
Journal of Systems Architecture 115 (2021) 102013

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A survey on program-state retention for transiently-powered systems
Saad Ahmed a,∗, Naveed Anwar Bhatti c, Martina Brachmann b, Muhammad Hamad Alizai a

a LUMS, Pakistan
b RISE Research Institutes of Sweden, Sweden
c Air University, Pakistan

A R T I C L E I N F O

Keywords:
Transiently-powered computers
Intermittent computing
Checkpointing
Program-state retention

A B S T R A C T

Low-power small-scale embedded sensing systems employing batteries generally impose high maintenance
costs. To enable maintenance-free operation, they are powered from energy harvested from the environment
thus making them batteryless. However, due to high variance of ambient energy, these batteryless embedded
devices are unable to harvest enough energy from the environment required for continuous device operation
thus hampering application progress and causing frequent loss of volatile program-state. Therefore, these
batteryless devices have to employ state retention mechanisms to save the volatile program-state to non-volatile
storage before interruption. These batteryless embedded sensing devices are known as transiently-powered
systems (TPS). In this article, we survey existing literature to identify strategies and techniques used by each
existing literature to decide what amount of volatile program-state needs to be saved and when to save it.
We list the challenges in retaining program-state across periods of energy unavailability and how existing
state-of-the-art solutions tackle them. We also describe different memory models and discuss factors governing
the choice of each model for TPS deployment.
1. Introduction

In recent years, the vision of ‘‘smart dust’’ [1] has driven the devel-
opment of tiny, embedded sensing devices that run autonomously for
decades. Equipped with programmable microcontroller units (MCUs),
these sensing devices are envisioned to be used in large-scale appli-
cations such as wearables [2], implants [2], small satellites [3], and
wireless robotic materials [4,5]. The monitoring of existing infrastruc-
ture [6] and the environment using insects carrying the tiny devices
has also been recently proposed [7,8].

To enable these applications, the tiny sensing devices require a
continuous and perpetual energy source. Batteries are commonly used
to power such embedded devices [9,10]. However, recent advances in
nanotechnology and microelectronics have made it possible for these
devices to shrink in size [11]; small enough to fit on the head of a honey
bee [12]. Battery designs have not scaled in the same way, thus making
it hard for them to fit in such devices despite recent developments [13].

Furthermore, the use of batteries nullifies the initial vision of ‘‘smart
dust’’ of being invisible and maintenance-free. Modern-day batteries
have only limited number of power cycles, i.e., batteries have one
power cycle and rechargeable batteries have a few thousand. As a
result, batteries from a high number of devices have to be frequently

∗ Corresponding author.
E-mail addresses: saad.ahmed@lums.edu.pk (S. Ahmed), naveed.bhatti@mail.au.edu.pk (N.A. Bhatti), martina.brachmann@ri.se (M. Brachmann),

replaced, preventing a perpetual operation of the devices and resulting
in high maintenance costs.

One solution to enable the maintenance-free operation of these
devices is to liberate them from batteries by powering them from
harvested energy [14–17], e.g., from light, vibrations, and thermal
sources. Miniaturized mechanical systems have enabled the design of
tiny energy harvesters at the scale of nanometers that fit into the form
factor of these tiny, embedded sensing devices [17], thus making them
batteryless. However, the smaller an energy harvesting unit is, the
smaller is the harvested energy. Furthermore, the energy that can be
harvested from the environment is generally erratic and exhibits high
spatial and temporal variations [17].

To cope with the small amounts of harvested energy and to smooth
the fluctuations of the feeble incoming energy, devices powered by
harvested energy employ an energy buffer. This is typically a capacitor
offering unlimited power cycles as opposed to batteries. The form
factor of this buffer must be small enough to not only fit in the
device footprint but to also allow fast recharge, thus limiting its storage
capacity (typically <100𝜇F). As a result, one power cycle of this buffer
cannot supply enough energy needed to complete most of the programs
running on MCU.
vailable online 11 January 2021
383-7621/© 2021 Elsevier B.V. All rights reserved.

hamad.alizai@lums.edu.pk (M.H. Alizai).

https://doi.org/10.1016/j.sysarc.2021.102013
Received 20 January 2020; Received in revised form 30 November 2020; Accepted
 6 January 2021

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:saad.ahmed@lums.edu.pk
mailto:naveed.bhatti@mail.au.edu.pk
mailto:martina.brachmann@ri.se
mailto:hamad.alizai@lums.edu.pk
https://doi.org/10.1016/j.sysarc.2021.102013
https://doi.org/10.1016/j.sysarc.2021.102013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102013&domain=pdf


Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.

r

l
d
c

o
i
c

f
s
S

o
c
i
s
l
r
c
c
a

i
i
v
d
s

Intermittent Program Execution. Intuitively, the notion of energy
is transformed from ‘‘limited but continuous’’ in traditional battery-
powered devices to ‘‘unrestricted but intermittent’’ in these
maintenance-free devices. We call these tiny, energy harvesting-based,
batteryless, embedded devices transiently powered systems (TPSs) and
efer to the computing paradigm as intermittent computing A TPS is

active when the energy buffer is full and it is inactive, i.e., it turns off,
when the energy buffer is empty and is recharging. Program execution
can only occur during active periods and the device loses its volatile
state when the energy falls below the minimum energy that is required
by the TPS to operate.

The TPS state comprises three sub-states, i.e., program-, peripheral-
and timer-state, which have to be saved onto non-volatile memory
(NVM) shortly before the device becomes inactive. Forward progress
of the application running on the TPS can only be ensured by retaining
all three sub-states at the same time. When the TPS switches back
to an active period, it restores the saved system state and continues
execution. However, retaining each sub-state has its challenges that are
orthogonal to each other.

• The program execution can be interrupted at any time during the
operation of a TPS. At the time of interruption, size of volatile
program-state is different for different applications and depends
on the program-point at which energy failure occurs. There-
fore, it requires sophisticated techniques to determine volatile
program-state that needs to be retained across periods of energy
unavailability.

• Peripheral devices require reconfiguration after each reboot. Sim-
ply capturing the current state of these peripheral devices can
result in incorrect program execution, thus giving rise to new
challenges.

• TPSs collect time-sensitive data and require time stamping of
the collected data. However, transient energy supply can cause
stale values to be processed by the application, thus producing
incorrect results.

We discuss these challenges in detail in Section 2.1. Due to their
unique set of requirements, existing literature devise different strategies
to address each of the above-mentioned challenges [18–26].
Scope of the Survey. To keep the discussion focused, we survey exist-
ing literature to find solutions that address challenges associated with
program-state retention, thus enabling energy-efficient TPS operations.
This research space has seen rapid and significant progress over the
past few years [18–22,27,28,28–37]. However, a classification and a
common taxonomy in the realm of program-state retention solutions is
still missing.

To this end, this paper encapsulates existing state-of-the-art solu-
tions that answer the following research question: How to ensure the
successful execution of a program on a TPS under intermittent energy sup-
ply?We build a taxonomy of solutions for program-state retention based
on how they ensure forward progress of the programs running on TPSs.
More precisely, this paper distinguishes between two key aspects of
program-state retention. First, we discuss literature proposing strategies
for reducing the energy required to retain the program-state before the
TPS switches to an inactive period. Second, we focus on techniques
that, based on compile-time analysis, identify program points where
saving the program-state would require minimal energy.
Our Contribution. There exist well-organized surveys on energy har-
vesting and wireless energy transfer techniques within the sensor net-
work domain [17,38,39]. There are also detailed surveys available for
large-scale distributed systems regarding various checkpointing tech-
niques [40,41]. In contrast, we present a survey on TPSs, highlighting
different checkpointing techniques and the underlying memory tech-
nologies employed by these tiny, batteryless, embedded sensing devices
that have entirely different constraints than the devices used in the
distributed and parallel computing domain.
2

A recent article surveyed several intermittent computing approaches
[42] to briefly define challenges and future research directions in the
TPS domain. In contrast, this paper gives a detailed survey of all
existing state-of-the-art intermittent computing approaches and draws
on an up-to-date taxonomy of program-state retention for TPSs. This pa-
per covers all existing techniques, which answer the above-mentioned
research question while discussing the trade-offs of different memory
models on efficient program-state retention.
Organization. The rest of the paper is structured as follows. Section 2
gives the bigger picture of TPS operation while defining basic termi-
nology and challenges faced by TPSs in retaining overall system state.
Section 3 explains the criteria of classification for existing solutions
for retaining program-state for TPSs. Sections 5 and 6 classify the
strategies employed by different intermittent computing solutions to
ensure energy efficiency while performing program-state retention.
Section 4 discusses different memory models and their trade-offs before
we conclude the paper in Section 7.

2. TPS dynamics: A bigger picture

To understand the fundamental TPS operation, we consider a simple
sense-compute-send application widely used in these maintenance-free
devices e.g., fitness trackers [43]. The device senses value from the
sensor (peripheral device) and perform computations on it (MCU)
before sending the processed values to the user.

