoretical basis

Primary practical reason: avoid performance bugs.
A

}

client gets poor performance because programmer

did not understand performance characteristics

‘ A strikingly modern thought

“ As soon as an Analytic Engine exists, it will necessarily guide the
future course of the science. Whenever any result is sought by its aid, the
question will arise—By what course of calculation can these results be
arrived at by the machine in the shortest time? °~ — Charles Babbage

(1864) _—'
Y k. Efficiency?

how many times do you
have to turn the crank?

By

1L

le

Analytic Engine

https://www.youtube.com/watch?v=0anIyVGeWOI

@ How can we define efficiency?

“An algorithm is efficient if, when implemented, it runs quickly

. . '
on real input instances.

@ How can we measure efficiency? (Running Time)

/

<

N

el
Gl

Empirical Analysis

N

)

Mathematical
Models

Asymptotic Models

Asymptotic Order of
Growth

‘ Empirical Analysis

Problem: Find a triplet in an array whose sum is Zero

Solution: for (int i

for (int J =

Experimental Setup:

0; 1 < N;

1+1; J < N; j++)

for (int k = j+1; k < N; k++)
1t (a[1] + alj] + alk]

count++;

1++)

1K array

tick tick tick

0)

2K array

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

4K array

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

@ Empirical Analysis

System independent effects.)

* Algorithm. > We are interested in measuring this
* Input data.

/
System dependent effects. ™

 Hardware: CPU, memory, cache, ...
* Software: compiler, operating system, > But we are also measuring this
garbage collector, ...

/

Bad News: Sometimes difficult to get precise measurements.

Good News: We can generate accurate mathematical models

@ Mathematical Model: Examples

Problem

Find a index in an array
whose value is Zero

Find a twins in an array
whose value is Zero

Find a triplet in an array
whose sum is Zero

Algorithm

int count =0;
for (inti=0;i<N;i++)
if (a[i] == 0)
count++;

int count =0;
for (inti=0;i<N;i++)
for (intj=i+1;j < N; j++)
if (a[i] + a[j] ==0)
count++;

for (inti=0;i<N; i++)
for (intj=i+1;j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)
count++;

Mathematical Model

nn—-—1)

nn—-1)(n-2)
=n3 —3n%+2n

10

@ Mathematical Model: We need Simplification

In principle, accurate mathematical models are available.

In practice,

* Formulas can be complicated.
 Advanced mathematics might be required.
* Exact models best left for experts.

Last option left: Use Asymptotic models

11

Section 2.2:
Asymptotic Order of Growth

@ Asymptotic Model:

Estimate running time (or memory) as a function of input size N.
* lIgnore lower order terms.

* Ignore constants

 when N is large, terms are negligible

 when N is small, we don't care

13

@ Asymptotic Model: Examples

Problem

Find a index in an array
whose value is Zero

Find a twins in an array
whose value is Zero

Find a triplet in an array
whose sum is Zero

Algorithm

int count =0;
for (inti=0;i<N;i++)
if (a[i] ==0)
count++;

int count=0;
for (inti=0;i<N;i++)
for (intj=i+1;j < N; j++)
if (a[i] + a[j] ==0)
count++;

for (inti=0;i<N; i++)
for (intj=i+1;j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)
count++;

Mathematical Model

nn-1)

nn—-1)(n-2)
=n3 —3n%+2n

Asymptotic Model

14

@ Common Asymptotic order-of-growth classifications

Good News: The set of functions
Horrible|(Bad| Fair| Good| [Excellent

1,log N, N, Nlog N, N?, N3, 2V and
N!

suffice to describe the order of growth
of most common algorithms

Operations

Elements

‘ Common Asymptotic order-of-growth classifications

order of
growth

log N

N

Nlog N

N3

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

typical code framework

while (N > 1)
{ N=N/2; ... }

for (int i =0; i < N; i++)

{ ... }

for (int i =0; i < N; i++)
for (int j = 0; j < N; j++)
{ ... }

for (int i =0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
{ ... }

description

statement

divide
in half

single
loop

divide and
conquer

double
loop

triple
loop

exhaustive
search

example

add two
numbers

binary search

find the
maximum

mergesort

check all
pairs

check all
triples

fibonacci
number

16

@ Algorithm Analysis: Live Poll 1

Suppose you have algorithms with the running time of n? (Assume
these are the exact number of operations performed as a function of
the input size n) and you have a computer that can perform
1010 operations per second. You need to compute a result in at
most an hour of computation.

What is the largest input size n for which you would be able to get
the result within an hour?

A 6 x10°

B. 36 x 102
C 6 x101°
D. 100 x 1010

Scan the QR code to
vote or go to

https://forms.office.co
m/r/Wqgmr2XNP1

17

Algorithm Analysis: Poll 1

Only pecple in my crganization can respond, Record name

1. Suppose you have algorithms with the running
time of n” and you have a computer that can..

46%
l6 x 10710 2%
| 100 x 10710 1%
96 responses 111

Scan the QR code to
vote or go to
https://forms.office.co
m/r/Wqgmr2XNP1

@ Asymptotic Order of Growth : Live Poll 1

First, let's find out the total number of operations the computer can
perform in an hour:

1 hour = 60 minutes = 3600 seconds

Operations per second= 1010

Total operations in an hour = 3600 x 101°

We need n? < 3600 x 1010

Scan the QR code to

Taking the square root of both sides,
vote or go to

n <60x10° https://forms.office.co
m/r/Wqgmr2XNP1

19

0,Q, and ®

@ Asymptotic Order of Growth — Big O notation

* Upper bounds: f(n) is O(g(n)) if there exist constants c>0and n, =0
such that for all n > n, we have f(n) <c - g(n).