2.1. TPS fundamentals

Due to variable energy supply, TPSs switch between active and
inactive periods many times during their entire life. Each inactive
period is followed by an active period forming an energy cycle of these
TPSs.
TPS Energy Cycle. Fig. 1 shows a typical energy cycle of these TPSs.
The energy cycle starts when a TPS is switched off and is harvesting
energy from the environment to charge its buffer. As the capacitor gets
fully charged, the voltage level for the capacitor reaches 𝑉𝑜𝑛– voltage
at which the MCU can start executing program instructions– and the
TPS is turned on indicating the start of an active period.

Sense: As application execution starts, it accesses a sensor to col-
ect environmental information. After reading the sensor value, the
ata is usually time-stamped to ensure its freshness and accuracy of
omputations performed in the later stages.
Compute: Since sending raw data over the radio consumes a lot

f energy, learning algorithms are deployed to extract meaningful
nformation. This involves performing complex computations which
onsume both time and energy.
Send: After performing application-specific analytics, TPS sends the

inal result over the network to either the base station or the cloud
erver using anyone of the heterogeneous network protocols available.
uccessful data delivery marks completion of one application iteration.

These operations must be performed in a continuous manner in
rder to give correct results. However, with stringent computational
apability and increasing complexity of applications, the energy buffer
s exhausted faster than it could be replenished [44,45]. As a result,
ense-compute-send operation suffer frequent interruptions which causes
oss of volatile data while wasting precious energy spent on performing
epeated computations. As a result, a single iteration of the application
an take from few hundreds to tens of thousands of energy cycles to
omplete one application iteration depending upon the complexity of
pplication, choice of algorithm, and size of the energy buffer.

To ensure forward progress of the application, TPS needs to save
ts volatile data onto NVM before energy buffer depletion. Therefore,
t has to stop performing computations before it reaches a threshold
oltage 𝑉𝑡ℎ where the energy left in the buffer is only sufficient for the
evice to successfully save the state onto NVM. As the volatile state is
aved, the capacitor voltage reaches 𝑉 and the device is turned off
𝑜𝑓𝑓



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
Fig. 1. Intermittent execution. An intermittently-powered device executes its program in bursts as energy is available. The slope of the energy level follow standard capacitor charge/discharge
pattern, however, when the system is saving the state its slope gets slightly steeper compared to running the application, as writing to the NVM is generally the most energy expensive operation.
marking the end of active period (start of inactive period). While the
device is turned off, it harvests energy from the environment to charge
its energy buffer and it is turned on whenever the energy buffer gets
fully charged.
Challenges. Various techniques have been proposed in main-stream
computing to efficiently retain system state across failures [46,47].
However, these techniques assume continuous energy supply which
makes them inapplicable in intermittent computing domain. Frequent
power interruptions during the sense-compute-send operation give rise
to a unique set of challenges required to be addressed for successful
state retention of a TPS.

• Peripheral state retention: TPSs can lose power in the middle of
a sensing operation e.g., during data acquisition from sensors
or data transmission. Peripheral devices require reconfiguration
after each power failure and a simple snapshot of peripheral
state can result in either program liveness or safety issue [25].
MCUs either need to maintain an operational log [48] or re-
quire a device context to be saved in NVM to ensure peripheral
state retention [49]. However, this still does not guarantee cor-
rect program execution as peripheral devices can also operate
asynchronously [48,49].

• Program State Retention: While performing computations, TPSs re-
quire integrated system support to retain the state of the program
running on the MCU. This system support helps these TPSs decide,
when and what amount of program-state is required to be saved
for successful program-state retention. However, deciding when and
what portion of program state to be saved is an ongoing re-
search problem [19–21,29] involving either modified compilation
techniques or requiring programmer’s effort.

• Persistent Time Keeping: In order to send timestamped data, keep-
ing the persistent notion of time on these TPSs is a challeng-
ing task as the traditional timekeeping options, i.e., real-time
clocks (RTCs), stop working at each power blackout. The time
interval between two sensed values can be of seconds, minutes or
even hours, if an energy interruption occurs between them [50].
This can render a sensed value stale and their is no way to know
the freshness of the sensor reading. This makes applications re-
quiring real-time or monotonic-time stamps impossible to operate
on TPS.
TPSs usually perform tasks in a synchronized manner in the
network. With incorrect timing information, these devices can
get unsynchronized with other devices after each inactive period.
Thus, data transmission and reception in an unsynchronized,
duty-cycled network becomes challenging as both senders and re-
ceivers spend much of their time synchronizing themselves. There
are solutions proposing languages and runtime to ensure persis-
tent time across reboots, however, it is still an active research
area [34,51].

Fig. 2 categorizes the challenges in retaining the TPS’s state. Catering
all these challenges ensure correct execution of programs on TPS.
However, to facilitate a detailed discussion, this paper focuses only on
classifying different software-based strategies for program-state reten-
tion.
3

2.2. Program-state retention

The program-state in TPS comprise all global variables, system
stack, dynamic data structures, general- and special-purpose registers
(GPRs and SPRs). Global variables are placed in .data, .bss seg-
ments of the main memory whereas all dynamic data structures are
placed on the heap segment. All function call frames are pushed to
the stack memory segment. Since the main memory is volatile, MCU
has to save its current program-state onto NVM just before switching to
the inactive period so that it can be revived at the next active period.
Checkpoint of a TPS comprise of program-state residing in volatile
memory which can vary depending on the underlying memory model.
In case of volatile systems, for example, MCU registers, .data, .bss,
stack and heap memory segments reside in the volatile memory. A
checkpoint represents the program-state running on TPSs at any point
in time and we call, the process of saving the current program-state
onto NVM (the checkpoint), as Checkpointing. All memory segments
contain different parts of the program-state and missing anyone will
result in a faulty checkpoint. This checkpointed state is restored at the
start of the next active period and requires a significant amount of
energy due to expensive NVM write operations as shown in Fig. 1.

Checkpointing must be performed during the active period to ensure
its correctness. Therefore, it must be triggered at a particular voltage
𝑉𝑡ℎ–the threshold voltage indicating energy that is only sufficient for
the checkpointing process — and no further program execution can be
done afterwards. Any execution of a program beyond this voltage level
will result in an inconsistent and faulty checkpointed program-state.

The value of 𝑉𝑡ℎ is directly proportional to the capacitance of the
capacitor, the size of the checkpoint, as well as the memory technology
used for NVM. Smaller capacitor have to set a higher 𝑉𝑡ℎ while larger
capacitor can set 𝑉𝑡ℎ close to 𝑉𝑜𝑓𝑓 , as shown in 3. Similarly, larger the
program-state, more will be the energy that is required to finish check-
pointing before 𝑉𝑜𝑓𝑓 . Flash/EEPROM is the typical NVM employed by
these TPSs because of their fast read operations, while write operations
are computationally expensive and energy hungry as they have to erase
the content of EEPROM before writing new data [52].

Recently, FRAM is also being employed as main memory [35] as
well as a secondary memory in these TPSs [19,20]. However, employ-
ing FRAM as main/secondary memory increases the overall energy
consumption of the system [53]. We discuss the future of FRAM as main
or secondary memory in detail in Section 4.

With promising application scenarios of these embedded sensing
devices, there is an extensive amount of existing literature proposing
various solutions to address the challenges faced by TPSs in retain-
ing program-state. In the next section, we define the rationale for
classifying each solution in the domain of intermittent computing.

3. Intermittent program’s state retention: Taxonomy of solutions

In order to retain program-state across reboots, TPSs have to spend
a major chunk of the energy buffer on saving the state onto NVM and
reviving it; leaving a very small amount for program execution. There-

fore, TPSs aim to maximize the energy spent on program execution



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
Fig. 2. System State Challenges for TPS.
Fig. 3. Capacitance vs. Voltage Threshold (𝑉𝑡ℎ). Assuming checkpointing process consumes 𝑋 joules of energy then smaller capacitor will need to set higher 𝑉𝑡ℎ as compared to larger
capacitor to supply required amount of energy.
while ensuring forward progress of the application. However, these two
goals are in tension with each other.

Energy needed to perform checkpointing depends on the underlying
memory model of TPS. There are three prevalent memory models
in TPSs; volatile, non-volatile, and mixed volatility systems. On one
hand, executing program using a volatile main memory allows faster
access to the memory and consumes lesser energy. On the other hand,
it requires program-state to be checkpointed onto NVM which is an
energy hungry operation thus demanding an energy efficient mapping
of program-state in order to achieve the optimal energy consumption.

Larger the amount of energy reserved, lesser is the energy available
for the device to run program. A naive way of checkpointing program-
state is to save the entire main-memory onto NVM. The problem is that
the threshold voltage would have to be set quite high and the frequency
of interruptions will, in turn, be increased. With the increasing size of
volatile memory in TPS [53], this approach is only going to increase
the checkpointing cost. Therefore, a naive solution is neither energy-
efficient nor scalable considering the tight energy budget of TPSs. This
demands smart strategies to maximize the energy available for program
execution by reducing the energy spent on checkpointing.

To trigger checkpointing, TPSs need to constantly poll the energy
buffer to detect 𝑉𝑡ℎ thus consuming additional energy. One can easily
set a pessimistic value of 𝑉𝑡ℎ to avoid polling. However, this only
wastes the available energy that could have been used to make progress
over program execution. Thus, these devices have to strike a trade-off
between high value of 𝑉𝑡ℎ versus frequent probing of energy buffer in
order to conserve energy.

Based on these challenges, existing state-of-the-art solutions can be
classified into three-layer topology each with its own taxonomy, as
shown in Fig. 4. First layer discusses pros and cons of different memory
models which can be used with TPS. Second layer deals with strategies
proposed for balancing the trade-off between high energy buffer prob-
ing rate versus high value of 𝑉𝑡ℎ. Third discusses the strategies proposed
by existing literature to reduce the checkpoint size for these devices and
then classifies them.
4

Memory Model. Traditional memory models use volatile main memory
(RAM) that enables energy-efficient access and retrieval of data. How-
ever, it increases the volatile state of the program thus increasing the
energy required for checkpointing; demanding an efficient mechanism
to avoid overshadowing of the energy savings during program execu-
tion. Recently, a new idea is emerging which employs non-volatile main
memories (NVRAM) to gain persistence in case of power failures. This
approach significantly reduces the checkpoint size as the device only
needs to save its internal registers. However, the energy consumption
of these NVRAMs is around 10x higher than the RAM and much of
the energy which is saved by reducing checkpoint size is now spent
on additional NVM energy consumption [53]. Researchers have also
proposed a middle ground by employing mixed-volatile main-memory,
where the frequently accessed data is stored in volatile RAM while the
rest is placed in NVRAM. This bring frequent accesses at a cheaper cost,
however, NVRAM have to suffer from idempotence violations which
can occur due to frequent interruptions [24]. We discuss this in detail
in Section 5.
Triggering Strategy. While it is essential to keep the checkpoint size
small, it is equally important to trigger the checkpointing process at
the right time in order to successfully complete the process. Ideally,
it should be triggered at the very last moment when energy in the
buffer is just enough to perform a successful checkpoint. This will
result in the most efficient utilization of energy buffer by TPSs. How-
ever, following are the challenges faced by these systems in achieving
energy-efficiency.

• Checkpoint size changes because of updates in the global vari-
able segment and variation in stack size during code execution.
Therefore, the energy required to successfully complete the check-
pointing procedure also changes. This changes the code point at
which triggering a checkpoint would result in minimum energy
consumption.

• Energy availability in the environment is unknown in the program
at the time of triggering decision. Therefore, the system can end



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
Fig. 4. Three-layered topological taxonomy of program-state retention solutions for TPS.
up performing unnecessary checkpoints, even in a case when the
energy available in the environment was sufficient to complete
the execution of a program.

Checkpointing Strategy. A naive way of checkpointing is not energy-
efficient because of following reasons:

• A major portion of RAM contains non-valid/un-used memory
locations. Therefore, saving the entire RAM as part of checkpoint
wastes energy by copying the unused memory location onto NVM.

• Saving the entire main-memory is not always required. Comput-
ing what has changed from the previous checkpoint can create
an up-to-date checkpoint without copying unmodified memory
locations thus saving energy.

Therefore, TPSs require specialized methods to enable energy con-
servation at the time of checkpointing. It is important here to note
that the focus of this taxonomy are the techniques that enable correct
restoration of program-state across reboots. There are systems which
use task-based semantics thus minimizing the need to perform check-
pointing [22,33,54,55]. We will discuss them in the upcoming sections
but they are not part of this taxonomy.

Based on these challenges, the plethora of solutions proposing tech-
niques to cater the above mentioned challenges for all three layers of
the TPS taxonomy; Memory Models, Triggering Mechanisms and Check-
pointing solutions. Fig. 4 represents our taxonomy for the proposed
solutions in the existing literature.

4. TPS memory models

The transition from battery-powered to batteryless computing has
brought many changes in the design, architecture and memory models
of embedded computers which were previously taken for granted. In
this section, we describe the modifications in memory models and
discuss the trade-offs in employing each one of them.

The choice of TPS architecture to be deployed in any real-world
environment is driven by the type of application and ambient energy
available in the environment. Program execution and checkpointing
are the two main sources of energy consumption during the life-cycle
of each TPS. Therefore, goal of each TPS solution is to minimize the
cost of checkpointing thus maximizing the time the device spends on
program execution. However, these two goals are orthogonal to each
5

other. Balancing these goals not only increases the system’s life but it
also increases throughput of the TPS’s application.

Reduction in execution energy requires TPSs to achieve energy-
efficient execution of program. Traditional memory models use volatile
main memory in these TPSs which allows energy-efficient access and
retrieval of data. However, it increases the volatile state of the program
and the energy saved during program execution is spent at the time of
checkpoint. Therefore, researchers have proposed different hardware
modifications in the traditional memory models for TPSs using both
volatile RAM and NVRAM. We next discuss common memory models
employed in the intermittent computing domain.

4.1. Memory models

There are three main categories of memory models prevalent in
the TPS’s domain, as shown in Fig. 4. In the first category, a TPS is
formed by employing a volatile main memory (RAM) and non-volatile
external storage typically based on widely-used flash technology along
with integrated energy harvesting methodology; thus making a volatile
system. The use of RAM allows these systems to execute program
at higher CPU frequencies [42], while consuming lower energy per
cycle. However, efficient energy consumption comes at the cost of
the increased size of the volatile system state. Such systems need to
save a snapshot of system state onto flash before power blackout;
an expensive operation energy-wise as flash requires large sectors of
data to be erased before writing. In recent years, however, integrated
circuit manufacturers have been considering non-volatile main memory
(NVRAM) as a strong contender for embedded and non-volatile storage,
allowing read/write speed as that of volatile main memory. With this
aim, many memory technologies have been proposed in the literature,
e.g., MRAM [56], PRAM [57], FRAM [58] etc., which allow persistent
program state across reboots. The second category of TPS platforms,
non-volatile systems, leverage persistence of NVRAM and employ it as
main memory thus trading-off higher checkpointing energy and with
increased cost of program execution [32,35]. The final category aims
to combine the best of both worlds [27] by combining volatile and non-
volatile RAM in single chip. This allows a TPS to dynamically configure
itself to the energy-efficient program mapping at run-time. However,
such systems still need to save CPU state and deal with idempotence
violations that may arise by re-execution of code. Following sections
discuss these systems in detail.



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.

o
n
d
s
c
e
r
i
s
w
d
a
a
a
u
a
f
t
s
M
s
c
a
s

o
p
f
e
a
e
a

m

Table 1
Micro-measurements for non-volatile and volatile systems: Here non-volatile system uses an FRAM whereas Volatile Systems
employ SRAM as main memory.

Memory model Frequency (MHz) Access time (μs) Current consumption (mA) Cycle energy (nJ)

Non-volatile system 16 0.125 1.77 0.66
8 0.125 1.12 0.42

Volatile system 16 0.0625 1.5 0.28
8 0.125 0.89 0.33
l
p

5

i
e
c
L
l

l
t
T
n
i
c
o
b
t
l
o
c
S
t
B
a
t
T
c

b
b
t

4.2. Volatile systems

The first architecture of TPS (Fig. 4), consisting of volatile RAM,
is the main choice for each application designer when it comes to
reducing the execution energy. It has 2x lesser energy consumption
and can work on higher MCU frequency values than non-volatile main
memories [42]. This allows the programmer to execute the program
at much higher MCU frequencies and with low current consumption
compared to NVRAM. However, RAM is volatile in nature and loses Its
content at the time of power loss. As a result, these systems have to
take frequent checkpoints (RAM state + CPU registers) to keep making
progress on the task. Larger the size of a checkpoint, higher is the
energy required to save it on the NVM.

Flash is the most commonly used NVM used by the system deploying
volatile RAM as the main memory. Its memory is divided into sectors
which are further divided into pages. Each write operation requires the
memory sector to be erased before writing, which further increases
the energy cost of a checkpoint. Therefore, checkpointing makes a
significant part of the energy consumed by the device.