A

c-gn)

f(n)

*Ex: fln)=32n?+17n+1 o n
* f(n)is O(n?)
« Canwe say f(n)isO(n3)?

21

@ Asymptotic Order of Growth : Live Poll 1

We know f(n) = 32n? + 17n + 1 is O(n?). What is
the value of C and n0?

C=1and n0=1

C=32 and n0=0
C=32 and n0=1
. C=50and n0="1

m O O W >

None of above

Scan the QR code to
vote or go to

https://forms.office.co
m/r/zXC1Xdks1d

22

Asymptotic Order of Growth : Live Poll 1

Only pecple in my crganization can respond, Record name

1. We know f(n) = 32n? + 17n + 1is O(n?). What is
the value of C and n0?

>

IC=1 and n0=1 2%

l e 29

Csomaror Scan the QR code to

.one of above 5% vote or go to
https://forms.office.co
59 responses 111 I’T‘Ifl'fZ}(C1 }(d kS-] d

4

@ Asymptotic Order of Growth — Big Omega notation

* Lower bounds. f(n) is €2(g(n)) if there exist constants c>0and n,; >0
such that for all n = n, we have f(n) = c - g(n).

A

f(n)

¢+ g(n)

Ho n

* Ex: f(n)=32n’2+17n+1
* fln)is (n?), Q(n)

24

Asymptotic Order of Growth : Live Poll 2

Only pecple in my crganization can respond, Record name

1. Which is an equivalent definition of big Omega
notation?

B L9 if g(n) is Of(n) 14%

e exist constants ¢ > 0 such that f(n) =
34%
tely many n

l MNeither A nor B. 204

56 responses 111

Scan the QR code to
vote or go to

https://forms.office.co
m/r/pE4FW4cCWi

@ Asymptotic Order of Growth — Big Theta notation

* Tight bound. f(n) is ®(g(n)) if there exist constants c, >0, ¢, >0 and
ny = 0 such that for all n > ny we have ¢, - g(n) £ f(n) <c, - g(n).

2+ g(n)
f(n)

1~ g(n)

HQ n

* Ex: f(n)=32n’2+17n+1
* f(n) is ©(n?)

26

@ Asymptotic Order of Growth

O

f(n)

4

1o n

c-gn) 1

@)

J(n)

c- g(n)

Ho

L 4

c2+ g(n)
f(n)

c1 - g(n)

Ho

27

@ Notation

* Slight abuse of notation. T(n) = O(f(n)).
* Asymmetric:
e f(n) =5n3; g(n) =3n?
* f(n) = O(n°) = g(n)
* but f(n) = g(n).
e Better notation: T(n) € O(f(n)).

* Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.
» Statement doesn't "type-check."
* Use Q) for lower bounds.

28

@ Properties

* Transitivity.
e If f=0(g) and g = O(h) then f = O(h).
e If f =Q)g) and g = Q3(h) then f = Q(h).
* If f =0(g) and g = ®(h) then f = ®(h).

e Additivity.
e If f=0(h) and g = O(h) then f + g = O(h).

e If f=Q(h)and g = QQ(h) then f + g = Q3(h).
e If f=0(h)and g =®(h) then f + g = ®(h).

29

@ Asymptotic Bounds for Some Common Functions

* Polynomials. aj+a;n +... + a;n? is O(nd) if a, > 0.

* Polynomial time. Running time is O(nY) for some constant d independent of the input size n.

* Logarithms. O(log_n) = O(log, n) for any constants a, b > 0.
!

can avoid specifying the base

e Logarithms. For every x >0, log n = O(n¥).
!

log grows slower than every polynomial

* Exponentials. For everyr>1andeveryd >0, nd=0(r").

!

every exponential grows faster than every polynomial

30

Thanks a lot

Lecture Over

	Slide 1: CS 310: Algorithms
	Slide 2: Chapter 2: Basics of Algorithm Analysis
	Slide 3: Reasons to analyze algorithms
	Slide 4: A strikingly modern thought
	Slide 5: How can we define efficiency?
	Slide 6: How can we measure efficiency? (Running Time)
	Slide 7: Empirical Analysis
	Slide 8: Empirical Analysis
	Slide 10: Mathematical Model: Examples
	Slide 11: Mathematical Model: We need Simplification
	Slide 12: Section 2.2: Asymptotic Order of Growth
	Slide 13: Asymptotic Model:
	Slide 14: Asymptotic Model: Examples
	Slide 15: Common Asymptotic order-of-growth classifications
	Slide 16: Common Asymptotic order-of-growth classifications
	Slide 17: Algorithm Analysis: Live Poll 1
	Slide 18
	Slide 19: Asymptotic Order of Growth : Live Poll 1
	Slide 20: O, , and 
	Slide 21: Asymptotic Order of Growth – Big O notation
	Slide 22: Asymptotic Order of Growth : Live Poll 1
	Slide 23: Asymptotic Order of Growth : Live Poll 1
	Slide 24: Asymptotic Order of Growth – Big Omega notation
	Slide 25
	Slide 26: Asymptotic Order of Growth – Big Theta notation
	Slide 27: Asymptotic Order of Growth
	Slide 28: Notation
	Slide 29: Properties
	Slide 30: Asymptotic Bounds for Some Common Functions
	Slide 31: Thanks a lot