4.3. Non-volatile systems

Fully non-volatile Systems. Recent research efforts propose the use
f NVRAM; the third category of TPC architecture. It eradicates the
eed to save program-state residing in main memory allowing the
evice to spend entire energy on program execution and saving CPU
tate, i.e., internal registers . However, access latency and current
onsumption for NVRAM are still higher when compared with RAM
.g., for FRAM used in MSP430FR5969, access latency is 3x and cur-
ent consumption is almost 2x [53] more than that for SRAM. This
mplies a higher per-cycle energy consumption for the non-volatile
ystem making them energy-inefficient(see Table 1). Not only that,
ith persistent main memory, re-execution of the same code can cause
ata inconsistency issues that are absent in continuous execution. As
result, such systems require special system and language support to

void inconsistency [22,33,54]. However, catering such scenarios adds
n additional energy overhead on the energy buffer. Therefore, systems
sing NVRAM have to adopt solutions that require lesser energy to
void data inconsistency issues than what RAM based systems require
or checkpointing, to be feasible for deployment. Otherwise, it is better
o use volatile RAM due to its energy-efficient program execution and
upport for higher MCU frequencies.
ixed-Volatile Systems. To get the best of both worlds, a smart

olution is to employ both these memories i.e., unified main memory
ontaining both NVRAM and volatile RAM; the third category of TPS
rchitecture. With important data residing in NVRAM, mixed-volatility
ystems significantly reduce the checkpoint size.

Jayakumar et al. [27] proposes a hybrid approach to find the
ptimal mapping of code section in either NVRAM or volatile RAM. The
roposed approach works at the granularity of function and maps each
unction to either on of the memory and, based on where the optimal
nergy consumption would be achieved. This allows the proposed
pproach to get benefited from NVRAM’s reliability as well as RAM’s
nergy efficiency during code execution. The approach, however, has
trade-off between data transfer cost and execution cost of code.

Each code section has to be transferred to the memory region it is
6

apped. Larger the code section to be transferred, higher is the energy p
cost of migration. Furthermore, frequently accessed data that is placed
on volatile RAM for fast retrieval has to be checkpointed at the time of
energy failure or otherwise it has to be placed in NVRAM thus bearing
a high energy cost. Therefore, solutions employing mixed-volatility
systems have to make an informed decision about data placement to
make efficient utilization of the energy budget.

5. Trigger mechanism

In the TPSs’ domain, there are two ways of deciding whether to
trigger checkpointing or not, as shown in Fig. 4. We call these triggering
mechanisms as Proactive and Reactive checkpointing.
Proactive. TPS inserts special function calls in the program which
probes the energy buffer to decide whether it is the right time to
checkpoint or not; We call these function calls as trigger calls. Note
that energy failure can occur before or after these trigger calls thereby
wasting the computations performed from the last checkpoint.
Reactive. To overcome wasted computations/energy in proactive ap-
proach, reactive mechanisms employ strategies to trigger checkpointing
only when the voltage reaches 𝑉𝑡ℎ. They either employ hardware or
software-based techniques to trigger checkpointing at 𝑉𝑡ℎ. This al-
ows these strategies to overcome wasted computations/energy of a
roactive approach.

.1. Proactive

Different solutions propose different candidate code points for plac-
ng these trigger calls in the TPS’s program. We can, therefore, cat-
gorize proactive triggering mechanism in the following three sub-
ategories based on the choice of the code point, as shown in Fig. 4.
oops. A major chunk of computation in any program is performed in
oops. Therefore, loops are an important place to insert trigger calls.

Ransford et al. [18] statically place trigger calls at the end of
oop iterations. This is a location where a program can checkpoint
he computations performed in a single iteration of loop execution.
his can save a TPS from re-executing the same iteration again in the
ext active period. However, the computation performed in the last
teration is always lost. Furthermore, this approach does not ensure
orrect execution when the code is unable to reach the first trigger call
n the given energy budget. This issue was addressed by HarvOS [21]
y placing two trigger calls; one inside the loop to decide if energy
o execute next iteration is available or not; second at the end of the
oop to check if there is sufficient energy to go to the next trigger call
r not. HarvOS needs to check the energy buffer at the second trigger
all as the decision to reach this trigger call was done inside the loop.
ince the loop exited, more energy would have been spent than the last
rigger call expected to make it necessary to read the energy buffer.
ranch. Since TPS’s MCU is unable to speculate the next instruction
fter branch, it cannot give surety whether it would successfully reach
he trigger call placed at some other code point in the program.
herefore, branch instructions are an important code point to make
heckpoint triggering decision.

Bhatti et al. [21] tackle this issue by placing trigger calls after each
ranching construct. If there exists a point inside the scope of the
ranching construct where the stack size is minimum, an additional
rigger call is placed at that point. This rule forces the solution to

robe energy buffer to find an exact value of remaining energy as it



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
is unaware of the energy cost of the basic block(s) executed in that
construct. Function-return statements are special branch instructions
where one may expect the stack to store less data, which would
then reduce the size and energy cost of saving system state to NVM.
Therefore, it is also a favorable option to place a trigger call.

Based on this motivation, Ransford et al. [18] place trigger calls
after each function return. However, as discussed earlier, this approach
does not ensure correct execution when the code is unable to reach the
first trigger call on the given energy budget.

To ensure correctness, Bhatti et al. [21] assume every function as an
in-line function. The authors estimate the maximum number of cycles
(𝐶𝑢𝑠𝑒), that are available for performing computations, by analyzing the
memory allocation pattern of the program to find maximum checkpoint
size (worst case memory allocation). It, then, places two trigger calls in
the code; the first trigger call is inserted at the point which is at most
𝐶𝑢𝑠𝑒
2 cycles away from the previous trigger call; second trigger call is

placed after each function return. Hardware and software interrupt is
another way of branching and adds another dimension in challenges
as they can come anytime (non-deterministic interrupts) and their
execution length is unknown.

To handle interrupts, Bhatti et al. [21] treat them in the same way as
function calls and additionally place two trigger calls. The first trigger
call is placed right at the very first and the secondone is placed at
the very last instruction. This is required as ISR has no information
on where the execution code was interrupted so it has to read the
energy buffer to check the remaining energy. The second trigger is
placed in the caller’s code and helps deal with the corner case where
the remaining energy was exactly equal to the next trigger call (in the
callee’s code).

There are solutions [22,33,54] which provide APIs to the program-
mer to write the program as a set of atomic tasks. Each task can
be considered as a function definition. As code execution crosses the
function boundary, triggering decision is made. In this way, triggering
mechanism is integrated with language semantic thus allowing the
programmer to know the location of checkpoint in program execution.
Ideally, the distance between two trigger calls must be strictly less than
the energy budget of the device. This can only be ensured through
accurate analysis of the application code which demands accurate
modeling of the TPS energy consumption [30,36]. This is an open
research area and discussing such solutions and strategies is out of the
scope of this survey.
Idempotence Violation. Each write-after-read (WAR) dependency be-
tween two program instructions causes data inconsistencies with the
modern memory model of TPSs [53]. These instructions must execute
within same energy cycle in order to avoid data corruption. For this
purpose, Mathew Hicks [35] proposes to separate such instructions
with trigger calls. These trigger calls act as checkpoint calls as they
do not poll the energy buffer to perform checkpointing. However,
such an approach can end up placing excessive trigger calls in the
same idempotent code section. As a result, it suffers from wasted
computation as it is unable to know if the execution will reach the next
trigger call or not.

5.1.1. Discussion
As discussed earlier, the proactive checkpointing technique is prone

to energy wastage as computations performed after the last check-
point till energy failure do not become part of any checkpoint. These
computations are performed again in the next active cycles.

One way to address this issue is to increase the number of trigger
calls placed in the program. This will decrease the number of program
instructions between two consecutive trigger calls thereby decreasing
the wasted computations. However, such an approach will not only
increase the program size but it will also increase the runtime overhead.
TPSs have limited memory and energy budget to execute the program.
With such an approach, it will make it more difficult to execute
programs on these resource-constrained devices. This demands each
proactive approach to strike a tradeoff between the runtime overhead
and the wasted computations to ensure efficient utilization of the given
7

energy buffer.
5.2. Reactive

The reactive triggering mechanism can be divided into two subcat-
egories, as shown in Fig. 4. The first category uses additional hardware
to decide whether to make the triggering decision. At the time of
checkpoint, the TPS generates a hardware interrupt to checkpoint sys-
tem state onto NVM. This category of triggering mechanism consumes
additional energy as it employs hardware support. To mitigate this
additional cost, the second category focuses on software timers to
trigger checkpointing.
Interrupts. Hardware interrupts are an easy way to trigger check-
pointing eradicating the need to poll the energy buffer at each trigger
call [19,20,32]. Existing state-of-the-art solutions modify the design
of a TPS to integrate voltage comparators. As soon as the current
goes below the threshold voltage 𝑉𝑡ℎ, an interrupt is generated and
the current device state is checkpoint onto NVM. The value for 𝑉𝑡ℎ
is set at the time of TPS deployment and is estimated by measuring
the energy required to save registers, MCU, and peripheral state. With
NVRAM [32], the threshold voltage does not need to be high, as it
only saves registers, peripheral state, and a checkpoint flag. Contrar-
ily [32], Balsamo et al. [19] employ volatile RAM and save entire
system state (complete RAM along with MCU registers) onto NVM thus
requiring higher 𝑉𝑡ℎ. One main limitation of such an approach is an
off-line characterization of the device to find the threshold voltage
𝑉𝑡ℎ for checkpointing and restoring the system state. They addressed
this limitation by proposing an adaptive approach to self-calibrate the
checkpointing threshold (𝑉𝑡ℎ), depending upon the dynamics of energy
source and power consumption of the system [20]. This calibration
strategy makes the overall system transparent and portable across mul-
tiple systems by adapting the voltage threshold at run-time, considering
system power consumption, decoupling capacitance and energy source
behavior.

Unlike Woude et al. [35], Mathew Hicks [31] does not take check-
point at every idempotency violation. An interrupt is generated to
trigger checkpointing when any one of the three buffers overflow. This
allows the solution to stretch the execution of an idempotent section
past its natural limits and reduces the number of checkpoints taken
by approach [35]. However, there can be a scenario when no single
idempotent section is big enough to make the buffer overflow. If an
energy failure occurs before a buffer overflow, all changes in the state
would be lost and the device would restart program execution. In such
a case, the device can get stuck in a live-lock problem.
Timers. Interrupt based reactive triggering approaches subtract a sig-
nificant amount of energy from the energy buffer and is suitable only
when the checkpoint size of the device is too small.

Ransford et al. [18] propose a timer-based approach to periodically
trigger checkpointing after a fixed interval of time. As soon as the timer
expires, the system saves the checkpoint. The timer is set at the time
of deployment and, ideally, it should be equal to the time of capacitor
discharge. However, the rate at which the energy is consumed for each
program depends on its complexity of computations which is different
for different programs. Therefore, it is difficult for a programmer to set
an accurate value at the time of deployment.

To overcome a live-lock problem, Mathew Hicks [31] also use
watchdog timers to minimize the gap between two checkpoints to avoid
the overhead of re-executing the idempotent section thus requiring
programmer’s effort.

5.2.1. Discussion
It must be noted that an interrupt based TPS solution employs

hardware support to trigger checkpointing either by using an external
comparator or by using hardware buffers. In both cases, additional
energy is consumed which reduces the amount of energy available for
program execution.

Timer-based approach eradicates this additional energy consump-

tion by executing trigger calls after fixed time intervals. However,



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
finding the right time interval for a particular program requires re-
peated execution under energy profiles [18]. Precisely, the timer value
should be set equal to the time it was taken by energy buffer to
reach 𝑉𝑡ℎ. This demands a manual configuration of timer value and
has to be repeated once the TPS program changes. Therefore, reactive
triggering mechanism needs to balance these trade-offs to reach an
energy-efficient solution.

6. Checkpointing strategy

Based on the strategy to determine checkpoint size, existing liter-
ature can be divided into two main categories; namely copy-used and
copy-if-change as shown in Fig. 4.
Copy-used. This category encapsulates all those solutions which ex-
ploit the inherent division of program into different memory regions.
Solutions falling under this category focus on tracking the change in
size of the used memory regions and save only those regions at the
time of checkpoint.
Copy-if-change. This category identifies modified memory locations
in the current program state from the checkpointed state. To identify
changes in the state, each solution performs runtime tracking of writes
to the main-memory. Note that solutions falling under this category
save complete RAM state at the time of first checkpoint. This allows
these solutions to create a one-to-one mapping of current program
state with the checkpointed state thus helping them while updating the
checkpoint.

6.1. Copy-used

An intermittent program can use entire RAM during its execution.
Therefore, some approaches consider entire RAM as part of the check-
point [19,20]. This results in a large checkpoint size thus requiring
high checkpointing energy. Actually, an intermittent program uses pre-
defined memory segments during its execution; leaving a large chunk
of memory unused.

Ransford et al. [18] identify used memory regions by finding ad-
dress ranges occupied by each code segment, i.e., stack and global vari-
ables, at the time of interruption. This allows the system to save only
the occupied memory regions of RAM while checkpointing and not the
entire RAM. The size of memory in-use depends on the program-point
of interruption. Additionally, they do not track heap segment of mem-
ory thus limiting the programmers by not allowing dynamic data struc-
tures. Modern IoT platforms, i.e., ARM-based platforms [59], encourage
developers to use dynamic data structures for higher programming flex-
ibility which enables more complex IoT applications [60]. Therefore,
this approach limits the applicability of the proposed approach to a
wide set of IoT applications by not allowing heap.

Bhatti et al. [29] propose two different flavors of copy-used check-
pointing strategies that cover all memory segments and can be inte-
grated with any TPS; namely, Split and Heap Tracker.

• Split It makes use of existing segregation of RAM in different
segments namely .bss, .data, heap and stack. The .bss,
.data, and heap segments are contiguous in the address space
whereas system stack grows from the last address in RAM. This
approach is, however, unable to identify memory fragmentation
that may exist in heap due to free() function.

• Heap tracker To cater for fragmentation in the heap, this ap-
proach keeps track of the allocation to heap using wrapper func-
tions for malloc() and free(). By dividing the memory into
blocks, HeapTracker increments (decrements) the count of the
block in which the address is allocated (de-allocated) when mal-
loc() (free()) is executed.
8

While deciding the threshold voltage𝑉𝑡ℎ, these approaches take into
account the energy required to erase the NVM before re-programming.
After each successful checkpointing operation, the device is turned off
to gather energy from the environment.

Traditionally, program data reside in the volatile main memory for
fast access [18–20,29]. Recently, new systems [53] have emerged that
are equipped with both volatile and non-volatile main memory thus
allowing persistent program data. Therefore, copying only the volatile
state at each power interruption in such systems can result in an output
which was not possible in a continuous execution. This can cause an
idempotence violation which occurs when global variables are located
in the NVM and instructions accessing such variables are executed
redundantly in the two consecutive active periods.

To solve idempotence violation, a solution exists which provides
special function calls to the programmer thus helping them divide
the code into different re-executable chunks [22]. Checkpointing takes
place at each function call similar to the one used by Ransford et al.
[18] for the volatile state. For non-volatile state, data versioning is
performed and the current version of non-volatile variables are copied
onto stack thus making them a part of the checkpoint. At each restore,
the non-volatile variables are written back again. However, the used
memory region estimated in such an approach becomes very high due
to non-volatile variable versioning. Furthermore, a lot of unnecessary
checkpoints can take place because of poor placement of the function
calls by the programmer.

There are solutions that embed the sense of used memory location in
the way the programmer writes the program [33,54] thereby reducing
the amount of used memory region. These solutions provide language
semantics to allow the programmer to write a program in a set of
modular tasks than can be run independently. The programmer can
share data between two tasks only through specified data channels
created in NVM. It eradicates the need to checkpoint global state as
necessary data already resides in the NVM. Since multiple tasks can
share the same variables, this approach [54] suffers from NVM wastage
as multiple channels between different tasks may contain the same
data.

One way to avoid NVM wastage is to use memory pointer for
locations shared between task pairs but this can, again, give rise to the
idempotence violation problem. Maeng et al. [33] extend the existing
language support [22,54] for intermittent programs by enabling the
programmer to define variables that are shared between tasks and are
named as Task Shared (TS) variables. These variables are declared in
the global scope and reside on NVM while other variables are treated
as local variables. Among all TS variables, the authors find all possible
WAR dependencies that may exist among these variables using the
control flow graph of tasks. For each WAR dependency, it creates a
private copy of the variable in a privatized buffer located in volatile
memory. It, then, redirects every reference to such variables towards
the privatized buffer. In this way, a single copy of each TS variable is
accessed and updated during the entire execution of the program. If an
energy interruption occurs, all changes in the private buffer are lost
thus avoiding idempotence violation. This solution, however, incurs
a significant run-time overhead due to the frequent accesses to the
memory locations and function calls. Therefore, its feasibility on the
cost benefit spectrum needs to be investigated.

Some solutions assume main memory as completely non-volatile
[32,35]. This makes, previously volatile state, non-volatile thus signif-
icantly reducing the checkpoint size as the TPS only needs to save the
MCU registers. However, this gives rise to new set of challenges. On
one hand, executing a program with non-volatile main memory limits
the capability of the device to execute on higher frequencies [42]. On
the other hand, it consumes more power to execute program instruc-
tions thus draining the energy buffer quickly. We discuss the trade-off

between having a volatile and NVM in detail in Section 4.



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
6.1.1. Discussion
Copy-used solutions reduce the size of checkpoint by only saving

used memory regions of the main-memory while bearing minimal
computational overhead. This reduces the amount of energy required
at the time of checkpoint. They perform coarse grained analysis of
the program to estimate checkpoint size. A large chunk of these used
memory regions remain unchanged from one checkpoint to another.
Therefore, copying used regions would result in saving redundant
memory locations to the NVM thus wasting energy.

While language support reduces used memory regions by allow-
ing programmer to make changes only in the predefined memory
regions [22,33,54], employing such support gives rise to new set of
challenges. First, it demands the user to learn new language thus ham-
pering its wide scale adoption. Furthermore, it increases the runtime
overhead which puts a burden on the constrained energy budget. Even
with these challenges resolved, there is still a possibility of having
redundant data in the used memory regions [54].

In a nutshell, copy-used approaches have to strike a trade-off be-
tween computational overhead to compute the checkpoint size and its
reduction.

6.2. Copy-if-change

Checkpointing solutions in the this category remove all unchanged
memory locations from the checkpoint size at the time of saving the
state. These solutions exactly identify changed memory locations at the
time of checkpoint which saves checkpointing energy but at the cost of
performing runtime tracking; which is an overhead.

Aouda et al. [61] proposed a technique which makes incremental
changes to the checkpoint program-state in the NVM. This approach
divides the program-state into the same size blocks and maintains a
hash of each block. As the program state changes, the hash of particular
block changes. This approach compares previously computed hash
value with the new one to identify changes in content. It then copies
this changed block into a newly allocated block and updates the hash
value. Garbage collection is performed frequently to collect free blocks.
Therefore, this approach maintains two checkpoints at a time; active
and scratch the image of the checkpoint. At the time of energy failure,
all changes are made to the scratch image and both images switch their
roles once the checkpoint is successfully updated.

As read operations are cheaper than writes [52], there are ap-
proaches which read the entire RAM state and compare it with the
checkpointed state [29]. In this way, these approaches identify changes
in the RAM state which have to be replicated in the checkpointed state
in order to update it. To make their approach efficient, they divide the
entire RAM into blocks defined by the smallest writable units of NVM.
At each checkpoint call, they only update the corresponding chunk of
memory in the NVM. However, if nothing changes from the previous
checkpoint, this approach still needs to sweep the entire RAM which
wastes energy.

Ahmed et al. [62] observed that there are very few instructions
in code that can modify the program’s state e.g. assignment, incre-
ment, and decrement operations. Therefore, the actual change in the
current program-state from the checkpointed state is very small when
compared to the one estimated by copy-used approaches [18–20,29].

To exactly identify changes, the authors propose a solution that
exposes a function call, record(), and an in-memory data structure,
modification record, required for book-keeping of all the changes made
to the state. It uses a pre-compiler, ANTLR [63], to place record()
calls before any state modifying statement. The record() call takes
the address of the variable and its size as arguments and saves it in
the modification record data structure. At the time of checkpoint, it only
copies the current value of saved addresses onto the checkpointed state
in NVM thus reducing checkpoint size. Unlike Bhatti et al. [29], this
approach does not read checkpointed state in NVM to compute changes
9

in current state.
Variables in a program have different lifespan depending upon their
scope of declaration. Thus the proposed solution has two different
schemes for tracking changes in state.

• Global Context: To track changes in the global context, it places
record() calls before every global variable modification.

• Stack tracking: As local changes are located in system stack, it
introduces an additional pointer to stack namely stack tracker
(ST) to be used in combination with stack pointer (SP) and base
pointer (BP) to track changes in local state. The stack region
between ST and SP is always checkpointed at each checkpoint
call as it contains changes to local variables.

This approach is memory-efficient as it uses a bit array to represent
modifications made in the entire memory. In this way, the amount
of memory consumed by this approach is 1

8 th of the total memory of
the device. The gain in performance stems from its ability to exactly
identify what has changed from the previous checkpoint thus ignoring
empty or unused locations. Furthermore, the authors also propose dif-
ferent optimizations for placement of record calls helping them reduce
their run-time overhead. In case of page programmable memories,
however, such an approach can result in redundant writes to NVM in
an extreme case where only few bytes of a page can cause a full page
write. Sliper et al. [64] and Verykios et al. [65] propose an approach
for handling such extreme cases by introducing light-weight memory
management techniques.

Some systems perform liveness analysis of global variables to es-
timate changes in the program-state [66]. They calculate the span of
code over which a variable may be used without being re-written and
assume a hybrid memory model. If a variable’s live range crosses a
trigger call, they relocate it in the NVM. To keep a track of all writes to
a non-volatile variable, it inserts a function call before every potential
write to a non-volatile variable. It takes the address of the variable as
an argument and logs the value before the write executes. This code
instrumentation helps the system in tracking all changes in the non-
volatile variables. These variable values are later restored after each
power interruption thus avoiding idempotence violation.

Matthew Hicks [31] propose a hardware approach to identify
changes in program state and propose a custom-built TPS which uses
three additional volatile memory buffers to keep track of the memory
addresses accessed: read-first, write-first, and write-back buffers. The
read-first buffer holds read dominated addresses, while the write-first
buffer holds write dominated addresses. During program execution, it
checks if a current instruction is going to ‘‘write’’ at a memory address.
If yes, it signals an idempotence violation if the address is already in the
read-first buffer. It simply adds the violating address and its value in
the write-back buffer to delay the checkpointing. The checkpoint size is
dependent on the size of the write-back buffer. Larger the size, greater
will be the checkpointing and code re-execution cost of the program.
However, it is still much smaller than saving the entire RAM [19]. In
the case of the hybrid memory model, it uses a similar approach used
by Ahmed et al. [62] but with hardware support.

6.2.1. Discussion
Copy-if-change strategies provide the least amount of checkpoint

size to be saved at the time of checkpoint thus requiring lower energy
than the copy-used category. However, runtime tracking performed by
copy-if-change approaches have a non-zero computational overhead. It
is either because of special function calls inserted in the program or due
to specialized hardware employed by the TPS. The additional energy
consumed by the system while tracking changes which is subtracted
from the energy budget available for program execution.

The energy consumed by runtime tracking is directly proportional
to the memory access patterns of the application and the time interval
between two checkpoints. More widespread and frequent accesses of
memory can result in a larger change in program-state thereby re-

quiring more energy than normal to save the checkpoint. This will



Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
also increase the amount of energy spent in tracking those changes.
Therefore, a copy-if-change solution is only feasible if the additional
energy overhead caused by runtime tracking is always greater than the
amount of energy saved due to checkpoint size reduction.

Solution belonging to this category have to answer this key question
in order to ensure energy-efficient checkpointing of program-state.

7. Conclusion

After extensively surveying the existing state-of-art literature, we
present a three-layered topological taxonomy of program-state reten-
tion solutions for TPS. First layer describes how different memory
models effect the decision of what checkpoint size to save and when to
trigger it. We discuss that volatile systems are a viable and an energy-
efficient option for reasonably bigger capacitor size. For extremely
small capacitors size, fully non-volatile system perform better. How-
ever, mixed volatility systems are the solution which can adapt to any
ambient energy conditions to extract maximum performance from the
TPS.

The second and third layer discuss two main challenges in the
transiently-powered domain. First one is to devise an energy-efficient
checkpointing strategy while second is to delay the checkpointing as
much as possible so that the device can avoid excessive checkpointing.
We classify existing state-of-the-art solutions proposing energy-efficient
checkpointing into two categories: First employs a coarse-grained ap-
proach to find the used memory regions of the program while the
second uses a fine-grained approach to exactly the find the changed
memory locations from one checkpoint to another. This helps the de-
vice to reduce the checkpoint size, however, this fine-grained analysis
comes at a cost of computational overhead. The second category covers
triggering mechanisms for the checkpoint which can either be proactive
or reactive in nature. Solving both these challenges allow the device to
spend more time on program execution than checkpointing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] M.D. Scott, B.E. Boser, K.S. Pister, An ultralow-energy ADC for smart dust, IEEE
J. Solid-State Circuits (2003) 1123–1129.

[2] G.M. Calvagna, G. Torrisi, C. Giuffrida, S. Patanè, Pacemaker, implantable
cardioverter defibrillator, CRT, CRT-D, psychological difficulties and quality of
life, Int. J. Cardiol. (2014) 378–380.

[3] International space station, 2018, URL https://www.nasa.gov/mission_pages/
station/research/experiments/2374.html.

[4] N. Correll, P. Dutta, R. Han, K.S.J. Pister, New directions: Wireless robotic
materials, 2017, ArXiv abs/1708.04677.

[5] D. Piumwardane, C. Pérez-Penichet, C. Rohner, T. Voigt, Backscatter commu-
nication for wireless robotic materials, in: Proceedings of the International
Conference on Embedded Wireless Systems and Networks, EWSN, 2019.

[6] J. Shah, B. Mishra, IoT enabled environmental monitoring system for smart cities,
in: Internet of Things and Applications (IOTA), International Conference on, IEEE,
2016, pp. 383–388.

[7] D. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel, J.
Voldman, J.G. Hildebrand, A.P. Chandrakasan, A pulsed UWB receiver SoC for
insect motion control, IEEE J. Solid-State Circuits 45 (1) (2010).

[8] V. Iyer, R. Nandakumar, A. Wang, S.B. Fuller, S. Gollakota, Living IoT: A
flying wireless platform on live insects, in: International Conference on Mobile
Computing and Networking, MobiCom, 2019, pp. 1–15.

[9] D. Rakhmatov, S. Vrudhula, Energy management for battery-powered embedded
systems, ACM Trans. Embedded Comput. Syst. (2003) 277–324.

[10] T. Simunic, L. Benini, G. De Micheli, Energy-efficient design of battery-powered
embedded systems, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2001)
15–28.

[11] Y. Shen, X. Meng, Q. Cheng, S. Rumley, N. Abrams, A. Gazman, E. Manzhosov,
M.S. Glick, K. Bergman, Silicon photonics for extreme scale systems, J. Lightwave
Technol. (2019) 245–259.
10
[12] CSIRO, Global initiative for honey bee health, 2019, URL https://research.csiro.
au/gihh/about/.

[13] D.C. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel, J.
Voldman, J.G. Hildebrand, A.P. Chandrakasan, A pulsed UWB receiver SoC for
insect motion control, IEEE J. Solid-State Circuits (2009) 153–166.

[14] K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan,
M. Srivastava, Heliomote: enabling long-lived sensor networks through solar
energy harvesting, in: Proceedings of the 3rd International ACM Conference on
Embedded Networked Sensor Systems, SenSys, ACM, p. 309.

[15] S. Priya, C.-T. Chen, D. Fye, J. Zahnd, Piezoelectric windmill: a novel solution
to remote sensing, Japan. J. Appl. Phys. (2004) L104.

[16] S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang,
Vibration-to-electric energy conversion, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. (2001) 64–76.

[17] N.A. Bhatti, M.H. Alizai, A.A. Syed, L. Mottola, Energy harvesting and wireless
transfer in sensor network applications: Concepts and experiences, ACM Trans.
Sensor Netw. (2016) 40.

[18] B. Ransford, J. Sorber, K. Fu, Mementos: System support for long-running
computation on RFID-scale devices, in: Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS, 2011, pp. 159–170.

[19] D. Balsamo, A.S. Weddell, G.V. Merrett, B.M. Al-Hashimi, D. Brunelli,
L. Benini, Hibernus: Sustaining computation during intermittent supply for
energy-harvesting systems, IEEE Embedded Syst. Lett. (2014) 15–18.

[20] D. Balsamo, A.S. Weddell, A. Das, A.R. Arreola, D. Brunelli, B.M. Al-Hashimi,
G.V. Merrett, L. Benini, Hibernus++: a self-calibrating and adaptive system for
transiently-powered embedded devices, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. (2016) 1968–1980.

[21] N.A. Bhatti, L. Mottola, Harvos: Efficient code instrumentation for transiently-
powered embedded sensing, in: 2017 16th ACM/IEEE International Conference
on Information Processing in Sensor Networks, IPSN, IEEE, 2017, pp. 209–220.

[22] B. Lucia, B. Ransford, A simpler, safer programming and execution model for
intermittent systems, ACM SIGPLAN Not. (2015) 575–585.

[23] J. Hester, L. Sitanayah, J. Sorber, Tragedy of the Coulombs: Federating energy
storage for tiny, intermittently-powered sensors, in: Proceedings of the 13th
International Conference on Embedded Networked Sensor Systems, SenSys, ACM,
2015, pp. 5–16.

[24] B. Ransford, B. Lucia, Nonvolatile memory is a broken time machine, in:
Proceedings of the Workshop on Memory Systems Performance and Correctness,
ACM, 2014, p. 5.

[25] A. Branco, L. Mottola, M.H. Alizai, J.H. Siddiqui, Intermittent asynchronous
peripheral operations, in: Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, ACM, 2019, pp. 55–67.

[26] S. Ahmed, Q. ul Ain, J.H. Siddiqui, L. Mottola, M.H. Alizai, Intermittent
computing with dynamic voltage and frequency scaling, in: Proceedings of 2020
International Conference on Embedded Wireless Systems and Networks, EWSN,
2020.

[27] H. Jayakumar, A. Raha, J.R. Stevens, V. Raghunathan, Energy-aware memory
mapping for hybrid FRAM-sram MCUs in intermittently-powered IoT devices,
ACM Trans. Embedded Comput. Syst. (2017) 1–23.

[28] S. Ahmed, H. Khan, J.H. Siddiqui, J.Á. Bitsch, M.H. Alizai, Incremental check-
pointing for interruptible computations, in: Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems, SenSys, 2016, pp. 350–351.

[29] N. Bhatti, L. Mottola, Efficient state retention for transiently-powered embedded
sensing, in: Proceedings of the 2016 International Conference on Embedded
Wireless Systems and Networks, EWSN, 2016, pp. 137–148.

[30] A. Colin, B. Lucia, Termination checking and task decomposition for task-based
intermittent programs, in: Proceedings of the 27th International Conference on
Compiler Construction, CC, ACM, 2018, pp. 116–127.

[31] M. Hicks, Clank: Architectural support for intermittent computation, in: Proceed-
ings of the 44th Annual International Symposium on Computer Architecture,
ACM, 2017, pp. 228–240.

[32] H. Jayakumar, A. Raha, V. Raghunathan, QuickRecall: A low overhead HW/SW
approach for enabling computations across power cycles in transiently pow-
ered computers, in: 27th International Conference on VLSI Design and 13th
International Conference on Embedded Systems, IEEE, 2014, pp. 330–335.

[33] K. Maeng, A. Colin, B. Lucia, Alpaca: intermittent execution without checkpoints,
in: Proceedings of the ACM on Programming Languages, OOPSLA, ACM, 2017,
pp. 1–30.

[34] J. Hester, K. Storer, J. Sorber, Timely execution on intermittently powered
batteryless sensors, in: Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems, 2017, pp. 1–13.

[35] J. Van Der Woude, M. Hicks, Intermittent computation without hardware support
or programmer intervention, in: Proceedings of 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI, 2016, p. 17.

[36] S. Ahmed, A. Bakar, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, L. Mottola, The be-
trayal of constant power× time: finding the missing joules of transiently-powered
computers, in: Proceedings of the 20th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES,
ACM, 2019, pp. 97–109.

http://refhub.elsevier.com/S1383-7621(21)00024-2/sb1
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb1
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb1
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb2
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb2
https://www.nasa.gov/mission_pages/station/research/experiments/2374.html
https://www.nasa.gov/mission_pages/station/research/experiments/2374.html
https://www.nasa.gov/mission_pages/station/research/experiments/2374.html
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb4
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb4
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb4
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb6
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb6
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb6
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb6
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb6
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb7
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb7
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb7
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb7
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb7
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb9
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb9
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb9
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb10
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb10
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb10
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb10
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb10
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb11
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb11
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb11
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb11
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb11
https://research.csiro.au/gihh/about/
https://research.csiro.au/gihh/about/
https://research.csiro.au/gihh/about/
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb13
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb13
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb13
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb13
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb13
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb15
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb15
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb15
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb16
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb16
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb16
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb16
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb16
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb17
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb17
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb17
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb17
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb17
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb19
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb20
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb21
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb21
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb21
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb21
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb21
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb22
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb22
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb22
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb23
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb24
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb25
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb25
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb25
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb25
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb25
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb27
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb30
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb30
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb30
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb30
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb30
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb31
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb32
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb33
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb33
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb33
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb33
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb33
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb36


Journal of Systems Architecture 115 (2021) 102013S. Ahmed et al.
[37] S. Ahmed, M.H. Alizai, J.H. Siddiqui, N.A. Bhatti, L. Mottola, Towards smaller
checkpoints for better intermittent computing, in: 17th ACM/IEEE International
Conference on Information Processing in Sensor Networks, IPSN, 2018, pp.
132–133.

[38] W.K. Seah, Z.A. Eu, H.-P. Tan, Wireless sensor networks powered by ambient
energy harvesting (WSN-HEAP)-Survey and challenges, in: 2009 1st International
Conference on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems Technology, Ieee, 2009, pp. 1–5.

[39] F.K. Shaikh, S. Zeadally, Energy harvesting in wireless sensor networks: A
comprehensive review, Renew. Sustain. Energy Rev. 55 (2016) 1041–1054.

[40] M. Treaster, A survey of fault-tolerance and fault-recovery techniques in parallel
systems, 2005, arXiv preprint cs/0501002.

[41] S. Kalaiselvi, V. Rajaraman, A survey of checkpointing algorithms for parallel
and distributed computers, Sadhana (2000) 489–510.

[42] B. Lucia, V. Balaji, A. Colin, K. Maeng, E. Ruppel, Intermittent computing:
Challenges and opportunities, in: LIPIcs-Leibniz International Proceedings in
Informatics, 2017.

[43] A. Rodriguez, D. Balsamo, Z. Luo, S.P. Beeby, G.V. Merrett, A.S. Weddell,
Intermittently-powered energy harvesting step counter for fitness tracking, in:
2017 IEEE Sensors Applications Symposium, SAS, IEEE, 2017, pp. 1–6.

[44] M. Habibzadeh, M. Hassanalieragh, A. Ishikawa, T. Soyata, G. Sharma, Hybrid
solar-wind energy harvesting for embedded applications: Supercapacitor-based
system architectures and design tradeoffs, IEEE Circuits Syst. Mag. (2017) 29–63.

[45] T. Instruments, ULP meets energy harvesting, 2019, URL https://bit.ly/2GkBkOg.
[46] M.-T. Chiu, Y.-P. You, CLPKM: A checkpoint-based preemptive multitasking

framework for OpenCL kernels, J. Syst. Archit. (2019) 53–62.
[47] B. Cai, K. Li, SLO-aware colocation: Harvesting transient resources from

latency-critical services, J. Syst. Archit. 101663.
[48] A. Rodriguez Arreola, D. Balsamo, G. Merrett, A. Weddell, RESTOP: Retaining ex-

ternal peripheral state in intermittently-powered sensor systems, Sensors (2018)
172.

[49] G. Berthou, T. Delizy, K. Marquet, T. Risset, G. Salagnac, Sytare: a lightweight
kernel for NVRAM-based transiently-powered systems, IEEE Trans. Comput. 68
(9) (2018) 1390–1403.

[50] J. Hester, K. Storer, J. Sorber, L. Sitanayah, Towards a language and runtime
for intermittently powered devices, in: Workshop on Hilariously Low-Power
Computing, HLPC, 2016.

[51] J. Hester, N. Tobias, A. Rahmati, L. Sitanayah, D. Holcomb, K. Fu, W.P. Burleson,
J. Sorber, Persistent clocks for batteryless sensing devices, ACM Trans. Embedded
Comput. Syst. (2016) 77.

[52] L.V. Cargnini, L. Torres, R.M. Brum, S. Senni, G. Sassatelli, Embedded memory hi-
erarchy exploration based on magnetic random access memory, Multidisciplinary
Digital Publishing Institute, 2014, pp. 214–230,

[53] T. Instruments, MSP430FR573x mixed-signal microcontrollers, 2014, http://
www.ti.com/lit/ds/symlink/msp430fr5739.pdf.

[54] A. Colin, B. Lucia, Chain: tasks and channels for reliable intermittent pro-
grams, in: Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, 2016, pp.
514–530.

[55] A. Gomez, L. Sigrist, M. Magno, L. Benini, L. Thiele, Dynamic energy burst
scaling for transiently powered systems, in: Design, Automation & Test in Europe
Conference & Exhibition, DATE, 2016, pp. 349–354.

[56] S. Senni, L. Torres, G. Sassatelli, A. Gamatie, Non-volatile processor based on
MRAM for ultra-low-power IoT devices, ACM J. Emerg. Technol. Comput. Syst.
(2016) 1–23.

[57] K. Kim, S. Lee, Memory technology in the future, Microelectron. Eng. (2007)
1976–1981.

[58] E. Philofsky, FRAM-the ultimate memory, in: Proceedings of Nonvolatile Memory
Technology Conference, 1996, pp. 99–104.

[59] D. Balsamo, A. Elboreini, B. Al-Hashimi, G. Merrett, Exploring ARM mbed
support for transient computing in energy harvesting IoT systems, in: Proceedings
of the 7th IEEE International Workshop on Advances in Sensors and Interfaces,
IWASI, 2017, pp. 115–120.

[60] C. Leech, Y.P. Raykov, E. Ozer, G.V. Merrett, Real-time room occupancy
estimation with Bayesian machine learning using a single PIR sensor and
microcontroller, in: Sensors Applications Symposium (SAS), 2017 IEEE, IEEE,
2017, pp. 1–6.

[61] F.A. Aouda, K. Marquet, G. Salagnac, Incremental checkpointing of program state
to NVRAM for transiently-powered systems, in: 9th International Symposium
on Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC, IEEE,
2014, pp. 1–4.

[62] S. Ahmed, N.A. Bhatti, M.H. Alizai, J.H. Siddiqui, L. Mottola, Efficient intermit-
tent computing with differential checkpointing, in: Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools
for Embedded Systems, LCTES, ACM, 2019, pp. 70–81.

[63] T. Parr, The Definitive ANTLR 4 Reference, 2013, https://goo.gl/RR1s.
11
[64] S.T. Sliper, D. Balsamo, N. Nikoleris, W. Wang, A.S. Weddell, G.V. Merrett, Effi-
cient state retention through paged memory management for reactive transient
computing, in: Proceedings of the 56th Annual Design Automation Conference,
DAC, 2019, pp. 1–6.

[65] T.D. Verykios, D. Balsamo, G.V. Merrett, Selective policies for efficient state
retention in transiently-powered embedded systems: Exploiting properties of
NVM technologies, Sustain. Comput.: Inf. Syst. (2019) 167–178.

[66] K. Maeng, B. Lucia, Adaptive dynamic checkpointing for safe efficient intermit-
tent computing, in: 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2018, pp. 129–144.

Saad Ahmed is a Ph.D. candidate in the Department
of Computer Science, School of Science and Engineering,
LUMS Pakistan. His research interests include batteryless-
IoT devices, embedded systems and edge computing. He
has published full papers in premier venues in networked
systems domain such as IPSN, EWSN and LCTES with
posters in SenSys. He also worked as a visiting researcher
at the Communications and Distributed Systems(ComSys)
Lab, RWTH Aachen Germany for two consecutive years i.e.,
June 2016 and July 2017. He also served as a reviewer
for ICPADS and ComNets in 2019. He won the intermittent
computing hackathon held at the Doctoral school organized
by the IDEA league and his paper has been nominated as
the Best Paper Candidate in EWSN 2020.

Dr. Naveed Anwar Bhatti is an Assistant Professor at Air
University (Pakistan). He completed his Ph.D. at Politecnico
di Milano (Italy) in 2018. Later, he joined RISE (Sweden) as
an ERCIM postdoctoral fellow for one and a half years. His
primary research area is Cyber–Physical Systems (CPS) with
a focus on transiently-powered embedded systems. Out of
this research, he managed to publish papers in IPSN, EWSN,
ICC, LCTES, and TOSN which are considered as flagship
events in the field of networked embedded systems. He
also won the best Ph.D. presentation award at IPSN 2016.
He was also in the technical program committee (TPC) of
ICPADS 2019, AlgoSensor 2019, ISIoT 2019 and IoTDI 2019.

Martina Brachmann is an ERCIM Alain Bensoussan post-
doctoral researcher working at the Networked Embedded
Systems (NES) group of Thiemo Voigt at RISE Research
Institutes of Sweden in Stockholm, Sweden. Martina’s re-
search area is the Internet of Things with main focus
on communication in low-power wireless networks. Over
the past years, she has been working on different aspects
and layers in the communication stack, from security over
medium access control to physical layer considerations.
Martina completed her Ph.D. at the Technische Universität
Dresden, Germany, under guidance of Prof. Dr. Silvia Santini
in 2018. From May to August 2015, she joined Prof. Dr.
Olaf Landsiedel’s research group in Chalmers University of
Technology, Sweden, as a research scholar. She received
her Master of Science in Information and Communication
Technology from the Brandenburg University of Technology
Cottbus (BTU), Germany, in 2012.

Dr. Alizai has over 10 years of experience as a researcher,
software engineer, and technical lead both in industrial and
academic settings. He has authored book, book chapters
and published numerous scientific papers, while abroad and
indigenously from Pakistan, several of them in top flight
ACM SIG sponsored venues such as ACM SenSys, IPSN,
BuildSYS, CoNEXT. He is experienced in leading innovative
research projects in pervasive computing technologies such
as Internet of things, sensor and delay tolerant networks,
ICT4D, and mobile computing. He was employed as a
software engineer in several European Union projects and
has a wealth of experience in teaching/training cutting
edge technologies and courses in theoretical and practical
computer sciences at grad, post grad and professional level.
He is also a visiting researcher at his alma mater: ComSys,
RWTH Aachen, Germany.

http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb38
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb39
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb39
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb39
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb40
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb40
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb40
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb41
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb41
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb41
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb43
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb43
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb43
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb43
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb43
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb44
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb44
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb44
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb44
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb44
https://bit.ly/2GkBkOg
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb46
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb46
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb46
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb48
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb48
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb48
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb48
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb48
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb49
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb49
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb49
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb49
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb49
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb51
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb51
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb51
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb51
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb51
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb52
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb52
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb52
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb52
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb52
http://www.ti.com/lit/ds/symlink/msp430fr5739.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5739.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5739.pdf
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb56
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb56
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb56
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb56
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb56
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb57
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb57
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb57
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb59
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb60
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb61
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb62
https://goo.gl/RR1s
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb65
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb65
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb65
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb65
http://refhub.elsevier.com/S1383-7621(21)00024-2/sb65

	A survey on program-state retention for transiently-powered systems
	Introduction
	TPS dynamics: A bigger picture
	TPS fundamentals
	Program-state retention

	Intermittent program's state retention: Taxonomy of solutions
	TPS memory models
	Memory models
	Volatile systems
	Non-volatile systems

	Trigger mechanism
	Proactive
	Discussion

	Reactive
	Discussion


	Checkpointing strategy
	Copy-used
	Discussion

	Copy-if-change
	Discussion


	Conclusion
	Declaration of competing interest
	References


